面板数据回归分析
如何解释Stata面板数据回归分析的结果

如何解释Stata面板数据回归分析的结果面板数据回归分析是经济学和社会科学研究中常用的方法之一。
它可以有效地解释变量之间的关系,并提供关于实证研究的有用结论。
Stata是一种常用的统计分析软件,拥有丰富的面板数据分析功能。
本文将介绍如何解释Stata面板数据回归分析的结果,以帮助读者理解和应用这些结果。
一、数据描述在解释面板数据回归分析结果之前,首先需要了解数据集的描述。
面板数据由多个不同观察单位(例如个人、公司或地区)在不同时间点上的观测数据组成。
每个观察单位在不同时间点上的观测值构成了面板数据的基本单元。
二、回归模型在进行面板数据回归分析之前,需要建立一个合适的回归模型。
通常,面板数据回归模型可以采用以下形式:Yit = βXit + αi + γt + εit其中,Yit代表因变量,Xit代表自变量,αi代表个体固定效应,γt 代表时间固定效应,εit代表误差项。
通过回归模型的设定,我们可以分析自变量对因变量的影响,并控制其他因素对估计结果的影响。
三、回归结果进行Stata面板数据回归分析后,我们会得到一系列回归结果。
这些结果提供了关于自变量对因变量影响的统计估计和显著性检验。
1. 回归系数回归系数表示自变量对因变量的影响程度。
通过Stata回归结果表中的系数估计值,我们可以判断自变量对因变量的正负关系以及影响的相对大小。
一般情况下,系数估计值的正负表示自变量与因变量之间的正负关系,而系数大小表示自变量对因变量的影响强弱。
2. 显著性检验在回归结果表中,通常会给出回归系数的显著性检验结果。
这些结果以星号(*)的形式表示,星号的个数越多,表示显著性水平越高。
显著性检验可以帮助我们确定自变量的影响是否具有统计学意义。
如果回归系数通过显著性检验,说明自变量对因变量的影响是显著的,反之则无法得出显著结论。
3. R-squared值R-squared值是回归模型的拟合程度指标,衡量了模型能够解释因变量变异程度的百分比。
面板数据回归分析

引言概述:正文内容:一、理论基础1.面板数据的概念和特点2.面板数据模型的基本假设3.面板数据回归分析的理论基础和背景4.面板数据回归模型的常见形式5.面板数据回归模型的参数估计方法二、面板数据的处理与描述统计1.面板数据的基本处理方法2.面板数据的描述统计分析3.面板数据的基本图表分析4.面板数据的异方差和自相关检验5.面板数据的稳健标准误估计与统计推断三、面板数据的固定效应模型1.固定效应模型的基本原理2.固定效应模型的参数估计方法3.固定效应模型的推断性分析4.固定效应模型的诊断检验5.固定效应模型的应用与解释四、面板数据的随机效应模型1.随机效应模型的基本原理2.随机效应模型的参数估计方法3.随机效应模型和固定效应模型的比较4.随机效应模型的推断性分析5.随机效应模型的应用和实证研究五、面板数据的时间序列模型1.面板数据时间序列模型的基本原理2.面板数据时间序列模型的参数估计方法3.面板数据时间序列模型的推断性分析4.面板数据时间序列模型的预测和预测精度评估5.面板数据时间序列模型的应用案例分析总结:本文探讨了面板数据回归分析的相关理论和方法,并提供了详细的应用案例和实证分析。
面板数据回归分析是一种重要的数据分析工具,可以有效应用于经济学领域的研究和实践中。
掌握面板数据回归分析的理论模型和技术方法,对于深入研究经济问题,解决实际经济问题具有重要意义。
在未来的研究和实践中,面板数据回归分析将继续发挥重要作用,为我们提供更多洞察经济现象的途径。
引言概述:面板数据回归分析是经济学领域常用的一种统计分析方法,它用于研究多个个体(如国家、公司、家庭等)在不同时间点上的变化情况,使得我们能够更全面地理解经济现象。
本文将详细介绍面板数据回归分析的基本概念、模型设定、估计方法以及结果解释等,旨在帮助读者更好地理解和应用面板数据回归分析。
正文内容:一、面板数据回归分析的基本概念1.1面板数据的定义与分类1.2面板数据的特点与优势二、面板数据回归模型的设定2.1固定效应模型2.1.1模型假设2.1.2模型设定及估计方法2.2随机效应模型2.2.1模型假设2.2.2模型设定及估计方法2.3混合效应模型2.3.1模型假设2.3.2模型设定及估计方法三、面板数据回归模型的估计方法3.1最小二乘法估计(OLS)3.2差分法估计(FD)3.3广义矩估计(GMM)3.4最大似然估计(MLE)四、面板数据回归模型结果的解释与分析4.1固定效应模型结果的解释与分析4.2随机效应模型结果的解释与分析4.3混合效应模型结果的解释与分析五、面板数据回归分析的拓展应用5.1异方差面板数据回归分析5.2面板数据回归模型中的内生性问题5.3面板数据回归模型的非线性扩展总结:面板数据回归分析作为一种重要的经济学研究方法,在许多领域中都有广泛的应用。
回归分析中的动态面板数据分析方法(Ⅲ)

回归分析中的动态面板数据分析方法回归分析是一种用来探究变量之间关系的统计方法,而面板数据则是指在不同时间点上收集到的同一组个体数据。
动态面板数据分析方法则是针对这种面板数据的一种分析方法,它可以更好地考虑到时间序列和横截面的特性,从而更准确地分析变量之间的关系。
一、面板数据分析的基本概念首先,我们需要了解一些基本概念。
面板数据分析通常包括两个维度,一个是时间维度,另一个是横截面维度。
时间维度是指在不同时间点上收集到的数据,例如不同年份、不同季度等;而横截面维度则是指在同一时间点上收集到的不同个体的数据。
因此,面板数据可以反映出不同个体在不同时间点上的变化情况,具有更多的信息量。
二、动态面板数据模型在面板数据分析中,动态面板数据模型是一种常用的分析方法。
这种模型通常包括两个部分,一个是横截面维度上的固定效应,另一个是时间维度上的动态效应。
固定效应指的是在不同个体之间存在的固定差异,例如不同国家、不同公司等之间的差异;而动态效应则是指随着时间推移而发生的变化。
动态面板数据模型可以更好地捕捉到个体之间和时间序列之间的相关性,因此在实际分析中具有重要的应用价值。
三、动态面板数据的估计方法在动态面板数据分析中,常用的估计方法包括差分估计方法、一阶滞后模型、二阶滞后模型等。
差分估计方法是一种常用的方法,它利用变量在不同时间点上的差值进行估计,从而消除了固定效应。
一阶滞后模型和二阶滞后模型则是利用时间序列的滞后效应进行估计,可以更好地捕捉到动态效应。
这些估计方法在实际应用中可以根据具体情况进行选择,以获得更准确的分析结果。
四、动态面板数据的应用领域动态面板数据分析方法在许多领域都具有重要的应用价值。
例如,在经济学领域,可以利用动态面板数据分析方法来研究不同国家或地区的经济增长模式、产业结构变化等问题;在管理学领域,可以利用动态面板数据分析方法来研究不同公司的经营绩效、市场份额变化等问题。
因此,动态面板数据分析方法在实际应用中具有广泛的应用前景。
回归分析中的动态面板数据分析方法(十)

回归分析中的动态面板数据分析方法回归分析是统计学中一种重要的数据分析方法,它可以用来探究变量之间的关系,并且能够预测一个变量对另一个变量的影响程度。
动态面板数据分析方法则是在回归分析的基础上,考虑了时间序列的动态性,能够更准确地反映出变量之间的关系随时间变化的情况。
本文将从动态面板数据的概念入手,逐步探讨其分析方法和应用。
动态面板数据的概念动态面板数据是指在时间序列上观察到的数据,这种数据不仅包含了不同个体(如人、公司等)的横截面数据,还包含了这些个体在不同时间点上的纵向数据。
动态面板数据的特点是包含了时间维度的信息,能够更好地反映出变量之间的动态关系。
动态面板数据与静态面板数据相比,能更准确地反映出变量之间的动态变化。
例如,对于公司的销售额和广告投入这两个变量,静态面板数据只能观测到它们之间的横截面关系,无法体现出它们随时间变化的动态关系。
而动态面板数据则能够通过观测这两个变量在不同时间点上的变化,更准确地分析它们之间的关系。
动态面板数据分析方法在动态面板数据分析中,最常用的方法是动态面板数据模型。
动态面板数据模型是基于传统的面板数据模型(如固定效应模型、随机效应模型)的基础上,引入了时间维度的变量,能够更准确地反映出变量之间的动态关系。
动态面板数据模型通常包括了两个方面的变量,一是描述时间序列变化的变量,如时间滞后项、时间趋势项等;二是描述个体之间差异的变量,如固定效应或者随机效应。
通过将这两类变量结合起来,能够更全面地分析动态面板数据中的变量关系。
在具体的分析过程中,我们还需要考虑到动态面板数据的特性,例如序列相关性、内生性等问题。
这些问题在静态面板数据分析中可能并不明显,但在动态面板数据分析中却需要引起重视。
因此,动态面板数据分析方法也包括了对这些问题的解决方案,如一阶差分、仪器变量法等。
动态面板数据的应用动态面板数据分析方法在实际应用中有着广泛的用途,特别是在经济学、金融学等领域。
例如,研究经济增长与投资之间的关系时,静态面板数据可能无法准确反映出它们之间的动态关系,而动态面板数据分析方法则能够更好地解释它们之间的变化。
面板数据分析

面板数据分析在社会科学研究中,面板数据是一种重要的数据类型,它包含了多个观测单位在不同时间点上的观测结果。
通过对面板数据进行分析,可以更全面地了解变量之间的关系、监测变量的变化趋势以及探究变量之间的因果关系。
面板数据分析主要包括面板数据描述统计、面板数据回归分析和面板数据固定效应模型等内容。
一、面板数据描述统计面板数据描述统计是对面板数据的基本特征进行统计描述,以便更好地理解面板数据的组成和分布情况。
首先,我们可以对面板数据进行平衡性检验,即检验在观测期内是否每个观测单位都有相同数量的观测值。
通过检验平衡性,可以确保面板数据的可靠性和有效性。
其次,可以计算面板数据的均值、方差和协方差等统计指标,以揭示变量在时间和观测单位之间的差异。
还可以进行面板数据的描述性图表分析,例如折线图、柱状图和散点图等,以便更直观地观察变量的变化趋势和分布特征。
二、面板数据回归分析面板数据回归分析是利用面板数据进行经济、金融等领域的模型估计和推断的重要方法。
在面板数据回归分析中,常用的方法有固定效应模型、随机效应模型和混合效应模型等。
这些模型可以通过最小二乘法、广义最小二乘法和似然比方法等进行估计,以得到变量之间的关系、影响因素以及参数的显著性检验。
此外,面板数据回归分析还可以通过引入时间和观测单位的固定效应或者随机效应,控制那些对变量关系产生影响的固定和随机因素,从而提高模型的准确性和有效性。
三、面板数据固定效应模型面板数据固定效应模型是一种针对时间不变的变量的固定效应进行建模的方法。
该模型假设每个观测单位都有一个固定不变的效应对因变量产生影响。
面板数据固定效应模型的估计方法通常使用OLS(Ordinary Least Squares)法。
在估计过程中,固定效应会通过在模型中引入虚拟变量或者截距项来进行控制。
面板数据固定效应模型的优点在于能够控制个体特征的固定影响,使得模型结果更为准确和可靠。
同时,还可以通过固定效应模型进行因果推断,从而揭示变量之间的因果关系。
计量经济学-第16章 面板数据回归分析

如果截距写成1it , 就是时变的(time variant)。
10
FEM还假定回归元的系数不随个体或时间变化而变化 FEM 中截距的变化可以用虚拟变量方法来刻画: (16.3.2) 变为 :
Yit 1 2D2i 3D3i 4D4i 2 X 2it 3 X3it uit
E[(εi
uit )(εi uis )]
σ
2 ε
σu2
Eεi2 σε2 σu2
σ
2 ε
σ
2 ε
σu2
可见(16.4.3)式中
w
是自相关的。
it
OLS 是低效的,适合的估计方法是 GLS(generalized least squares)。
10.1.2 面板数据分类
来自:《计量经济分析方法与建模:EViews应用及 实例》,高铁梅,清华大学出版社,2006年
2
16.1 为什么使用面板数据?
面板数据的优势: 1、可以研究个体差异性; 2、变量之间增加了多边性,减少了共线性,
并且提高了自由度和有效性; 3、适于动态研究;
3
4、具有独特的优势(与单独使用时间序列数 据,或单独使用横截面数据相比);
5、可以研究复杂的行为,如规模变化,技术 变动等;
6、减少偏差。当我们把不同类型的数据(如 不同省份或不同年代的数据)混合在一起 时,就会产生偏差(bias)。
(16.3.3)
返回
11
其中, 1
D2i 0
1 D3i 0
1 D4i 0
如果观测值属于GM(通用电气) 不属于
如果观测值属于US (美国钢铁) 不属于
观测值属于WEST(西屋电气) 不属于
回归分析中的动态面板数据分析方法(四)

回归分析中的动态面板数据分析方法在经济学和统计学领域,回归分析是一种常见的数据分析方法,用于研究变量之间的关系。
而动态面板数据分析方法则是在面板数据的基础上引入了时间维度,考虑了变量在不同时间点上的变化。
本文将就回归分析中的动态面板数据分析方法进行探讨。
一、动态面板数据的特点动态面板数据是指在研究对象中,除了个体之间的差异外,还包括了时间维度上的变化。
这种数据结构既考虑了个体间的差异,也考虑了随时间发展的变化,因此更适合用于分析经济、社会等领域的变化趋势。
动态面板数据的特点包括了时间序列相关性、面板数据的异质性和面板数据的固定效应或随机效应等。
二、动态面板数据分析方法1. 固定效应模型固定效应模型是动态面板数据分析的一种方法,其基本思想是假设个体之间的差异不变,即个体的特定特征不随时间发生变化。
在固定效应模型中,研究者对个体的特定特征进行控制,从而更加准确地估计变量之间的关系。
固定效应模型的优势在于能够消除个体差异对分析结果的影响,但也存在着忽略了时间维度上的变化趋势的缺点。
2. 随机效应模型随机效应模型是另一种常见的动态面板数据分析方法,与固定效应模型相比,随机效应模型更加关注时间维度上的变化。
在随机效应模型中,个体差异被视为随机变量,研究者对个体差异的影响进行估计。
随机效应模型的优势在于能够较好地捕捉时间维度的变化趋势,但也存在着对个体差异的忽视。
3. 差分面板模型差分面板模型是一种结合了固定效应和随机效应的方法,其基本思想是通过对变量进行差分,消除了个体特定特征的影响,从而能够更准确地估计变量之间的关系。
差分面板模型在动态面板数据分析中具有较好的灵活性和有效性,能够兼顾个体差异和时间维度上的变化趋势。
三、动态面板数据分析方法的应用动态面板数据分析方法在实际研究中有着广泛的应用,例如在经济学领域,研究者经常使用动态面板数据分析方法来探讨收入、就业、贸易等变量之间的关系;在社会学领域,动态面板数据分析方法也被用于研究教育、健康、福利等方面的问题。
面板数据回归分析

面板数据回归分析面板数据回归分析是一种常用的统计方法,用于研究多个变量之间的关系。
本文将介绍面板数据回归分析的基本概念、方法和应用,并探讨其在实践中的意义。
首先,让我们了解一下面板数据回归分析的基本概念。
面板数据是指在一定时间内对同一组个体或单位进行观察和测量而得到的数据。
它通常由两个维度组成,一个是个体维度,另一个是时间维度。
个体可以是人、企业或其他单位,时间可以是日、月、年等单位。
面板数据回归分析的目的是通过对多个个体在不同时间点上的观察,探究各个变量之间的关系,并对其进行量化和解释。
通过这种方法,我们可以研究个体特征、个体间的差异、时间趋势以及其他影响因素对某一变量的影响。
面板数据回归分析的方法包括固定效应模型和随机效应模型。
固定效应模型假设个体之间的差异是固定的,而随机效应模型假设个体之间的差异是随机的。
这两种模型都可以用来估计个体特征对某一变量的影响,并进行统计推断。
在实际应用中,面板数据回归分析可以用来研究各种经济和社会现象。
例如,可以使用面板数据回归分析来研究不同企业在不同时间点上的市场份额与广告支出之间的关系,从而评估广告对市场份额的影响。
此外,面板数据回归分析还可以用来研究个人收入与教育水平、工作经验和其他因素之间的关系,以及地区经济增长与政府支出、劳动力和其他因素之间的关系。
面板数据回归分析在实践中具有重要意义。
首先,它可以提供更准确和可靠的结果,因为通过对多个个体和多个时间点进行观察,我们可以控制个体特征和时间变化带来的干扰。
其次,它可以帮助我们理解个体间的差异和时间趋势,从而更好地解释和预测现象。
最后,面板数据回归分析还可以用来评估政策的效果和进行政策建议,为决策提供科学依据。
总而言之,面板数据回归分析是一种强大的统计方法,用于研究多个变量之间的关系。
它的应用范围广泛,可以帮助我们理解和解释经济和社会现象。
通过合理使用面板数据回归分析,我们可以获得更准确、可靠和有用的分析结果,为决策提供科学依据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Yit Yi 0 (1 ) 1( X1it X1i ) 2 ( X 2it X 2i ) 3( X 3it X 3i ) it it vit vi (1 )i (uit ui ) (习题7.6证明)
7.3 随机效应模型估计
7.3.2 用EViews7.2估计随机效应模型
例子7.2的EViews回归结果
7.4 固定效应还是随机效应? ——Hausman检验
7.4.1 Hausman检验原理 7.4.2用EViews7.2进行Hausman检验
7.4 固定效应还是随机效应? ——Hausman检验
7.2 固定效应模型估计
7.2.1 固定效应模型估计
FD估计(First Difference):
Yit 1X1it 2X 2it 3X 3it uit
其中, Zit Zit Zi,t1
如果变量取值不随时间变化,差分后的模型在消 去 i 的同时,也将该变量消去,对应的回归系数 无法估计。
EViews中存放面板数据: 点击工作文件界面上的按钮Range,
在弹出的Workfile Structure对话框的Workfile type栏内选择Dated Panel,
7.1 面板数据模型
7.1.1 面板数据
EViews中存放面板数据:
并在Panel identifier series(面板识别变量)下的 第一栏Cross section ID series(横截面识别变量) 内输入变量名dq(地区),在第二栏Date series (日期识别变量)内输入变量名year:
E(uis | X1it , X 2it , X3it ) 0, s,t 1,2, ,T, i 1,2, , N
7.1 面板数据模型
7.1.2 面板数据模型
Yit i 0 1X1it 2 X 2it 3 X3it uit ,
i 1,2, , N; t 1,2, ,T
➢
假设
2:
FD估计导致变量变化减少,估计出参数方 差较大,效率比FE低。
7.2 固定效应模型估计
7.2.2 用EViews7.2估计固定效应模型
例子7.1 的EViews操作:
在工作文件界面选中参与回归的变量并以组打开, 在文件表格界面点击Proc→Make Equation进入模 型设定界面完成模型设定。
• 估计随机效应,首先要估计 ,故先要估
计
2
和
2 u
•
估计
2
和
2 u
的方法有三种:
Swamy-Arora、Wallace-Hussain和WansbeekKapteyn方法,常用第一种方法
7.3 随机效应模型估计
7.3.2 用EViews7.2估计随机效应模型
数据导入、数据结构转换以及模型设定与
(3)E(i ) 0 ;
Var
(
i
)
2
,
i 1,2, , N
。
7.3 随机效应模型估计
7.3.1 随机效应模型估计
结论1:随机效应模型复合误差项的性质
如果面板数据模型的误差项 uit 和个体异质 性 i 满足假设1-假设3,则 vit 满足
(1)对任何的 i, j 和 t, s ,vit 与 X1 js , X 2 js , X 3 js 不相关;
7.2 固定效应模型估计
7.2.2 用EViews7.2估计固定效应模型
例子7.1 的EViews操作:
点击Panel Options选项,进入面板数据模型设定界 面。第一栏选择固定效应(fixed),第二栏选择 无时间异质性 变量(none),第三栏选择GLS时 的权重(Cross-section weight), 第四栏选择协方差估计
方法(White cross-section), 最后一栏选择是否调整自由度
7.2 固定效应模型估计
7.2.2 用EViews7.2估计固定效应模型
例子7.1 的EViews操作:
完成选择后点击OK得出参数估计输出结果:
7.2 固定效应模型估计
7.2.2 用EViews7.2估计固定效应模型
例子7.2 教育的回报
7.4 固定效应还是随机效应? —Hausman检验
7.4.1 Hausman检验原理 7.4.2用EViews7.2进行Hausman检验
重要概念
面板数据回归分析
7.1 面板数据模型
7.1.1 面板数据 7.1.2 面板数据模型
7.1 面板数据模型
7.1.1 面板数据
面板数据有横截面和时间两个维度,N 个 横截面个体、T 个观测时期,样本个体表示 为 Yit ,若 N 远大于 T ,称之为短面板,本 书只讨论短面板。
ห้องสมุดไป่ตู้Var(uit )
2 u
,
Cov(uit ,uis ) E(uituis ) 0, t s,
Cov(uit ,u jt ) E(uitu jt ) 0, i j,
Cov(uit ,u js ) E(uitu js ) 0, (i,t) ( j, s),
i 1,2, , N;t 1,2, ,T
• 由于不可观测的地区和个人能力带来的内生性, 使上述估计不一致。
面板数据模型
固定效应模型和随机效应模型
Yit i 0 1X1it 2 X 2it 3 X 3it uit ,
i 1,2, , N; t 1,2, ,T
➢定义7.1 固定效应和随机效应
上述模型中的不可观测变量 i (1)与回归自变量相关,称之为固定效应模型; (2)与回归自变量不相关,称之为随机效应模型。
7.4.1 Hausman检验原理
➢比较随机效应和固定效应下参数估计是否有 差别,若差别显著,则认为应采用固定效应 (稳健优先):若不显著,则认为应采用随 机效应(效率优先)。
i 1,2, , N; t 1,2, ,T
Yi i 0 1X1i 2 X 2i 3 X 3i ui , i 1,2, , N
Yit Yi 1( X1it X1i ) 2 ( X 2it X 2i ) 3( X3it X3i ) uit ui ,
i 1,2, , N; t 1,2, ,T
上述模型的OLS估计称之为固定效应估计 (Fixed effect)
7.2 固定效应模型估计
7.2.1 固定效应模型估计
例子7.1 经济发展与污水排放
例子7.2 教育的回报
Lwageit abli 0 1educit 2experit 3experit2 4unionit 5Blackit 6Hoursit uit
Y11 Y21 YN1 Y12 Y22 YN 2 Y1T Y2T YNT
7.1 面板数据模型
7.1.1 面板数据
EViews中存放面板数据: 将Excel中数据导入EViews,排列方式为无结
构/不按日期的数据(Unstructured/Undated)
7.1 面板数据模型
7.1.1 面板数据
• 随机效应与固定效应估计相似,
固定效应处
1
随机效应处
1
u 1
2 u
T
2
1
1
T
(
2
/
2 u
)
7.3 随机效应模型估计
7.3.1 随机效应模型估计
Yit 0 1X1it 2 X 2it 3 X 3it vit ,
vit i uit , i 1,2, , N; t 1,2, ,T
点击OK,数据按面板数据排列:
7.1 面板数据模型
7.1.1 面板数据
EViews中存放面板数据:
7.1 面板数据模型
7.1.2 面板数据模型
Yit i 0 1X1it 2 X 2it 3 X3it uit ,
i 1,2, , N; t 1,2, ,T
i 为个体的异质性,不可观测 ➢假设1:
• 随机效应假设了 i 与模型自变量不相关, 因此关心的问题不再是内生性,而是如何 提高估计的有效性,即探索复合误差项 vit i uit 的方差结构。
7.3 随机效应模型估计
7.3.1 随机效应模型估计
➢假设3:不可观测异质性满足
(1)i ,i 1,2, , N 独立;
(2) i 与 uit 独立,i 1,2, , N, t 1,2, ,T ;
EViews操作:
为避免教育变量被消掉,采用前面介绍的虚拟 变量与教育变量相乘作为新的自变量,并将不关 心的不随时间变化的自变量去掉(否则无法估 计!),如种族变量 black,然后按上面的操作, 最终输出结果:
7.2 固定效应模型估计
7.2.2 用EViews7.2估计固定效应模型
例子7.2 教育的回报
7.1 面板数据模型
7.1.2 面板数据模型
面板数据模型
不可观测的个体异质性 例子7.1 经济发展与污水排放
log(POL2it ) i 0 1 log(GDPit / POPit ) 2 log(CONSPit ) 3 log(POPit ) u
例子7.2 教育的回报
Lwagei abli 0 1educi 2experi 3experi2 4unioni 5Blacki 6Hoursi ui i 1,2, , N
EViews操作:
7.3 随机效应模型估计
7.3.1 随机效应模型估计 7.3.2 用EViews7.2估计随机效应模型
7.3 随机效应模型估计
7.3.1 随机效应模型估计
Yit 0 1X1it 2 X 2it 3 X 3it vit , vit i uit , i 1,2, , N; t 1,2, ,T