模拟量输入通道

合集下载

模拟量输入通道的组成

模拟量输入通道的组成

AIN0 AIN1 AIN2 AIN3 AIN4 AIN5 AIN6 AIN7 AIN0 AIN1 AIN2 AIN3 AIN4 AIN5
CHSEL
8D CLK GND
+12V -6V
VDD VEE A B
0 1 2 3 4 5 6 7
10KΩ +5V
74HC138 A/D 转换器
+12V -6V
C INH OUT VSS VDD VEE A B C
采样/保持器的工作原理
当开关K闭合时,输入信号通过电阻向电容C充电,使输出 跟随输入变化此时为采样状态;要求充电时间越短越好,
以使电容电压迅速达到输入电压值。
当开关K断开时,由于电容具有一定的容量,仍能够使输 出保持不变,此时为保持状态;电容维持稳定电压的时间 越长越好,电容容量的大小将决定采样/保持器的精度。
控制字 40H 41H 42H 43H 44H 45H 46H 47H
1
1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 G1 74HC138
0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 C
0
0 0 0 0 0 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 B
24路的模拟开关。
74HC273
D0~D7
VCC 1D 2D 3D 4D 5D 6D 7D 1Q 2Q 3Q 4Q 5Q 6Q 7Q 8Q CLR A B C G1 G2A G2B GND Y0 Y1 Y2 Y3
+5V
+12V -6V
CD4051
VDD VEE A B C INH OUT VSS 0 1 2 3 4 5 6 7

通道模拟量输入电路

通道模拟量输入电路

BIG DATA EMPOWERS TO CREATE A NEW
ERA
信号源
信号源
01
为模拟量输入电路提供原始信号,通常来自传感器、测量仪器
或其他信号发生器。
信号源的种类
02
根据不同应用需求,信号源的种类繁多,如热电偶、压力传感
器、光电传感器等。
信号源的输出特性
03
不同的信号源具有不同的输出特性,如电压输出、电流输出、
4. 考虑抗干扰措施
在电路设计中加入适当的抗干扰措施,如滤波 器或屏蔽。
5. 测试与验证
在实际环境中测试电路的性能,并根据测试结果进行必要的调整。
硬件实现
选择合适的ADC芯片
根据设计需求,选择具有适当分辨率 和采样速率的ADC芯片。
设计信号调理电路
根据输入信号的性质和ADC的要求, 设计适当的信号调理电路,如放大器、 滤波器等。
工作原理
信号调理
采样保持
通道模拟量输入电路首先对输入的模拟信 号进行调理,包括放大、滤波、隔离等处 理,以减小噪声和干扰。
经过调理的信号被送入采样保持电路,该 电路能够在短时间内保持信号的幅值不变 ,以便于后续的转换。
模数转换
采样保持后的信号被送入模数转换器 (ADC),将模拟信号转换为数字信号。
电阻输出等,需要根据电路需求进行选择和匹配。
信号调理电路
信号调理电路
用于对信号源输出的原始信号进行预处理,包括放大、滤波、隔 离等操作,以适应后续电路的需求。
信号调理电路的作用
提高信号的信噪比、减小噪声干扰、抑制共模干扰等,保证信号的 准确性和稳定性。
常见的信号调理电路
放大器、滤波器、隔离器等。
采样保持电路

模拟量输入输出通道dq

模拟量输入输出通道dq
▲采样和保持涉及到采样间隔中信号的问题,将直 接影响传递特性,因而是本质问题,必须加以考 虑。
▲量化将使信号产生误差并影响系统的特性。但当 量化单位足够小时,在系统初步分析与设计时可 不予考虑。
36
★ 计算机控制系统的简化结构图
采样
计算机
ZOH
被控对象
检测
37
2.1.2 多路开关
在微型计算机测量及控制系统中,往往需对 多路或多种参数进行采集和控制。一台微型计 算机可供多回路使用,但是,微型计算机在某 一时刻只能接收一个通道的信号,因此必须通 过多路模拟开关进行切换,使各路参数分时进 入微型计算机。
1 计算机控制系统信号变换结构图
E
A
B 采样
C 量化
编码
D 计算机
F 解码 G
保持
H
检测
I 被控对象
2 系统中信号形式的分类
连续信号(或模拟信号) 时间及幅值上均连续
的信号,如图中的 A、I 处的信号
数字信号
时间上离散、幅值上采用二进制编
码的信号,如图中的D、F 处的信号 33
▲采样信号 时间上离散而幅值上连续的信号,如
(0000)
(1000)
-1
-1/8
+1/8
1001
1111
0111
-2
1110
0110
-3
-3/8
+3/8
1011
1101
0101
-4
-4/8
+4/8
1100
1100
0100
-5
-5/8
+5/8
1101
1011
0011
-6

第2章(1)模拟量输入通道讲解

第2章(1)模拟量输入通道讲解
第2章 输入输出过程通道
在计算机控制系统中,为了实现对生产过程的
控制,要将生产现场的各种被测参数转换成数字
计算机能够接受的形式,计算机经过计算、处理 后的结果还需要变换成合适的控制信号输出至被 控对象。以控制执行机构的动作。因此,在计算 机和被控对象之间,必须设置进行信息传递和转
换的连接通道,即过程通道。
3、集成采样保持器
集成采样保持器将采样电路、保持器制作在 一个芯片上,保持电容外接,由用户选用。电容 的大小与采样频率及要求的采样精度有关。 集成采样保持器分三类:
1、用于通用目的的芯片, 如AD583K,AD582,LF398; 2、高速芯片,如THS-0025,THC-0300等; 3、高分辨率芯片,如SHA1144等。
现以4位A/D转换器把模拟量7转换为二进制数0111为例,说 明逐位逼近式A/D转换器的工作原理。
电压 第一次 预测 模拟 电压 第四次 第三次 预测 第二次 预测 预测

(1000) (0100) (0110) (0111)
D3
0
D2
D1
D0
时间
逐次逼近式ADC 逐次逼近式A/D原理概述


N 位的逐次逼近式 A/D 转换器 , 由 N 位寄存器、 N位D/A转换器、比较器、逻辑控制电路、输出 缓冲器等五部分组成。 工作原理:启动信号作用后,时钟信号先 通过逻辑控制电路使N位寄存器的最高位DN-1为 1 ,以下各位为 0 ,这个二进制代码经 D/A 转换 器转换成电压U0(此时为全量程电压的一半) 送到比较器与输入模拟电压UX比较。若UX>U0, 则保留这一位;若UX<U0,则DN-1 位置0。
注:1、在实际系统中,《T ,即近似地认为采样信号

模拟量输入、输出通道

模拟量输入、输出通道
在能源管理系统中,模拟量输入/输出通道用于监测 和控制各种能源设备的运行状态,如电力、燃气等 ,实现能源的优化利用和节能减排。
医疗设备
在医疗设备中,模拟量输入/输出通道用于监测患者 的生理参数和实现设备的控制,如监护仪、呼吸机 等。
模拟量输入/输出通道的重要性
80%
提高设备的控制精度
模拟量输入/输出通道能够实时、 准确地反映输入信号的变化,从 而提高设备的控制精度和稳定性 。
模拟量输入通道的参数与性能指标
01
02
03
04
分辨率
分辨率是指模拟量输入通道能 够识别的最小电压或电流值, 通常以位数或比特数表示。高 分辨率的模拟量输入通道能够 提供更精确的测量结果。
线性度
线性度是指模拟量输入通道的 输入与输出之间的线性关系。 理想的线性度应该是100%,但 实际中的线性度可能会受到多 种因素的影响而有所偏差。
根据接口类型,正确连接信号线,避免信号干扰或数据传输不稳定。
接地处理
为了减少电磁干扰和保护设备,应确保良好的接地措施。
接口保护
在接口电路中加入适当的保护元件,如瞬态抑制二极管、滤波电容等, 以防止过压、过流等异常情况对接口造成损坏。
05
模拟量输入/输出通道的调试与校准
调试步骤与注意事项
检查硬件连接
采样速率
精度
采样速率是指模拟量输入通道 每秒钟能够采样的次数,通常 以赫兹(Hz)或千赫兹(kHz) 表示。高采样速率的模拟量输 入通道能够提供更准确的实时 响应。
精度是指模拟量输入通道的实 际输出值与理论输出值之间的 最大偏差。精度越高,表示模 拟量输入通道的误差越小,测 量结果越准确。
03
模拟量输出通道
精度

第2章 2.3 模拟量输入通道

第2章  2.3 模拟量输入通道

同相放大器倍数 A=1+R4/R3
R4 25kΩ
V: 1~5V输出
2.3.3 多路转换器
由于计算机的工作速度远远快于被测参数的变化,因 此一台计算机系统可供几十个检测回路使用,但计算机在某 一时刻只能接收一个回路的信号。所以,必须通过多路模拟 开关实现多选1的操作,将多路输入信号依次地切换到后级。 目前,计算机控制系统使用的多路开关种类很多,并具 有不同的功能和用途。如集成电路芯片CD4051(双向、单端、 8路)、CD4052(单向、双端、4路)、AD7506(单向、单端、16 路)等。所谓双向,就是该芯片既可以实现多到一的切换,也 可以完成一到多的切换;而单向则只能完成多到一的切换。 双端是指芯片内的一对开关同时动作,从而完成差动输 入信号的切换,以满足抑制共模干扰的需要。
孔径误差的大小:
-孔径时间内,信号的变化导致转换误差,如其大于量化误差, 则A/D转换的结果将不可靠。A/D转换器需要采样保持器来提 高输入信号的频率范围。
-采样保持器:把t=KT时刻的采样值保持到A/D转换结束。 采样:K闭合,CH快速充电,VOUT跟随VIN 保持:K断开,VOUT保持VC
采样保持器的组成
STOSW ; 数据存储 INC BL ; 更换通道 LOOP ADC MOV AL,00111000B; CE=0,CS, R/C, INH=1, 芯 片复位 MOV DX,2C2H ;C口 OUT DX,AL RET ENDP
AD574A
本节小结
模拟量输入通道是计算机测控系统、智能测量仪表以及以 微处理器为基础组成的各种产品的重要组成部分。 按照系统内信号的流向,依次介绍模拟量输入通道的各个 组成部分——I/V变换、多路模拟开关、采样保持器、A/D转换 器及其接口电路在2.1节已作了介绍。其中有些环节可以根据 实际需要来选择取舍。比如输入信号已是电压信号且满足A/D 转换量程要求,那就不必再用I/V转换和前置放大器;又如输 入信号变化缓慢而A/D转换时间足够短,能满足A/D转换精度, 也就不必用采样保持器;当可以利用A/D转换器内部的多路模 拟开关时,也可不用外部的多路模拟开关。但无论如何,其核 心器件——A/D转换器是不能缺少的。 最后给出一种8路12位A/D转换模板的电路原理图及其接口 程序。

第二章模拟量输入输出通道的接口技术

第二章模拟量输入输出通道的接口技术
多阶采样:
tk r tk 是周期性的重复,即tk r tk 常量,r 1
随机采样:
根据需要选择采样时刻
采样前后波形的变化图
通常,连续函数的频带宽度是有限的,为一孤立的连
续频谱,设其包括的最高频率为fmax ,采样频率为fs。
香农定理:若fs≥2fmax,则可以由采样信号完全恢复出原始 信号。 在实际应用中, fs至少取4fmax 。
IN:(9、23)、(8、22)、(7、21)、(6、20)、 (5、19)、(4、18)、(3、16)、(2、15) OUT:(1、17) 反多路转换开关(一到多的转换): IN: (1、17) OUT:(9、23)、(8、22)、(7、21)、(6、20)、 (5、19)、(4、18)、(3、16)、(2、15)
VREF I out1 I 3 I 2 I1 I 0 2 2 2 2 4 2R
3 2
1

0

由于S3~S0的状态是受b3~b0控制的,并不一定 全是“1”。若它们中有些位为“0”,S3~S0中相应 开关会因和“0”端相连而无电流流过,所以Iout1还 与b3~b0的状态有关。 则 I out1 b3 I3 b2 I 2 b1 I1 b0 I 0
返回
2.1.2 多路转换开关
多 路 转 换 开 关 反 多 路 转 换 开 关
A/D
微机
D/A
完成多到一的转换
完成一到多的转换
2.1.2 多路转换开关
多路开关的分类:
从用途上分 双向:既能实现多到一的转换,也能实现一到多的 转换 单向:只能实现多到一的转换 从输入信号的连接方式上分 单端输入 双端输入(或差动输入)

模拟量输入输出通道

模拟量输入输出通道
通常,由于各路模拟信号和A/D的电压范围已知, 故可 算出对应信号源要求的放大系数。可预先将各路放大倍数的等
效数字量存入RAM中,当CPU要求输入第n路信号时,则由
CPU控制将第n路对应的放大倍数从RAM中取出,经数据总线 送入AM-542相应端接点,这样信号便按预先设定的放大倍数 进行放大。
第四章模拟量输入输出通道
2. 放大器并联反馈电阻方案 如图4-12所示,A1、A2组成同相关联差动放大器,A3为起
减法作用的差动放大器。电压跟随器A4 的输入来自A点即共模
电压Ucm,其输出作为运放A1、A2的电源地端, 以使A1、A2的电 源电压浮动幅度与Ucm 相同,从而大大削弱共模干扰的影响,
这就是共模自举技术。信号从Us1、Us2以差动方式输入,放大器
有结构简单,闭合时接触电阻小,断开时阻抗高,工作寿命较 长,不受环境温度影响等优点,在小信号中速度的切换场合仍
可使用。由单个干簧管继电器组成的多路开关均采用开关矩阵
方式,如图4-4所示的开关矩阵可对64个点进行检测和选通, X轴和Y轴的选通电路受CPU控制,其程序框图如图4-5所示。
第四章模拟量输入输出通道
一种以光控制信号的器件,输入端为发光二极管,输出端为光 敏三极管。当PIO的某一位为高电平时,经反相为低电平,发 光二极管导通并发光,使光敏三极管导通, 经倒相输出高电 平。 光电开关能使输入和输出在电气上完全隔离,主要用于
抗干扰场合。
第四章模拟量输入输出通道
图4-8 光电耦合开关用法之一
第四章模拟量输入输出通道
图4-9(b)是差动多路输入连接方式,模拟量双端输入, 双端输出接到运算放大器上。由于运算放大器的共模抑制比 较高, 故抗共模干扰能力强,一般用于低电平输入,现场干 扰较严重,信号源和多路开关距离较远,或者输入信号有各
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 常用的采样保持芯片
3.5 A/D转换器
• A/D转换器的工作原理与性能指标 • 8位A/D转换器ADC0809及其接口电路 • 12位A/D转换器AD574A及其接口电路
3.5.1 A/D转换器的工作原理与性能指标
• 常用的A/D转换方式

逐次逼近式:转换时间短,抗扰性差(电压比较)
ADC0809(8位),AD574A(12位)
3.3 前置放大器
• 可变增益放大器:
IN -
+
2 4 8 16 32 64 A1
16K
16K
80K 26.67K 11.43K 5.33K 2.58K 1.27K 630Ω 314Ω
(外接) V O UT
A3 负载
128
256 16K A2 16K
V IN
+
外接地
3.4 采样保持器
• 信号类型
流量、液位、重量等模拟量信号转换成计算机
可以接收的数字量信号。
• 组成:一般由信号调理电路、多路开关、采样
保持器、模/数转换器(简称A/D或ADC)和接口
电路等组成
3.1 模拟量输入通道的作用和组成
• 组成框图:
过 程 参 数
传 感 变 送 器
信 号 调 理
多 路 模 拟 开 关
前 置 放 大 器

模拟信号

离散模拟信号
数字信号


量化模拟信号
3.4 采样保持器
• 信号的采样

采样过程:用采样开关将模拟信号按一定时间间隔
抽样成离散模拟信号的过程。持器
• 信号的采样

采样的形式
► ► ►
周期采样:以相同的时间间隔进行采样
多阶采样:t k+r - t k = 常量, r > 1 随机采样:采样周期是随机的,不固定的
作用: (1)信号的放大与变换; (2)信号的滤波与限幅; (3)信号的隔离与抗共模干扰 典型的信号调理: (1)电的隔离;(2)阻抗变换; (3)极性变换;(4)信号放大;(5)信号衰减;

(6)噪声抑制;(7)电压/电流变换;
(8)电流/电压变换
3.1 模拟量输入通道的作用和组成
• 电流/电压变换技术:
R2 VI R1
R2 G 1 R1
VO Us ~
R1 R2
VI
VO Us ~
R2 G R1
(a)同相放大 图 2-5 放大电路
(b)反相放大
3.3 前置放大器
• 测量放大器:将由一组运算放大器构成
VOUT G VIN VIN Rs R2 2 R1 1 RG
+
Vx

数字量 输出
3.5.1 A/D转换器的工作原理与性能指标
• 逐次逼近型A/D转换原理

主要由逐次逼近寄存器SAR、D/A转换器、电压比较 采用对分搜索原理来实现A/D转换 工作过程:逐次把设定在SAR中的数字量所对应的
器、时序及控制逻辑等部分组成


D/A转换器输出的电压,与要被转换的模拟电压进行比
两个或两个以上的多路开关并联起来。两个8路开关扩展 成16路的多路开关的方法如下图所示。
模拟输出
模拟输入 (1 ~ 8)
S1
IN
INH CD4051 C B S8 A
IN
IN
D3 D2 D1 D0
{
{
IN
OUT
. .. ..
S1 INH C CD4051 B S8 A
OUT
模拟输入 (9 ~ 16)
转换器




3.5.2 8位A/D转换器ADC0809
• ADC0809的内部结构
O E
3.5.2 8位A/D转换器ADC0809

ADC0809内部组成
* 8通道多路模拟开关
* 地址锁存与译码器
* A/D转换器 * 三态输出缓冲锁存器
3.5.2 8位A/D转换器ADC0809

ADC0809的引脚功能
• 电流/电压变换技术:

有源I/V变换: 由有源器件运算放大器和电阻、电容
组成
R4 V G 1 IR1 R3
1 3 4
取R 200 ,R 100k,R 150k, 当I [0mA, 10mA]时,V [0v, 5v]
取R 200 ,R 100k,R 25k,
K Vx R
.
C
Vout
3.4 采样保持器
• 采样保持器的主要参数

采集时间(捕捉时间):从采样开始到输出稳定之间
的时间

转换速率:输出变化的最大速率 孔径时间:从采样转入保持时采样开关完全断开所需

要的时间

下跌率(衰减率):进入保持阶段后,由于开关的漏
电流及保持电容泄漏,输出电压的下降速率
3.4 采样保持器
3.2 多路开关
• 4个8路开关扩展成16路的差动输入方式如下图所示。
差动模拟输入
(1~ 8) IN
{
IN
S1
INH CD4051 C B S8 A
差动模拟输入
(1~ 8) IN
{
IN
S1
INH CD4051 C B S8 A
{
OUT
. . ..
.
模拟输出 V2
IN IN
差动模拟输入
OUT S1 INH C CD4051 B S8 A

减少D/A转换器的输出毛刺
把一个D/A转换器的输出分配到几个输出点

3.4 采样保持器
• 采样保持器的工作原理
采样阶段:开关K闭合,输入信号通过电阻向电容C 充电,要求充电时间越短越好,以使电容电压迅速达到

输入电压值

保持阶段:开关K断开,A/D转换器根据电容C上的
电压进行转换,电容维持稳定电压的时间越长越好
信号变化频率快也需要用保持器

3.4 采样保持器
• 采样保持器的两种工作方式

采样方式:S/H的输出跟随模拟量输入电压
变化

保持方式:S/H的输出保持命令发出时刻的
模拟量输入值
3.4 采样保持器
• 采样保持器的作用

保持采样信号不变,以便完成A/D转换器

同时采样几个模拟量,以便进行数据处理和
测量
采 样 保 持 器
A/D 转 换 器
接 口 逻 辑 电 路
PC 总 线
3.1 模拟量输入通道的作用和组成
• 结构形式:

并行转换结构形式

共享放大器形式
3.1 模拟量输入通道的作用和组成
• 结构形式:

共享S/H和A/D形式

共享A/D形式
3.1 模拟量输入通道的作用和组成
• 信号调理电路:

较,比较时从SAR中的最高位开始,逐次确定各数码 位是“1”还是“0”,最后,SAR中的内容就是与输入
的模拟电压对应的二进制数字代码
3.5.1 A/D转换器的工作原理与性能指标
• 逐次逼近型A/D转换原理

以4位A/D转换器为例,说明其逐次逼近过程的原理:
设1LSB所代表的信号电压为0.25v,模拟输入电压为1.8v
一 : D3 1, (1000),V f 二 : D2 1, (0100),V f 三 : D1 1, (0110),V f 四 : D0 1, (0111),V f
23 * 0.25 2v,Vx V f , 清除 22 * 0.25 1v,Vx V f , 保留 22+21) 0.25 1. v,Vx V f , 保留 ( * 5 22+21+20) 0.25 1.75v,Vx V f , 保留 ( *
信号的幅值,将其转换成数字信号。
3.4 采样保持器
• 信号的量化

量化单位:
f max f min q 2i 1
fmax:转换信号的最大值;
fmin:转换信号的最小值;
i:转换后二进制数的位数。
3.4 采样保持器
• 采用采样保持器的原因

A/D转换器需要一定的时间

A/D转换器一般是多路复用的

计数器式:转换速度慢,抗扰性差,较少采用 双积分式:转换时间长,抗扰性好(积分) MC14433(11位),ICL7135(14位)


V/F变换型:实现远距离串行传送
3.5.1 A/D转换器的工作原理与性能指标
• 逐次逼近型A/D转换原理
比较器
Vf
D/A转换器 基准电源
SAR
时序及控制逻辑 转换命令 状态线
3.4 采样保持器
• 信号的采样

采样过程的数学描述
x (t ) x(t )T (t )
*
T (t ) (t kT ) (t ) (t T ) (t 2T )
k 0

1 t 0 (t ) 0 t 0



第三章 模拟量输入通道
黄福珍
huangfzh@
本章主要内容
• 模拟量输入通道的作用和组成 • 多路开关、前置放大器和采样保持器 • 8位A/D转换器ADC0809
• 12位A/D转换器AD574A
3.1 模拟量输入通道的作用和组成
• 作用:把被控对象的过程参数如温度、压力、
1 3 4
当I [4mA, 20mA]时,V [1v, 5v]
相关文档
最新文档