金属凝固原理——形核

合集下载

金属凝固原理

金属凝固原理
宏观上,物质从液态转变为固态。微观上,激烈运动的液 态原子恢复到规则排列的过程称为凝固。
2 研究对象:
研究液态金属或合金转变为固态金属或合金这一凝固过程 的理论和技术,定性地特别是定量地揭示其内在联系和规 律,发现新现象,探求未知参数,开拓新的凝固技术和工 艺。 凝固学是材料成形技术的基础,也是近代新型材料开拓和 制备的基础。
第一节 单向凝固工艺 第二节 单晶生长 第三节 柱状晶的生长 第四节 自生复合材料
第八章 快速凝固
第一节 快速凝固技术及其传热特点 第二节 快速凝固的热力学 第三节 快速凝固的动力学及界面形貌稳定性 第四节 快速凝固晶态合金的显微结构特征与 应用 第五节 快速凝固的非晶态合金
绪论
研究对象
1 凝固:
两个原子的相互作用势能 W(R) 的曲线如图 1-1b 所示。可 用下式计算相互作用力,当 R 增加 dR 时,力 F 就靠势能 W(R)减小作外功FdR。因此得到: 或 当R=R0 时,F(R0)=0,即 对应于能量的极小值,状态稳定。原子之间倾向于保持一 定的间距,这就是在一定条件下,金属中的原子具有一定 排列的原因。当R=R1时,吸引力最大,即
第二章 凝固热力学
第一节 液态金属结构 第二节 二元合金的稳定相平衡 第三节 溶质平衡分配系数 第四节 液-固相界面成分及界面溶质
分配系数
第三章 凝固动力学
第一节 自发形核 第二节 非自发形核 第三节 固-液相界面结构 第四节 晶体生长方式
第四章 单相合金的凝固
第一节 凝固过程的溶质再分配 第二节 金属凝固过程中的“成分过冷” 第三节 界面稳定性与晶体形态 第四节 胞晶组织与树枝晶 第五节 微观偏析 第六节 固-液界面非线性动力学理论
表1-1 一些金属的熔化潜热和汽化潜热的比较

第三章 纯金属的凝固 材料科学基础课件

第三章  纯金属的凝固 材料科学基础课件
G V G V A a 3 G V 6 a 2
例题:设晶核为半径为r的球形,晶体元素的相对原子质量为A,
密度为ρ,阿伏加得常数为NA, 求临界晶核中所含原子数n* 的表达式(已知单位体积吉布斯自由能为△Gv ,单位面积表 面能为σ )
3.3.2.1 非均匀形核的形核功 模型:外来物质为一平面,固 相晶胚为一球冠
金属和某些低熔化熵的有机化合物,a≤2时,其液一固界面 为粗糙界面;多数无机化合物,以及亚金属铋、锑、镓、砷 和半导体锗、硅等,当a>2时,其液一固界面为光滑界面。 但以上的预测不适用于高分子,由于它们具有长链分子结构 的特点,其固相结构不同于上述的原子模型。
3.4.3 晶体长大的机制
晶体长大机制:液态原子向固相表面 的添加方式。 与固-液界面结构有关
3.4.1 晶体长大的条件
•晶体长大:液体中原子迁移到晶体表面,即液-固界面 向液体中推移的过程。 •平衡状态:(dN/dT)M=(dN/dT)F
温度对熔化和凝固速度的影响
Ti
•动态过冷:晶核长大所需的 界面过冷度。(远小于形核 所需过冷度) •晶核长大条件:动态过冷、 合适的晶核表面结构
3.4.2 液-固界面的微观结构
液-固界面始终保持平直的表面 向液相中长大,长大中的晶体 也一直保持规则的形态。 条件:正温度梯度,粗糙界面 结构的晶体为主
3.4.4.2 平面状长大形态 3.4.4.3 树枝状长大形态 液-固界面不断分支发展
条件:负温度梯度 特点:有方向性,取决于晶体结构
枝臂间距:邻近的两根二次轴中心线之间的距离。 冷却速度大,枝臂间距小,强度、塑性好
3.4.4.1 液-固界面前沿液相中的温度梯度
•正温度梯度:液相中,距液-固界面越远,温度越高。平面状 •负温度梯度:液相中,距液-固界面越远,温度越低。树枝状

第三讲液态金属的凝固形核及生长方式

第三讲液态金属的凝固形核及生长方式

能最低,处于热力学稳定状态。对于
α >2 的物 质 , 只 有 当 x <0.05 和x >
0.95时,界面的自由能才是最低的,
处于热力学稳定状态。因此,有两种
不同的界面。
33
(2) 固一液界面的微观结构 a. 粗糙界面 当α≤2,x=0.5时,界面为最稳定的结构,这时界面上有一半 位置被原子占据,而一半位置则空着,其微观上是粗糙的, 高低不平,称为粗糙界面。大多数的金属界面属于这种结构。
)]
k1
exp[(GA G均* kBT
)]
此式由两项组成:
e 1) G均* / kBT ;由于生核功随过冷度增大而减小,它反比于
ΔT2。故随过冷度的增大,此项迅速增大,即生核速度迅速增 大;
e 2) GA / kBT ;由于过冷增大时原子热运动减弱,故生核速
度相应减小;
12
上述两个矛盾因素的综合作用,使生核速度I随过冷度ΔT变化 的曲线上出现一个极大值。过冷度开始增大时,前一项的贡 献大于后一项,故这时生核速度随过冷度而增大;但当过冷 度过大时,液体的粘度迅速增大,原子的活动能力迅速降低, 后一项的影响大于前者,故生核速度逐渐下降。
根据相变动力学理论液态金属中原子在结晶过程中的能量变化如图所示高能态的液态原子变成低能态的固态中的原子必须越过能态更高的高能态g区高能态区即为固态晶粒与液态相间的界面界面具有界面能它使体系的自由能增加
第三章 液态金属的凝固形核及生长方式
液态金属转变成晶体的过程称为液态金属的结晶或金属的一 次结晶
液态金属的结晶过程决定着铸件凝固后的组织,并对随后冷 却过程的相变、过饱和相的析出及铸件的热处理过程产生极大 的影响。此外,它还影响到结晶过程中的其他伴生现象,如偏 析、气体析出、补缩过程和裂纹形成等。因此对铸件得质量、 性能以及其他的工艺过程都具有及其重要得作用。

简述纯金属结晶过程的结晶过程及形核

简述纯金属结晶过程的结晶过程及形核

简述纯金属结晶过程的结晶过程及形核
纯金属的结晶过程:
1.熔融:首先,将金属材料以高温进行熔融,使它变成一种流体状态,以便更
好地发挥凝固时形成结晶体的能力。

2.凝固:凝固过程是将高温熔融液金属冷却而形成晶体的过程。

当熔融液不断
冷却时,它会变得更加粘稠,这样分子之间的相互作用才会明显增强,从而使它们朝向结晶的方向发展。

3.形核:经过凝固过程后,原子之间的作用形成结晶的起始点,即所谓的形核。

最初的形核通常很小,晶体以它为中心,不断得到更多的金属原子,最终在将结晶物构建完成后,结晶体宣告形成。

4.排列:当金属原子结晶后,它们会按照一定的规律排列。

当结晶受到冷却作
用后,原子按照固定的结构进行排列,可以形成完美的三维晶体。

5.结晶体:结晶体形成时,会形成均匀的金属晶体,经不断凝固,结晶体会提
高它的稳定性,使晶体拥有良好的力学性能。

以上就是纯金属结晶过程及其形核的详细描述,因为结晶过程是金属成型的必经步骤,所以对金属成型性能有着至关重要的影响。

只有掌握正确的结晶过程和形核,才能让金属材料达到最佳的性能。

《金属凝固原理》思考题解答

《金属凝固原理》思考题解答

金属凝固原理思考题1.表面张力、界面张力在凝固过程的作用和意义。

2. 如何从液态金属的结构特点解释自发形核的机制。

答:晶体熔化后的液态结构是长程无序,而短程内却存在不稳定的、接近有序的原子集团。

由于液态中原子运动较为强烈,在其平衡位置停留时间甚短,故这种局部有序排列的原子集团此消彼长,即结构起伏和相起伏。

当温度降到熔点以下,在液相中时聚时散的短程有序原子集团,就可能成为均匀形核的晶胚,从而进行均匀形核。

3.从最大形核功的角度,解释0/=∆dr G d 的含义。

4.表面张力、界面张力在凝固过程和液态成形中的意义。

5.在曲率为零时,纯镍的平衡熔点为1723K ,假设镍的球形试样半径是1cm ,1μm 、0.01μm ,其熔点温度各为多少?已知△H=18058J/mol ,V m =606cm 3/mol ,σ=255×107J/cm 26.(与第18题重复)证明在相同的过冷度下均质形核时,球形晶核与立方形晶核哪种更易形成。

答:对于球形晶核:过冷液中出现一个晶胚时,总的自由能变化为ΔG=(4πr 3ΔG V /3)+4πr 2σ。

临界晶核的半径为r *,由d ΔG/dr=0求得:r *=-2σ/ΔG v =2σT m /L m ΔT ,则临界形核的功及形核功为:ΔG *球=16πσ3/3ΔG v 2=16πσ3T m 2/3(L m ΔT)2.对于立方形晶核:同理推得临界半径形r *=-4σ/ΔG v ,形核功ΔG *方=32σ3/ΔG v 2。

则ΔG *球<ΔG *方,所以在相同的过冷度下均质形核时,球形晶核比立方形晶核更容易。

7.用平面图表示,为什么晶体长大时,快速长大的晶体平面会消失,而留下长的速度较慢的平面。

8.用相变热力学分析为何形核一定要在过冷的条件下进行。

答:在一定温度下,从一相转变为另一相的自由能变化:ΔG=ΔH-T ΔS 。

令液相到固相转变的单位体积自由能变化为:ΔG V =G S -G L ,(G S 、G L 分别为固相和液相单位体积自由能)。

2.1.2.1 形核与形核率(1)基础知识

2.1.2.1 形核与形核率(1)基础知识

• 对于单位体积而言,体自由能∆GV为 对于单位体积而言,体自由能
L ⋅ ∆T ∆GV = Tm

L — 结晶潜热;∆T— 过冷度;Tm— 熔点或液相线温度。 结晶潜热2-3-31
8
∆GV =
L ⋅ ∆T Tm
代入
4 3 ∆G = − πr ∆GV + 4πr 2σ s − L 3
• 当固体球半径较小时,表面能占优势; 当固体球半径较小时,表面能占优势; • 当固体球半径较大时,负的体积能占优势。 当固体球半径较大时,负的体积能占优势。 • 在一定的过冷度ΔT下,只有半径>的晶胚才是相对稳定并可以长 在一定的过冷度ΔT下 只有半径> ΔT 大的。 大的。 • 而晶胚小于者要重新分解,不可能成为晶核。 而晶胚小于者要重新分解,不可能成为晶核。
• •
C1 exp( −U / KT ) 项, 则随过冷度的增大而减小。 则随过冷度的增大而减小。
2012-3-31
13
P = C0 ⋅ e 0

− ∆G* / KT
1 * 4πr *2 ∆G = A σ s −L = σ s−L 3 3
*
r* =
2σ s −L 2σ s −LTm = ∆Gv L ⋅ ∆T
2012-3-31 5
而固相的析出产生了固 液界面 而固相的析出 产生了固/液界面 , 需要一定的驱动力来克服 产生了固 液界面, 界面能引起的阻力 引起的阻力。 界面能引起的阻力。 实际凝固过程中,这种形核驱动力是通过液态金属过冷 形核驱动力是通过液态金属过冷获得 实际凝固过程中,这种形核驱动力是通过液态金属过冷获得 的。 表示从液相析出晶核时的固/液界面能 液界面能, 用σS-L表示从液相析出晶核时的固 液界面能,则形成一个半 径为r的球形晶核所引起系统的自由能变化由两部分组成 的球形晶核所引起系统的自由能变化由两部分组成: 径为 的球形晶核所引起系统的自由能变化由两部分组成 液相与固相体积自由能之差 相变的驱动力 体积自由能之差--相变的驱动力; 液相与固相体积自由能之差 相变的驱动力; 由于出现了固/液界面而使系统增加了界面能--相变的 液界面而使系统增加了界面能 相变的阻力 由于出现了固 液界面而使系统增加了界面能 相变的阻力 即 式2-1 4 3 2

液态金属结晶原理形核生长

液态金属结晶原理形核生长

南昌航空大学NANCHANG HANGKONG UNIVERSITY8 液态金属的结晶--形核,生长除少数合金在超高速冷却条件下(106~108K/s)凝固为非晶态外,几乎所有液态金属及合金在通常冷却条件下都转变为晶体,即其液固转变过程为结晶过程结晶过程包括形核(nucleation)+长大(growth)两个过程重叠交织形核长大形成多晶体结晶热力学条件自然界中物质总是力图由不稳定状态向稳定状态转变状态稳定性由自由能高低来决定,自由能越高,状态越不稳定;自由能越低,状态越稳定物质总是自发地由自由能较高状态向自由能较低状态转变。

只有自由能降低过程才能自发进行液固相变驱动力TS-PV U TS -H G +==金属结晶可认为恒压进行S TG P −=∂∂)(由于熵值S为正数,故自由能随温度升高而下降S TG P −=∂∂)(固液S S >液相原子排列混乱程度比固相大,熵值大,温度变化率大(1)T>T m时G L<G S液相处于自由能更低稳定状态结晶不可能进行(2)T<T m时G L>G S结晶才可能自发进行两相体积自由能差值ΔG V构成相变(结晶)驱动力(3) T=T m时,G L=G S,固液两相处于平衡状态。

T m即为纯金属平衡结晶温度(熔点)过冷度定义为:T-T T m =Δ凝固发生的必要条件ΔT=5KΔT=62KΔT=121K相变驱动力的计算L S V G G G −=Δss S S T H G ∗−=LL L S T H G ∗−=ST -H S S T H H G L s L s V ΔΔ=−−−=Δ)()(ΔH ,ΔS 为焓变和熵变,在熔点处近似不随温度变化()0=Δ−=ΔS T L T G m m V L —结晶潜热m T L S =Δ相变驱动力的计算ST -H G V ΔΔ=ΔL mT Lm m m V T T L T T -1L T L T -L G Δ=⎟⎟⎠⎞⎜⎜⎝⎛==Δ对于给定金属,L 与T m 为定值,所以ΔG V 仅与ΔT 有关ΔT 越大,ΔG V 也就越大,结晶驱动力也就越大在相变驱动力条件下,结晶还需克服两种能量障碍: ¾热力学障碍(如界面自由能),由界面处原子所产 生,直接影响体系自由能大小; ¾动力学能障(如扩散激活能),由金属原子穿越界 面过程所引起,大小与相变驱动力无关,取决于界面 结构和性质 通过能量起伏来实现形核方式¾均质生核 形核前液相金属或合金中无外来固相质点而从液相自 身发生形核的过程,所以也称“自发形核” 特点:完全依靠液态金属中的晶胚形核,液相中各 区域出现新相晶核的几率均相同实际生产中均质形核不太可能,即使区域精炼条件 下,1cm3液相中也有约106个立方体微小杂质颗粒 ¾非均质生核 在不均匀熔体中依靠外来杂质或型壁界面提供的衬 底进行生核,亦称“异质形核”或“非自发形核”David Turnbull (1915–2007)2005年韩国济州岛 RQ12均质生核ΔG = VΔGV + Aσ LC体积自由 界面能 能降低 升高假定球形晶胚ΔG = 4 3 πr ΔGV + 4πr 2σ LC 3由于两部分竞争,体系自由能ΔG随r先增加,后降低临界形核半径dΔG =0 dr4 3 ΔG = πr ΔGV + 4πr 2σ LC 32σ LC T0 r = L ΔT*r < r ∗ 晶胚消失 r > r ∗ 晶胚稳定长大,形成晶核液体中存在“结构起伏”的 原子集团,其平均尺寸随温 度降低(过冷度增加)而增大临界形核功4 3 ΔG = πr ΔGV + 4πr 2σ LC 32σ LC T0 r = LΔT*3 2 T 16 πσ 1 1 ΔG * = ( 2 LC 2 0 ) = 4πr *2σ LC 3 3 L ΔT1 * ΔG = A σ LC 3*临界形核功1 * ΔG = A σ LC 3*体积自由能只能抵消表面自由 能的2/3,剩余1/3要靠临界形 核功来完成,它是均质形核所 必须克服的能量障碍。

金属凝固原理——形核知识讲解

金属凝固原理——形核知识讲解
第三章 形核§3-1 凝固的
基本热力学条件 §3-2 均质形核 §3-3 异质形核
凝固是物质由液相转变为固相的过程,是液态成形技术
的核心问题,也是材料研究和新材料开发领域共同关注 的问题。 严格地说,凝固包括: (1)由液体向晶态固体转变(结晶) (2)由液体向非晶态固体转变(玻璃化转变)
常用工业合金或金属的凝固过程一般只涉及前者,本 章主要讨论结晶过程的形核及晶体生长热力学与动力学。
r 3
3
(2
3cos
cos3
)
பைடு நூலகம்
Gv Vs
r3
LS
(2
3cos
cos3
)
得到类似于均质形核的系统自由能变化曲线 (见下图),曲线有一最大值,该值对应的半径
用 r** 表示,称为异质形核的临界晶核半径。
图3.7 均质和异质形核功图
1 2
3
3.1
凝固过程包括:形核过程和晶体长大过程。凝固后的宏观组织由晶粒和 晶界组成
§3-1 凝固的基本热力学条件 一、液-固相变驱动力 二、大量形核的过冷度(T *)
一、 液-固相变驱动力
• 从热力学推导系统由液体向固体转变的 相变驱动力ΔG
图3.2 液-固体积自由能的变化
当 T >Tm 时,有:ΔGV = Gs - GL> 0
一、异质形核的热力学条件
二、异质形核机理
三、异质形核动力学
一、异质形核的热力学条件
如果液相中存在固相质点,且液相又能润湿质 表面,则液体能在固相质点表面形成新相晶核。
设生核衬底的质点表 面为一平面,在其上生 成一球冠的新相(见右 图)。则系统自由能的 变化为:
G V Gv ( A )
Vs
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2
形核功为:G
16
3
3 SL
VS Tm H m T
2
所以:
G
1 3
A SL
即:临界形核功ΔG*的大小为临界晶核表面能 0
的三分之一, 它是均质形核所必须克服的能量障
碍。形核功其中一部分由熔体中的“能量起伏”
提供,但不能保证形核。因此,必须在过冷条件
下克服这部分能量,才能克服能量障碍。因此,
2
2
当 0 完全润湿 f ( ) 0 ,则 G** 0
一般情况下,质点(c)与新相(s)或多或少润湿,即
0 180 ,这时总存在:
G** G*
小结:异质形核与均质形核相 比,
其特点是:
· 形核过冷度小
· 形核功小
二、异质形核的机理(异质形核的条件)
总体思路是: 固相杂质衬底
新相晶核的
均质形核的过程在过冷条件下借助 “能量起伏”
形成新相晶核的过程。
二、均质形核动力学(过程进行的速度)
均质形核的速度一般用形核率来描述。
形核率(I ):是单位体积中、单位时间内形成的晶核数目。
I
C
exp
GA KT
exp
G KT
I*
式中,ΔGA为扩散激活能 。
ΔG*→∞( ΔT→0时),I* → 0 ;
ΔG* 下降( ΔT 增大),I *上升。
对于一般金属,温度降到某一程
度,达到临界过冷度(ΔT*),形核
率迅速上升;当过冷度ΔT非常大时, 形核率反而下降,甚至趋近于0,成为 非晶态。
计算及实验均表明: ΔT* 0.2Tm
图3.5 均质形核的形
核率与过冷度的关系
三、均质形核理论的局限性
均质形核是对理想纯金属而言的,其过冷度很大, 如纯液态铁的△T=1590X0.2=318℃。这比实际液态 金属凝固时的过冷度大多了。实际上金属结晶时的过 冷度一般为几分之一摄氏度到十几摄氏度。这说明了 均质形核理论的局限性。因实际的液态金属(合金), 都会含有多种固体夹杂物。同时其中还含有同质的原 子集团。某些固体夹杂物和这些同质的原子集团即可 作为凝固核心。固体夹杂物和固体原子集团对于液态 金属而言为异质,因此,实际的液态金属(合金)在凝 固过程中多为异质形核。
液相稳定,不能结晶。当 T < Tm 时,有:
ΔGV = Gs - GL< 0 固相稳定,才能结晶。
即:固-液体积自由能之差为相变驱动力
进一步推导可得:
GV H m T Tm
(式中:ΔHm—固液焓变,结晶潜热L = ΔHm )
Tm及ΔHm对一特定金属或合金为定值,所以过冷 度ΔT是影响相变驱动力的决定因素。过冷度ΔT 越
小结:过冷引起液-固体积自 由能之差是凝固(形核)的 基本热力学条件(必要条件) 大量形核的过冷度( T *) 是完成形核过程的充分条件。
§3-2 均质形核
• 均质形核 :形核前液相金属或合金中无外来固相质点而 从液相自身发生形核的过程,所以也称“自发形核” (实际生产中均质形核是不太可能的,即使是在区域精 炼的条件下,每1cm3的液相中也有约106个边长为103个 原子的立方体的微小杂质颗粒)。
第三章 形核§3-1 凝固的
基本热力学条件 §3-2 均质形核 §3-3 异质形核
凝固是物质由液相转变为固相的过程,是液态成形技术
的核心问题,也是材料研究和新材料开发领域共同关注 的问题。 严格地说,凝固包括: (1)由液体向晶态固体转变(结晶) (2)由液体向非晶态固体转变(玻璃化转变)
常用工业合金或金属的凝固过程一般只涉及前者,本 章主要讨论结晶过程的形核及晶体生长热力学与动力学。
大,凝固相变驱动力ΔGV 越大。
二、大量形核的过冷度( T *)
液态金属只要存
在过冷度T 时就能
形核但不一定能完成
形核过程,只有当 :
Tk
T T *
(大量形核过冷度)
时,形核过程才能完
成。形成的晶核才能
在 T Tk (动力 学过冷度)的过冷度
条件下进行长大,直 至凝固完成。
图3.3 金属的实际凝固曲线
例1:Cu合金中加入Fe( )
Fe( ):面心
0
aFe( ) 3.65
0
Cu:面心 aCu 3.62
包晶反应时:L + Fe( ) Cu
一般在Cu合金中加2.0~3.0%Fe
可细化Cu合金,Fe( )为Cu合
C0
金的有效生核衬底。
例2:Mg合金中加入Zr(0.6~1.0%) 两者均为六方晶格
(负)和阻碍相变的液-固
界面能(正):
G V GV VS
A SL
0
G
4 r3
3
GV VS
4r 2 SL
● r< r*时,r↑→ΔG↑
● r = r*处时,ΔG达到最大 值ΔG*
● r >r*时,r↑→ΔG↓
图3.4 液相中形成球形晶胚时自由能变化

令:G
/
r
|
r
r
*
0
得临界晶核半径 r*:
0
aMg 3.209
0
cMg 5.210
0
aZr 3.230 a 0.7%
0
cZr 5.133
c
1.5%
Zr作为Mg合金的晶粒细化剂
(2)晶格类型不同,但某一晶面之间 存在共格对应
例如:Al合金中加入Ti(0.2~0.3%)
Al:面心立方
0
a 4.05
TiAl3 :正方
0
C0
aTiAl3 5.43
2.固相杂质表面的粗糙度
• 杂质表面的粗糙度对非均质形核的影响 凹面杂质形核效率最高,平面次之,凸面最差 。
三、异质形核动力学
用异质形核的形核率 I **来描述:
I
**
c
exp
GA
G* KT
f
(
)
· I ** I * ( T 相同时)
· 对同一形核衬底( 相同),
T 越大,I **也越大。
1 2
3
3.1
凝固过程包括:形核过程和晶体长大过程。凝固后的宏观组织由晶粒和 晶界组成
§3-1 凝固的基本热力学条件 一、液-固相变驱动力 二、大量形核的过冷度(T *)
一、 液-固相变驱动力
• 从热力学推导系统由液体向固体转变的 相变驱动力ΔG
图3.2 液-固体积自由能的变化
当 T >Tm 时,有:ΔGV = Gs - GL> 0
H m T
异质形核的临界晶核半径在形式上与均质形核临界晶核半径
完全相同,它们的区别在于:
· 均质形核临界晶核是球体,而异质形核的晶核为球体的一 部分(球冠),因而异质晶核中所含原子数目少,这样的晶 坯易形成。
· 润湿角 与均质形核无关,而影响异质晶核的体积。杂质 质点(c)被新相(s)润湿能力越好,则 越小,固相的曲
r 2 SLVS 2 SL Vs Tm
GV
H m T
形核功:G
16
3
3 SL
VS Tm H m T
2
r* 与ΔT 成反比,即过冷度ΔT 越大,r* 越小;
ΔG*与ΔT2成反比,过冷度ΔT 越大,ΔG* 越小。
临界晶核的表面能为:
A
SL
4
(r )2
SL
16
3 SL
VSTm H m T
0
cTiAl3 8.59
(001) Al //(001)TiAl3 [110]Al //[100]TiAl3
4.8%
(100) Al //(100)TiAl3
[011]Al //[001]TiAl3
a 4.8% c 0.3%
小结:界面共格对应原则的实质:增大固、 液两相界面附着力,减小异质形核的 形核功,使固相质点成为异质形核的 有效衬底。
• 异质形核:依靠外来质点或型壁界面提供的衬底进行生 核过程,亦称“非均质形核”或“非自发形核”。
一、均质形核的热力学条件 二、均质形核动力学 三、均质形核的局限性
一、均质形核的热力学条件(过程进行的条件)
. 晶核(为球体)形成时,
系统自由能变化由两部分
组成,即作为相变驱动力
的液-固体积自由能之差
角越小
与新相晶核间
晶格与衬底
的附着力越大
物的晶格匹
条件是:

1. 固相杂质衬底与新相晶格界面存在共格对应关系。
用固相杂质衬底晶格与新相晶格的错(匹)配度
描述: | ac as | / as
ac为衬底原子间距 ; as为新相晶核原子间距 5% 完全共格; 25% 完全不共格;
晶格结构越相似
3cos
cos3
)
Gv Vs
r3
LS
(2
3cos
cos3
)
得到类似于均质形核的系统自由能变化曲线 (见下图),曲线有一最大值,该值对应的半径
用 r** 表示,称为异质形核的临界晶核半径。
图3.7 均质和异质形核功图
令G r
|
r
r
0,得异质形核的临界晶核半径:
r 2 LSVsTm
进一步研究细化后引入界面共格对应原则: ·界面共格对应原则:固相杂质表面的原子排列规律和原子 (晶粒细化剂的选择原则) 间距与新相晶核相近。 ·界面共格对应原则的两种情况: (1)晶格类型相同,原子间距相近或成比例相近(尺寸原则)
图3.8 结晶向在固定质点上外延生长及原子对应情况 a) 两者原子间距相近 b)两者原子间距成比例相近
一、异质形核的热力学条件
二、异质形核机理
三、异质形核动力学
一、异质形核的热力学条件
如果液相中存在固相质点,且液相又能润湿质 表面,则液体能在固相质点表面形成新相晶核。
相关文档
最新文档