《离散数学》二元关系和函数2
二元关系 离散数学

二元关系离散数学
二元关系是离散数学中非常重要的概念之一。
二元关系是指将两个元素组合在一起形成的一种关系。
例如,整数之间的“大于”、“小于”等关系。
在二元关系中,每个元素都称为关系的一部分。
二元关系可以用箭头或括号表示。
例如,如果我们有集合A={1,2,3}和集合B={a,b,c},那么我们可以定义二元关系R={(1,a),(1,b),(2,b)},这表示1和a、1和b,2和b之间存在关系。
二元关系的性质也是离散数学中非常重要的。
二元关系可以是自反的,反对称的,传递的和等价的。
自反关系表示每个元素都与自己存在关系,反对称关系表示如果两个元素之间存在关系,那么它们不能同时与相同的元素存在关系,传递关系表示如果两个元素之间存在关系,那么这种关系会传递到它们之间的其他元素之间,等价关系表示该关系是自反的、对称的和传递的。
这些性质有助于我们理解和描述二元关系。
二元关系在离散数学中有许多应用。
例如,它们可以用于网络分析、逻辑推理、图像处理等领域。
在计算机科学中,二元关系在数据库中的查询和排序算法中也有广泛应用。
总之,二元关系是离散数学中重要的概念之一,它将两个元素联系在一起,并具有许多重要的性质和应用。
二元关系 离散数学

二元关系离散数学离散数学是数学的一个分支,主要研究离散的数学结构和离散的数学对象。
其中,二元关系是离散数学中的一个重要概念。
二元关系是指两个集合之间的关系,通常用一个有序对表示。
例如,设A={1,2,3},B={a,b,c},则{(1,a),(2,b),(3,c)}就是A和B之间的一个二元关系。
在这个关系中,1和a有关系,2和b有关系,3和c 有关系。
二元关系有很多种类型,其中比较常见的有等价关系、偏序关系和全序关系。
等价关系是指具有自反性、对称性和传递性的关系。
例如,设A={1,2,3},则{(1,1),(2,2),(3,3),(1,2),(2,1),(2,3),(3,2)}就是A上的一个等价关系。
在这个关系中,1和1等价,2和2等价,3和3等价,1和2等价,2和1等价,2和3等价,3和2等价。
偏序关系是指具有自反性、反对称性和传递性的关系。
例如,设A={1,2,3},则{(1,1),(2,2),(3,3),(1,2),(1,3),(2,3)}就是A上的一个偏序关系。
在这个关系中,1和1有关系,2和2有关系,3和3有关系,1和2有关系,1和3有关系,2和3有关系,但是2和1没有关系,3和1没有关系,3和2没有关系。
全序关系是指具有自反性、反对称性、传递性和连通性的关系。
例如,设A={1,2,3},则{(1,1),(2,2),(3,3),(1,2),(1,3),(2,3),(3,1),(2,1),(3,2)}就是A上的一个全序关系。
在这个关系中,1和1有关系,2和2有关系,3和3有关系,1和2有关系,1和3有关系,2和3有关系,3和1有关系,2和1有关系,3和2有关系。
二元关系在离散数学中有着广泛的应用,例如在图论、集合论、逻辑学等领域都有着重要的作用。
因此,对于离散数学的学习和研究,二元关系是一个不可或缺的重要内容。
《离散数学》课件-第四章 二元关系

R2= R • R={<1,1>,<2,2>,<1,3>,<2,4>, <3,5>}
R3=R2 • R={<1,2>,<2,1>,<1,4>,<2,3>, <2,5>}
R4= R3 • R={<1,1>,<2,2>,<1,5>,<2,4>,
从关系图来看关系的n次幂
R:
1
2
3
4
5
R2:
1
2
3
4
5
R2就是从R的关系图中的任何一个结点x出发,长 为2的路径,如果路径的终点是y,则在R2 的关系 图中有一条从x到y的有向边。其他以次类推:
R3:
1
2
3
4
5
R4:
1
2
3
4
5
定理 设|A|=n,R A×A,则必有i,j∈N, 0≤i<j≤2n2,使得Ri=Rj。
=R5,R7=R6•R=R5,…,Rn=R5 (n>5) 故Rn{R0,R1,R2,R3,R4,R5}。
S0=IA,S1=S,
S2=S•S={<a,c>,<b,d>,<c,e>,<d,f>}, S3=S•S•S=S2•S={<a,d>,<b,e>,<c,f>}, S4=S3•S={<a,e>,<b,f>}, S5=S4•S={<a,f>}, S6=S5•S=Φ, S7=Φ, …, 故,Sn{S0,S1,S2,S3,S4,S5,S6}
离散数学ch2.二元关系(5、6、7节)

VS
详细描述
关系的对称差运算可以用符号表示为 R△S,其中 R 和 S 是两个关系。它包括 属于 R 但不属于 S,以及属于 S 但不属 于 R 的所有有序对。如果 (a, b) 在 R△S 中,那么 (a, b) 或者只属于 R,或者只属 于 S。
04
CATALOGUE
关系的闭包
闭包的定义
1 2
关系的交运算可以用符号表示为 R ∩ S,其中 R 和 S 是两个关系 。它包括同时属于 R 和 S 的所有 有序对。如果 (a, b) 在 R ∩ S 中 ,那么 (a, b) 同时是 R 和 S 的差是一种集合差集操作,它从第一个 关系中去除与第二个关系共有的元素。
中可以推导出的新事实。
数据完整性
03
在数据库设计中,闭包的概念用于确保数据的完整性和准确性
,防止出现冗余和不一致的情况。
05
CATALOGUE
关系的类型
函数关系
总结词
函数关系是一种特殊的二元关系,它满足每 个自变量都有唯一的因变量与之对应。
详细描述
在函数关系中,对于定义域中的每一个元素 ,在值域中都有唯一一个元素与之对应。这 种关系具有明确性、确定性和无重复性。常 见的函数关系有数学函数、映射函数等。
离散数学ch2.二元 关系(5、6、7节)
contents
目录
• 引言 • 二元关系的性质 • 关系的运算 • 关系的闭包 • 关系的类型 • 关系在数据库中的应用 • 关系在人工智能中的应用
01
CATALOGUE
引言
定义与概念
定义
二元关系是集合论中的一个基本概念 ,它描述了两个元素之间的联系。
在设计关系型数据库时,需要考虑数据结构、数据完整性、数据冗余和数 据安全性等方面。
离散数学第四章-二元关系和函数

(2) 笛卡儿积是集合,有关集合的运算都适合。
(3) 一般,A B B A 。
5
3、笛卡儿积运算对 或 满足分配律
(1) A(B C) (A B) (AC) (2) (B C) A (B A) (C A) (3) A(B C) (A B) (AC) (4) (B C) A (B A) (C A)
解: (A) ,{a},{b}, A ,
R , , ,{a} , ,{b} ,
, A , {a},{a} , {a}, A ,
{b},{b} , {b}, A , A, A
14
4、A 上二元关系的表示法。
集合表示法 有三种 矩阵表示法
图形表示法
15
一般:设 A {x1, x2, , xn}
1、定义:
(1) 若集合R为空集或它的元素都是有序对, 则称 R 为二元关系。 若 x, y R ,则记作 xRy ,
否则,记作 xRy 。 (2) A B的任何一个子集都称作从A到B的一个二元关系。
特别地,当 A B 时,称作 A上的二元关系。
例、 A {a,b} ,B {0,1, 2}
设 R1 a, 0 , b, 0 , b, 2 R2 R3 A B
传递的。
26
例6、判断下图中的关系分别具有哪些性质。
解:R5 既不是自反也不是反自反的,
反对称的,传递的。
27
例6、判断下图中的关系分别具有哪些性质。
解:R6 是反自反的,既不是对称
又不是反对称,不是传递的。
28
例7:设 R1, R2 为 A上的对称关系, 证明R1 R2 也是 A上的对称关系。 证明:对任意 x, y
离散数学2

在上例中3个结果矩阵是 在上例中 个结果矩阵是: 个结果矩阵是
24
求传递闭包--Warshall算法 求传递闭包--Warshall算法 --Warshall
设集合基数为n 构造n+1个矩阵W 设集合基数为n,构造n+1个矩阵W0,W1,W2, n+1个矩阵 …Wn,W0为t( R )的关系矩阵,Wn即为t( R )的关系矩阵 Wn,W )的关系矩阵,Wn即为 的关系矩阵,Wn即为t( )的关系矩阵 (1)令 (1)令W0=MR (2)设Wi- 已求出,现求Wi (2)设Wi-1已求出,现求Wi 考虑Wi- 的第i 考虑Wi-1的第i列,列中为1的元素分别位于P1,P2…行, Wi 列中为1的元素分别位于P 行 同时考虑第i 该行中为1的元素位于q 同时考虑第i行,该行中为1的元素位于q1,q2…列,则: 列 i中第 中第P 列的元素改为1 把W i中第PS行qt列的元素改为1; (3)重复(2)过程,直到求出Wn (3)重复(2)过程,直到求出Wn 重复(2)过程 (4)根据Wn写出t( (4)根据Wn写出t( R ) 根据Wn写出 2.5.3) (见书上例2.5.3) 见书上例2.5.3
7
传递性:若x到y有边,y到z有 边,则x到z必有边。
8
二元关系的性质对应于关系图, 二元关系的性质对应于关系图,有: (1)自反性:每个顶点都有自回路, )自反性:每个顶点都有自回路, (2)反自反性:每个顶点都没有自回路; ) 自反性:每个顶点都没有自回路; ( 3) 对称性 : 任二个顶点间或没有边 , 或有二 ) 对称性: 任二个顶点间或没有边, 条方向相反的有向边; 条方向相反的有向边; ( 4) 反对称性 : 任二个顶点至多只有一条有向 ) 反对称性: 也即:或没有边,或只有一条有向边) 边;(也即:或没有边,或只有一条有向边) 有边, 有边, (5)传递性:若x到y有边,y到z有边, )传递性: 则x到z必有边。 必有边。
离散数学第四章二元关系和函数知识点总结

离散数学第四章二元关系和函数知识点总结集合论部分第四章、二元关系和函数集合的笛卡儿积与二元关系有序对定义由两个客体x 和y,按照一定的顺序组成的二元组称为有序对,记作实例:点的直角坐标(3,4)有序对性质有序性(当x y时)与相等的充分必要条件是= x=u y=v例1 = ,求x, y.解 3y 4 = 2, x+5 = y y = 2, x = 3定义一具有序n (n3) 元组是一具有序对,其中第一具元素是一具有序n-1元组,即= , x n>当n=1时, 形式上能够看成有序 1 元组.实例 n 维向量是有序 n元组.笛卡儿积及其性质定义设A,B为集合,A与B 的笛卡儿积记作A B,即A B ={ | x A y B } 例2 A={1,2,3}, B={a,b,c}A B ={,,,,,,,,}B A ={,,,,,,, ,}A={}, P(A)A={, }性质:别适合交换律A B B A (A B, A, B)别适合结合律 (A B)C A(B C) (A, B)关于并或交运算满脚分配律A(B C)=(A B)(A C)(B C)A=(B A)(C A)A(B C)=(A B)(A C)(B C)A=(B A)(C A)若A或B中有一具为空集,则A B算是空集.A=B=若|A|=m, |B|=n, 则 |A B|=mn证明A(B C)=(A B)(A C)证任取∈A×(B∪C)x∈A∧y∈B∪Cx∈A∧(y∈B∨y∈C)(x∈A∧y∈B)∨(x∈A∧y∈C)∈A×B∨∈A×C∈(A×B)∪(A×C)因此有A×(B∪C) = (A×B)∪(A×C).例3 (1) 证明A=B C=D A C=B D(2) A C=B D是否推出A=B C=D 为啥解 (1) 任取A C x A y Cx B y D B D(2) 别一定. 反例如下:A={1},B={2}, C=D=, 则A C=B D 然而A B.二元关系的定义定义设A,B为集合, A×B的任何子集所定义的二元关系叫做从A到B的二元关系, 当A=B时则叫做A上的二元关系.例4 A={0,1}, B={1,2,3}, R1={}, R2=A×B, R3=, R4={}. 这么R1, R2, R3,R4是从A 到B的二元关系, R3和R4并且也是A上的二元关系.计数|A|=n, |A×A|=n2, A×A的子集有个. 因此A上有个别同的二元关系.例如 |A|=3, 则A上有=512个别同的二元关系.设A 为任意集合,是A 上的关系,称为空关系E, I A 分不称为全域关系与恒等关系,定义如下:AE={|x∈A∧y∈A}=A×AAI={|x∈A}A例如, A={1,2}, 则E={,,,}AI={,}A小于等于关系L A, 整除关系D A, 包含关系R定义: L={| x,y∈A∧x≤y}, A R,R为实数集合AD={| x,y∈B∧x整除y},BB Z*, Z*为非0整数集R={| x,y∈A∧x y}, A是集合族.类似的还能够定义大于等于关系, 小于关系, 大于关系, 真包含关系等等.例如A = {1, 2, 3}, B ={a, b}, 则L={,,,,,}AD={,,,,}AA=P(B)={,{a},{b},{a,b}}, 则A上的包含关系是R={,,,,, ,,,}二元关系的表示表示方式:关系的集合表达式、关系矩阵、关系图关系矩阵:若A={a1, a2, …, a m},B={b1, b2, …, b n},R是从A到B 的关系,R 的关系矩阵是布尔矩阵M R = [ r ij ] m n, 其中r ij= 1 R.关系图:若A= {x1, x2, …, x m},R是从A上的关系,R的关系图是G R=, 其中A为结点集,R为边集.假如属于关系R,在图中就有一条从x i到x j 的有向边.注意:A, B为有穷集,关系矩阵适于表示从A到B的关系或者A上的关系,关系图适于表示A上的关系A={1,2,3,4},R={,,,,},R的关系矩阵M和关系图G R如下:R关系的运算基本运算定义:定义域、值域和域dom R = { x | y (R) }ran R = { y | x (R) }fld R = dom R ran R例1 R={,,,}, 则dom R={1, 2, 4}ran R={2, 3, 4}fld R={1, 2, 3, 4}逆与合成R1 = { | R}R°S = | | y (RS) } 例2 R={, , , } S={, , , , }R1={, , , }R°S ={, , }S°R ={, , , }定义 F 在A上的限制F?A = { | xFy x A}A 在F下的像F[A] = ran(F?A)实例R={, , , }R?{1}={,}R[{1}]={2,4}R?=R[{1,2}]={2,3,4}注意:F?A F, F[A] ran F基本运算的性质定理1 设F是任意的关系, 则(1) (F1)1=F(2) dom F1=ran F, ran F1=dom F证 (1) 任取, 由逆的定义有∈(F 1) 1 ∈F 1 ∈F因此有 (F1)1=F(2) 任取x,x∈dom F 1 y(∈F1)y(∈F) x∈ran F因此有dom F1= ran F. 同理可证 ran F1 = dom F.定理2 设F, G, H是任意的关系, 则(1) (F°G)°H=F°(G°H)(2) (F°G)1= G1°F 1证 (1) 任取,(F°G)°H t(∈F°G∧∈H) t (s(∈F∧∈G)∧∈H)t s (∈F∧∈G∧∈H)s (∈F∧t (∈G∧∈H))s (∈F∧∈G°H)∈F°(G°H)因此(F°G)°H = F°(G°H)(2) 任取,∈(F°G)1∈F°Gt (∈F∧(t,x)∈G)t (∈G1∧(t,y)∈F1)∈G1°F1因此(F°G)1 = G1°F1幂运算设R为A上的关系, n为自然数, 则R 的n次幂定义为:(1) R0={ | x∈A }=I A(2) R n+1 = R n°R注意:关于A上的任何关系R1和R2都有R 10 = R20 = IA关于A上的任何关系R 都有R1 = R性质:定理3 设A为n元集, R是A上的关系, 则存在自然数s 和t, 使得R s = R t.证R为A上的关系, 由于|A|=n, A上的别同关系惟独个.当列出R 的各次幂R0, R1, R2, …, , …,必存在自然数s 和t 使得R s=R t.定理4 设R 是A 上的关系, m, n∈N, 则(1) R m°R n=R m+n(2) (R m)n=R mn证用归纳法(1) 关于任意给定的m∈N, 施归纳于n.若n=0, 则有R m°R0=R m°I=R m=R m+0A假设R m°R n=R m+n, 则有R m°R n+1=R m°(R n°R)=(R m°R n)°R=R m+n+1 ,因此对一切m, n∈N有R m°R n=R m+n.(2) 关于任意给定的m∈N, 施归纳于n.若n=0, 则有(R m)0=I A=R0=R m×0假设 (R m)n=R mn, 则有(R m)n+1=(R m)n°R m=(R mn)°R m=R mn+m=R m(n+1) 因此对一切m,n∈N有 (R m)n=R mn.关系的性质自反性反自反性定义设R为A上的关系,(1) 若x(x∈A→R), 则称R在A上是自反的.(2) 若x(x∈A→R), 则称R在A上是反自反的.实例:反关系:A上的全域关系E A, 恒等关系I A小于等于关系L A, 整除关系D A反自反关系:实数集上的小于关系幂集上的真包含关系例1 A={1,2,3}, R1, R2, R3是A上的关系, 其中R={,}1R={,,,}2R={}3R自反,2R反自反,3R既别是自反也别是反自反的1对称性反对称性定义设R为A上的关系,(1) 若x y(x,y∈A∧∈R→∈R), 则称R为A上对称的关系.(2) 若x y(x,y∈A∧∈R∧∈R→x=y), 则称R为A上的反对称关系.实例:对称关系:A上的全域关系E A, 恒等关系I A和空关系反对称关系:恒等关系I A,空关系是A上的反对称关系.例2 设A={1,2,3}, R1, R2, R3和R4基本上A上的关系,其中R={,},R2={,,}1R={,},R4={,,}3R对称、反对称.1R对称,别反对称.2R反对称,别对称.3R别对称、也别反对称.4传递性定义设R为A上的关系, 若x y z(x,y,z∈A∧∈R∧∈R→∈R), 则称R是A上的传递关系.实例:A上的全域关系E,恒等关系I A和空关系A小于等于关系, 小于关系,整除关系,包含关系,真包含关系例3 设A={1,2,3}, R1, R2, R3是A上的关系, 其中R={,}1R={,}2R={}3R和R3 是A上的传递关系1R别是A上的传递关系2关系性质的充要条件设R为A上的关系, 则(1) R在A上自反当且仅当I A R(2) R在A上反自反当且仅当R∩I A=(3) R在A上对称当且仅当R=R 1(4) R在A上反对称当且仅当R∩R1I A(5) R在A上传递当且仅当R R R证明模式证明R在A上自反任取x,第11页/共11页。
离散数学(第二版)第4章二元关系和函数

第四章 二元关系和函数
定义4.2.3 设R是A到B的二元关系。 (1) 用xRy表示 <x,y>∈R,意为x,y有R关系(为使可读 性好,我们将分场合使用这两种表达方式中的某一种)。 xy 表示<x,y> R。 (2) 由<x,y>∈R的所有x组成的集合称为关系R的定义域 (domain),记作Dom R,即
显然A×B与 B×A所含元素的个数相同(A,B是有限集 合),但A×B≠B×A。
定理4.1.1 若A,B是有穷集合,则有 |A×B|=|A|·|B|(·为数乘运算)
该定理由排列组合的知识不难证明。 定理4.1.2 对任意有限集合A1,A2,…,An,有 |A1×A2×…×An|=|A1|·|A2|·… ·|An|(·为数乘运算)
第四章 二元关系和函数
本节主要介绍关系的基本概念以及关系的表示方法。 定义4.2.1 任何序偶的集合,确定了一个二元关系,并 称该集合为一个二元关系,记作R 。 二元关系也简称关系。 对于二元关系R,如果<x,y>∈R,也可记作xRy。 定义并不要求R中的元素<x,y> 中的x,y取自哪个个体 域。 因此,R={<2,a>,<u,狗>,<钱币,思想>}也是一 个二元关系。
若R={<x,y>|x∈A∧y∈B∧ x|y },则称R为整除关系, 常记为|,其中x|y表示x整除y。
若A是任意集合,R是A上的二元关系,下面的关系也常 见:
若R={<x,y>|x∈P(A)∧y∈P(A)∧x y},则称R为包含
若R={<x,y>|x∈P(A)∧y∈P(A)∧x y},则称R为真包
第四章 二元关系和函数
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
f(A) = f({0,1}) = { f(0), f(1) } = {0, 2} x / 2
f
(x)
x
1
若x为偶数 若x为奇数
函数的性质
4.6函 数的 定义 与性 质
定义 设 f:A→B, (1)若ranf = B, 则称 f:A→B是满射的. (2)若任意x1, x2 A 而且不相等,都有f(x1)与
B上A
4.6函 数的 定义 与性 质
A 定义 所有从 A 到 B 的函数的集合记作 B , 读作“B上A”,符号化表示为
A B ={ f | f:A→B } 计数:
Am |A|=m, |B|=nA, 且m, n>0, |B |=n . A=, 则 B =B =A{}A. A≠且B=, 则 B = = .
(1)f={(1,8),(3,9),(4,10),(2,6),(5,9)}
4.6函 (2)f={(1,9),(3,10),(2,6),(4,9)}
数的 (3)f={(1,7),(2,6),(4,5),(1,9),(5,10),(3,9)}
定义 与性
解 (1)能质
实例
A 例2 设A A = {1, 2, 3}, B = {a, b}, 求B . 解 B = {f0, f1, … , f7}, 其中
f0={<1,a>,<2,a>,<3,a>}, f1={<1,a>,<2,a>,<3,b>} f2={<1,a>,<2,b>,<3,a>},f3={<1,a>,<2,b>,<3,b>} f4={<1,b>,<2,a>,<3,a>},f5={<1,b>,<2,a>,<3,b>} f6={<1,b>,<2,b>,<3,a>}, f7={<1,b>,<2,b>,<3,b>}
数的 定义
|X|≤|Y|。
与性 质
②由满射的定义可知,设X和Y是有限
集合,若存在满射函数f:X→Y,则
|X|≥|Y|。
③由双射的定义可知,设X和Y是有限 集 合 , 若 存 在 双 射 函 数 f:X→Y, 则 |X|=|Y|。
实例
4.6函 数的 定义 与性 质
例4
判断下面函数是否为单射, 满射, 双射的, 为什么? 2
f(x2)不相等, 则称 f:A→B是单射的. (3)若 f:A→B既是满射又是单射的, 则称 f:
A→B是双射的
f 满射意味着:y B, 都存在 x使得 f(x) = y. f 单射意味着:f(x1) = f(x2) x1= x2
▪ 注意:
①由单射的定义可知,设X和Y是有限
4.6函
集合,若存在单射函数f:X→Y,则
称 F 为函数. 对于函数F, 如果有 xFy, 则记作 y=F(x), 并称 y 为 F 在 x 的函数值.
例1 F1={<x1,y1>,<x2,y2>,<x3,y2>} F2={<x1,y1>,<x1,y2>}
F1是函数, F2不是函数
函数与关系的区别
4.6函▪ 从A到B的函数f与一般从A到B的二元关系R有如 数的 下区别:
(1) f:R→R, f(x) = x +2x1 +
(2) f:Z+→R, f(x) = lnx, Z 为正整数集
(3) f:R→Z, f(x) = x
(4) f:R→+ R, +f(x) = 2x+21
+
(5) f:R →R , f(x)=(x +1)/x, 其中R 为正实数集.
4.6函 数的 定义 与性 质
满射、+ 单射+、双射, 2因为它是单调的并且ranf=R. (5) f:R →R , f(x)=(x +1)/x
有极小值f(1)=2. 该函数既不单射也不满射.
定义 与性
A的每一元素都必须是f的序偶的第一坐标,
质 即dom(f)=A;但dom(R)R
若f(x)=y,则函数f在x处的值是惟一的,即 ( f(x)=y)(f(x)=z)(y=z), ; 但 (xRy)(xRz)得不到y=z
例1 设A={1,2,3,4,5},B={6,7,8,9,10},分别 确定下列各式中的f是否为由A到B的函数。
函数的像
4.6函 数的 定义 与性 质
定义 设函数 f:A→B, A1A. A1 在 f 下的像: f(A1) = { f(x) | x∈A1 } 函数的像 f(A) = ranf
注意: 函数值 f(x)∈B, 而像 f(A1)B.
例3 设 f:N→N, 且
令A={0,1}, B={2}, 那么有
第4章 二元关系和函数
Relation
在高等数学中,函数是在实数集合上 进行讨论的,其定义域是连续的。
本章把函数概念予以推广
4.6函 数的
⑴定义域为一般的集合,支持离散应
定义 与性
用。
质
⑵把函数看作是一种特殊的关系:单
值二元关系。
函数定义
4.6函 数的 定义 与性 质
定义 设 F 为二元关系, 若 x∈domF 都存在唯一的y∈ranF 使 xFy 成立, 则
件。
(2)不能构成函数,因为A中的元素5没有 像,不满足像的存在性。
(3)不能构成函数,因为A中的元素1有两 个像7和9,不满足像的惟一性。
函数相等
4.6函 数的 定义 与性 质
定义 设F, G为函数, 则 F = G FG∧GF
一般使用下面两个条件: (1) domF = domG (2) x∈domF = domG 都有 F(x) = G(x)
实例 函数 2 F(x)=(x 1)/(x+1), G(x)=x1
不相等, 因为 domFdomG.
从A到B的函 数
4.6函 数的 定义 与性 质
定义 设A, B为集合, 如果 f 为函数 domf = A ranf B,
则称 f 为从A到B的函数, 记作 f:A→B.
实例 f:N→N, f(x)=2x 是从 N 到 N 的函数 g:N→N, g(x)=2也是从 N 到 N 的函数
实例(续)
2 解 (1) f:R→R, f(x)=x +2x1
在x=1取得极大值0. 既不单射也不满射. (2) f:Z+→R, f(x)=lnx
单调上升, 是单射. 但不满射, ranf={ln1, ln2, …}. (3) f:R→Z, f(x)= x
满射, 但不单射, 例如 f(1.5)=f(1.2)=1. (4) f:R→R, f(x)=2x+1