最新 面板数据的自适应Lasso分位回归方法的统计分析-精品

最新 面板数据的自适应Lasso分位回归方法的统计分析-精品
最新 面板数据的自适应Lasso分位回归方法的统计分析-精品

面板数据的自适应Lasso分位回归方法

的统计分析

一、引言

面板数据模型是当前学术界讨论最多的模型之一。传统的面板数据模型实际上是一种条件均值模型,即讨论在给定解释变量的条件下响应变量均值变化规律。这种模型的一个固有缺陷是只描述了响应变量的均值信息,其他信息则都忽略了。然而,数据的信息应该是全方位的,这种只对均值建模的方法有待改进。Koenker等提出的分位回归模型是对均值回归模型的一种有效改进,该模型可以在给定解释变量后对响应变量的任意分位点处进行建模,从而可以从多个层次刻画数据的分布信息[1]。同时,分位回归的参数估计是通过极小化加权残差绝对值之和得到,比传统均值回归模型下二次损失函数获得的最小二乘估计更为稳健[2]。

对于简单的线性模型,与分位回归方法相对应的参数点估计、区间估计、模型检验及预测已经有很多成熟的研究结果,但有关面板数据模型的分位回归方法研究文献还不多见。Koenker对固定效应的面板数据模型采用带Lasso惩罚的分位回归方法,通过对个体固定效应实施L1范数惩罚,该方法能够在各种偏态及厚尾分布下得到明显优于均值回归的估计,然而惩罚参数如何确定是该方法的一个难点[3];罗幼喜等也提出了3种新的固定效应面板数据分位回归方法,模拟显示,这些新方法在误差非正态分布情况下所得估计优于传统的最小二乘估计和极大似然估计,但新方法对解释变量在时间上进行了差分运算,当解释变量中包含有不随时间变化的协变量时,这些方法则无法使用[4];Tian等对含随机效应的面板数据模型提出了一种分层分位回归法,并利用EQ算法给出模型未知参数的估计,但该算法只针对误差呈正态分布而设计,限制了其应用范围[5]。以上文献均是直接从损失函数的角度考虑分位回归模型的建立及求解;Liu等利用非对称拉普拉斯分布与分位回归检验损失函数之间的关系,从分布的角度建立了含随机效应面板数据的条件分位回归模型,通过蒙特卡罗EM算法解决似然函数高维积分问题[6];Luo等则在似然函数的基础上考虑加入参数先验信息,从贝叶斯的角度解决面板数据的分位回归问题,模拟显示,贝叶斯分位回归法能有效地处理模型中随机效应参数[7];朱慧明等也考虑过将贝叶斯分位回归法应用于自回归模型,模拟和实证显示该方法能有效地揭示滞后变量对响应变量的位置、尺度和形状的影响[8]。

然而,上述方法均不能对模型中自变量进行选择,但在实际的经济问题中,人们在建立模型之前经常会面临较多解释变量,且对哪个解释变量最终应该留在模型中没有太多信息。如果将一些不重要的噪声变量包含在模型之中,不仅会影响其他重要解释变量估计的准确性,也会使模型可解释性和预测准确性降低。Park等在研究完全贝叶斯分层模型时提出了一种新的贝叶斯Lasso方法,通过假定回归系数有条件Laplace先验信息给出了参数估计的Gibbs抽样算法,这一工作使得一些正则化的惩罚方法都能够纳入到贝叶斯的框架中来,通过特殊的先验信息对回归系数进行压缩,该方法能够在估计参数的同时对模型中自变量进行选择[9-10]。Alhamzawi等将贝叶斯Lasso方法引入到面板数据分位回归模型中来,使得在估计分位回归系数的同时能够对模型中重要解释变

面板数据模型

第十讲经典面板数据模型 一、面板数据(panel data) 一维数据: 时间序列数据(cross section data):变量在时间维度上的数据截面数据(time series data):变量在截面空间维度上的数据)。 二维数据: 面板数据(同时在时间和截面空间上取得的,也称时间序列截面数据(time series and cross section data)或混合数据(pool data)。 面板数据=截面数据+时间序列数据。

面板数据用双下标变量表示。例如 y i t, i = 1, 2, …, N; t = 1, 2, …, T N表示面板数据中含有N个个体。T表示时间序列的最大长度。若固定t不变,y i ., ( i = 1, 2, …, N)是随机变量在横截面上的N个数据;若固定i不变,y. t, (t = 1, 2, …, T)是纵剖面上的一个时间序列(个体)。 平衡面板数据(balanced panel data)。 非平衡面板数据(unbalanced panel data)。 例1998-2002年中国东北、华北、华东15个省级地区的居民家庭人均消费(不变价格)和人均收入数据见表1。人均消费和收入两个面板数据都是平衡面板数据,各有15个个体。

表1.中国部分省级地区的居民数据(不变价格,元)

二、面板数据模型及其作用 1.经典面板数据模型 建立在古典假定基础上的线性面板数据模型. 2.非经典面板数据模型 (1)非平稳时间序列问题的面板数据模型(面板数据协整模型) (2)非线性面板数据模型(如面板数据logit模型, 面板数据计数模型模型) (3)其他模型(如面板数据分位数回归模型) 3.面板数据模型作用 (1)描述个体行为差异。

面板数据分析简要步骤与注意事项(面板单位根—面板协整—回归分析)

面板数据分析简要步骤与注意事项(面板单位根检验—面板协整—回归分析) 面板数据分析方法: 面板单位根检验—若为同阶—面板协整—回归分析 —若为不同阶—序列变化—同阶建模随机效应模型与固定效应模型的区别不体现为R2的大小,固定效应模型为误差项和解释变量是相关,而随机效应模型表现为误差项和解释变量不相关。先用hausman检验是fixed 还是random,面板数据R-squared值对于一般标准而言,超过0.3为非常优秀的模型。不是时间序列那种接近0.8为优秀。另外,建议回归前先做stationary。很想知道随机效应应该看哪个R方?很多资料说固定看within,随机看overall,我得出的overall非常小0.03,然后within是53%。fe和re输出差不多,不过hausman检验不能拒绝,所以只能是re。该如何选择呢? 步骤一:分析数据的平稳性(单位根检验) 按照正规程序,面板数据模型在回归前需检验数据的平稳性。李子奈曾指出,一些非平稳的经济时间序列往往表现出共同的变化趋势,而这些序列间本身不一定有直接的关联,此时,对这些数据进行回归,尽管有较高的R平方,但其结果是没有任何实际意义的。这种情况称为称为虚假回归或伪回归(spurious regression)。他认为平稳的真正含义是:一个时间序列剔除了不变的均值(可视为截距)和时间趋势以后,剩余的序列为零均值,同方差,即白噪声。因此单位根检验时有三种检验模式:既有趋势又有截距、只有截距、以上都无。 因此为了避免伪回归,确保估计结果的有效性,我们必须对各面板序列的平稳性进行检验。而检验数据平稳性最常用的办法就是单位根检验。首先,我们可以先对面板序列绘制时序图,以粗略观测时序图中由各个观测值描出代表变量的折线是否含有趋势项和(或)截距项,从而为进一步的单位根检验的检验模式做准备。单位根检验方法的文献综述:在非平稳的面板数据渐进过程中,Levin andLin(1993)很早就发现这些估计量的极限分布是高斯分布,这些结果也被应用在有异方差的面板数据中,并建立了对面板单位根进行检验的早期版本。后来经过Levin et al.(2002)的改进,提出了检验面板单位根的LLC法。Levin et al.(2002)指出,该方法允许不同截距和时间趋势,异方差和高阶序列相关,适合于中等维度(时间序列介于25~250之间,截面数介于10~250之间)的面板单位根检验。Im et al.(1997)还提出了检验面板单位根的IPS法,但Breitung(2000)发现IPS法对限定性趋势的设定极为敏感,并提出了面板单位根检验的Breitung法。Maddala and Wu(1999)又提出了ADF-Fisher和PP-Fisher面板单位根检验方法。 由上述综述可知,可以使用LLC、IPS、Breintung、ADF-Fisher和PP-Fisher5种方法进行面板单位根检验。 其中LLC-T、BR-T、IPS-W、ADF-FCS、PP-FCS、H-Z分别指Levin,Lin&Chu t*

面板数据分析简要步骤与注意事项 面板单位根—面板协整—回归分析

面板数据分析简要步骤与注意事项 (面板单位根—面板协整—回归分析)步骤一:分析数据的平稳性(单位根检验) 按照正规程序,面板数据模型在回归前需检验数据的平稳性。李子奈曾指出,一些非平稳的经济时间序列往往表现出共同的变化趋势,而这些序列间本身不一定有直接的关联,此时,对这些数据进行回归,尽管有较高的R平方,但其结果是没有任何实际意义的。这种情况称为称为虚假回归或伪回归(spurious regression)。他认为平稳的真正含义是:一个时间序列剔除了不变的均值(可视为截距)和时间趋势以后,剩余的序列为零均值,同方差,即白噪声。因此单位根检验时有三种检验模式:既有趋势又有截距、只有截距、以上都无。 因此为了避免伪回归,确保估计结果的有效性,我们必须对各面板序列的平稳性进行检验。而检验数据平稳性最常用的办法就是单位根检验。首先,我们可以先对面板序列绘制时序图,以粗略观测时序图中由各个观测值描出代表变量的折线是否含有趋势项和(或)截距项,从而为进一步的单位根检验的检验模式做准备。 单位根检验方法的文献综述:在非平稳的面板数据渐进过程中,Levin andLin(1993) 很早就发现这些估计量的极限分布是高斯分布,这些结果也被应用在有异方差的面板数据中,并建立了对面板单位根进行检验的早期版本。后来经过Levin et al. (2002)的改进,提出了检验面板单位根的LLC 法。Levin et al. (2002) 指出,该方法允许不同截距和时间趋势,异方差和高阶序列相关,适合于中等维度(时间序列介于25~250 之间,截面数介于10~250 之间) 的面板单位根检验。Im et al. (1997) 还提出了检验面板单位根的IPS 法,但Breitung(2000) 发现IPS 法对限定性趋势的设定极为敏感,并提出了面板单位根检验的Breitung 法。Maddala and Wu(1999)又提出了ADF-Fisher和PP-Fisher面板单位根检验方法。 由上述综述可知,可以使用LLC、IPS、Breintung、ADF-Fisher 和PP-Fisher5种方法进行面板单位根检验。其中LLC-T 、BR-T、IPS-W 、ADF-FCS、PP-FCS 、H-Z 分别指Levin, Lin & Chu t* 统计量、Breitung t 统计量、lm Pesaran & Shin W 统计量、ADF- Fisher Chi-square统计量、PP-Fisher Chi-square统计量、Hadri Z统计量,并且Levin, Lin & Chu t* 统计量、Breitung t统计量的原假设为存在普通的单位根过程,lm Pesaran & Shin W 统计量、ADF- Fisher Chi-square统计量、PP-Fisher Chi-square统计量的原假设为存在有效的单位根过程,Hadri Z 统计量的检验原假设为不存在普通的单位根过程。 有时,为了方便,只采用两种面板数据单位根检验方法,即相同根单位根检验LLC(Levin-Lin-Chu)检验和不同根单位根检验Fisher-ADF检验(注:对普通序列(非面板序列)的单位根检验方法则常用ADF检验),如果在两种检验中均拒绝存在单位根的原假设则我们说此序列是平稳的,反之则不平稳。如果我们以T(trend)代表序列含趋势项,以I(intercept)代表序列含截距项,T&I代表两项都含,N(none)代表两项都不含,那么我们可以基于前面时序图得出的结论,在单位根检验中选择相应检验模式。 但基于时序图得出的结论毕竟是粗略的,严格来说,那些检验结构均

面板数据的分析步骤

面板数据的分析步骤 面板数据的分析方法或许我们已经了解许多了,但是到底有没有一个基本的步骤呢?那些步骤是必须的?这些都是我们在研究的过程中需要考虑的,而且又是很实在的问题。面板单位根检验如何进行?协整检验呢?什么情况下要进行模型的修正?面板模型回归形式的选择?如何更有效的进行回归?诸如此类的问题我们应该如何去分析并一一解决?以下是我近期对面板数据研究后做出的一个简要总结,和大家分享一下,也希望大家都进来讨论讨论。 步骤一:分析数据的平稳性(单位根检验) 按照正规程序,面板数据模型在回归前需检验数据的平稳性。李子奈曾指出,一些非平稳的经济时间序列往往表现出共同的变化趋势,而这些序列间本身不一定有直接的关联,此时,对这些数据进行回归,尽管有较高的R平方,但其结果是没有任何实际意义的。这种情况称为称为虚假回归或伪回归(spurious regression)。他认为平稳的真正含义是:一个时间序列剔除了不变的均值(可视为截距)和时间趋势以后,剩余的序列为零均值,同方差,即白噪声。因此单位根检验时有三种检验模式:既有趋势又有截距、只有截距、以上都无。 因此为了避免伪回归,确保估计结果的有效性,我们必须对各面板序列的平稳性进行检验。而检验数据平稳性最常用的办法就是单位根检验。首先,我们可以先对面板序列绘制时序图,以粗略观测时序图中由各个观测值描出代表变量的折线是否含有趋势项和(或)截距项,从而为进一步的单位根检验的检验模式做准备。 单位根检验方法的文献综述:在非平稳的面板数据渐进过程中,Levin andLin(1993) 很早就发现这些估计量的极限分布是高斯分布,这些结果也被应用在有异方差的面板数据中,并建立了对面板单位根进行检验的早期版本。后来经过Levin et al. (2002)的改进,提出了检验面板单位根的LLC 法。Levin et al. (2002) 指出,该方法允许不同截距和时间趋势,异方差和高阶序列相关,适合于中等维度(时间序列介于25~250 之间,截面数介于10~250 之间) 的面板单位根检验。Im et al. (1997) 还提出了检验面板单位根的IPS 法,但Breitung(2000) 发现IPS 法对限定性趋势的设定极为敏感,并提出了面板单位根检验的Breitung 法。Maddala and Wu(1999)又提出了ADF-Fisher和PP-Fisher面板单位根检验方法。 由上述综述可知,可以使用LLC、IPS、Breintung、ADF-Fisher 和PP-Fisher5种方法进行面板单位根检验。 其中LLC-T 、BR-T、IPS-W 、ADF-FCS、PP-FCS 、H-Z 分别指Levin, Lin & Chu t* 统计量、Breitung t 统计量、lm Pesaran & Shin W 统计量、ADF- Fisher Chi-square统计量、PP-Fisher Chi-square 统计量、Hadri Z统计量,并且Levin, Lin & Chu t* 统计量、Breitung t统计量的原假设为存在普通的单位根过程,lm Pesaran & Shin W 统计量、ADF- Fisher Chi-square统计量、PP-Fisher Chi-square统计量的原假设为存在有效的单位根过程,Hadri Z统计量的检验原假设为不存在普通的单位根过程。 有时,为了方便,只采用两种面板数据单位根检验方法,即相同根单位根检验LLC (Levin-Lin-Chu)检验和不同根单位根检验Fisher-ADF检验(注:对普通序列(非面板序列)的单位根检验方法则常用ADF检验),如果在两种检验中均拒绝存在单位根的原假设则我们

面板数据分析简要步骤与注意事项面板单位根面板协整回归分析

面板数据分析简要步骤与注意事项 面板单位根—面板协整—回归分析) 步骤一:分析数据的平稳性(单位根检验) 按照正规程序,面板数据模型在回归前需检验数据的平稳性。李子奈曾指出,一些非平稳的经济时间序列往往表现出共同的变化趋势,而这些序列间本身不一定有直接的关联,此时,对这些数据进行回归,尽管有较高的R平方,但其结果是没有任何实 际意义的。这种情况称为称为虚假回归或伪回归( spurious regression )。他认为平稳的真正含义是:一个时间序列剔除了不变的均值(可视为截距)和时间趋势以后,剩余的序列为零均值,同方差,即白噪声。因此单位根检验时有三种检验模式:既有趋势又有截距、只有截距、以上都无。 因此为了避免伪回归,确保估计结果的有效性,我们必须对各面板序列的平稳性进行检验。而检验数据平稳性最常用的办法就是单位根检验。首先,我们可以先对面板序列绘制时序图,以粗略观测时序图中由各个观测值描出代表变量的折线是否含有趋势项和(或)截距项,从而为进一步的单位根检验的检验模式做准备。单位根检验方法的文献综述:在非平稳的面板数据渐进过程中 ,Levin andLin(1993) 很早就发现这些估计量的极限分布是高斯分布 , 这些结果也被应用在有异方差的面板数据中,并建立了对面板单位根进行检验的早期版本。后来经过Levin et al. (2002) 的改进, 提出了检验面板单位根的LLC法。Levin et al. (2002)指出,该方法允许不同截距和时间趋势,异方差和高阶序列相关,适合于中等维度(时间序列介于25?250之间,截面数介于10?250之间)的面板单位根检验。Im et al. (1997) 还提出了检验面板单位根的 IPS 法, 但 Breitung(2000) 发现 IPS 法对限定性趋势的设定极为敏感 , 并提出了面板单位根检验的 Breitung 法。Maddala and Wu(1999)又提出了 ADF-Fisher 和 PP-Fisher 面板单位根检验方法。 由上述综述可知,可以使用 LLC、IPS、Breintung 、ADF-Fisher 和 PP-Fisher5 种方法进行面板单位根检验。其中LLC-T 、BR-T、IPS-W 、ADF-FCS、PP-FCS、H-Z 分 别指 Levin, Lin & Chu t* 统计量、 Breitung t 统计量、 lm Pesaran & Shin W 统 量、计 ADF- Fisher Chi-square 统计量、PP-Fisher Chi-square 统计量、Hadri Z 统计 量,并且 Levin, Lin & Chu t* 统计量、 Breitung t 统计量的原假设为存在普通的单位根过程, lm Pesaran & Shin W 统计量、 ADF- Fisher Chi-square 统计量、 PP-Fisher Chi-square 统计量的原假设为存在有效的单位根过程, Hadri Z 统计量的检验原假设为不存在普通的单位根过程。 有时,为了方便,只采用两种面板数据单位根检验方法,即相同根单位根检验 LLC(Levin-Lin-Chu )检验和不同根单位根检验 Fisher-ADF 检验(注:对普通序列(非面板序列)的单位根检验方法则常用 ADF检验),如果在两种检验中均拒绝存在单位根的原假设则我 们说此序列是平稳的,反之则不平稳。 如果我们以 T(trend )代表序列含趋势项,以 I (intercept )代表序列含截距项, T&I 代表两项都含,N (none)代表两项都不含,那么我们可以基于前面时序图得出的结论,在单位根检验中选择相应检验模式。 但基于时序图得出的结论毕竟是粗略的,严格来说,那些检验结构均需一一检验。具体操作可以参照李子奈的说法:ADF检验是通过三个模型来完成,首先从含有截距和趋势项的模型开始,再检验只含截距项的模型,最后检验二者都不含的模型。并且认

基于面板分位数回归的辽宁省国有工业企业经营绩效影响研究

基于面板分位数回归的辽宁省国有工业企业经营绩效影响 研究 [摘要]深入研究区域国有工业企业资本结构、规模扩张特征对其经营绩效的影响方向和程度,有利于制定区域产业结构调整和化解过剩产能的政策。利用辽宁省2001―2016年国有工业企业相关数据,通过面板分位数回归测算资本结构、行业集中度及总资产增长率对经营绩效的影响。结果发现:资本结构对经营绩效的影响呈现显著倒“U”型关系,行业集中度对经营绩效的影响也是微弱的倒“U”关系。提出降低辽宁省国有工业企业的资产负债率、降低行业外延式扩张速度等对策建议。 [关键词]工业企业;资本结构;行业集中度;经营绩效;面板分位数回归 [中图分类号]F425 [文献标识码]A [文章编号]2095-3283(2018)04-0082-05 Abstract:Further study of regional state-owned industrial enterprise capital structure and scale expansion characteristics on its business performance direction and degree,is beneficial to develop regional industrial structure adjustment and the

policy of excess capacity. Based on the data of state-owned industrial enterprises from 2001 to 2016 in liaoning province,this paper calculates the influence of capital structure,industry concentration and total asset growth rate on operating performance through the regression of panel quantile regression. The results show that the influence of capital structure on business performance is significantly inverted “U”,and the influence of industry concentration on operating performance is also weak “U”. The paper puts forward some Suggestions to reduce the asset-liability ratio of state-owned industrial enterprises in liaoning province and reduce the expansion speed of the industry. Keywords:Industrial Enterprise;Capital Structure;Industry Concentration;Operating Performance;Panel Quantile Regression 一、引言 ??有工业企业在国家和地区经济发展中起到非常关键的作用,深入研究国有工业企业资本结构、规模扩张及行业集中度对其经营绩效的影响,对于制定产业政策和地区经济发展政策具有重要意义。 国内外众多学者对资本结构、行业集中度与企业绩效关系进行了广泛和深入的研究。一是资本结构与公司绩效关系

面板数据模型的稳健分析方法研究

面板数据模型的稳健分析方法研究 在计量经济学领域,面板数据是极其重要的一类数据类型。在宏观经济的研究中,面板数据模型被广泛地应用于汇率决定理论、跨国经济增长收敛理论的检验、产业结构的分析、技术创新的研究等领域;在微观经济的研究中,面板数据模型被大量地应用于企业成本分析、就业、家庭消费等领域。 随着面板数据模型在经济领域的广泛应用,传统面板数据分析方法的某些局限性也逐渐凸显出来。首先,面板数据模型通常假定误差项服从正态分布,而实际数据很难满足这种假定,利用传统方法得到的估计可能是有偏的甚至是无效的。 其次,在数据的收集过程中,常常会由于人为因素或其他因素导致数据受到污染,即出现不合理的异常值,这样利用传统方法得到的估计与真实值可能存在较大的偏差,用这种有偏的估计结果分析经济问题会得出不合理的结论。针对这些局限性,中外学者们做了大量的工作,如构造面板数据模型的稳健估计以及研究面板数据的分位数回归模型,然而,这些方法仍存在一些不足。 首先,针对面板数据模型的稳健估计通常是利用Huber损失函数降低异常值影响,这样有两个缺点:一是稳健性不高,二是有效性较低,即估计的方差较大;其次,若面板数据的分位数回归模型中存在内生性,现有的工具变量方法计算复杂且需要估计大量的冗余参数。论文基于面板数据均值回归模型提出了一种更加稳健有效的估计方法(ELS-EL),并将此方法推广到复杂的面板数据模型如广义线性模型、部分线性模型中;此外,本文基于面板数据的分位数回归模型提出了一种两阶段的工具变量方法(2S-IVFEQR),降低了计算复杂度,并将新方法推广到动态面板数据的分位数回归模型中。 论文的主体框架分为七个章节。第一章,介绍了论文的研究背景、研究意义,

面板数据的计量方法

1.什么是面板数据? 面板数据(panel data)也称时间序列截面数据(time series and cross section data)或混合数据(pool data)。面板数据是截面数据与时间序列综合起来的一种数据资源,是同时在时间和截面空间上取得的二维数据。 如:城市名:北京、上海、重庆、天津的GDP分别为10、11、9、8(单位亿元)。这就是截面数据,在一个时间点处切开,看各个城市的不同就是截面数据。如:2000、2001、2002、2003、2004各年的北京市GDP分别为8、9、10、11、12(单位亿元)。这就是时间序列,选一个城市,看各个样本时间点的不同就是时间序列。 如:2000、2001、2002、2003、2004各年中国所有直辖市的GDP分别为: 北京市分别为8、9、10、11、12; 上海市分别为9、10、11、12、13; 天津市分别为5、6、7、8、9; 重庆市分别为7、8、9、10、11(单位亿元)。 这就是面板数据。 2.面板数据的计量方法 利用面板数据建立模型的好处是:(1)由于观测值的增多,可以增加估计量的抽样精度。(2)对于固定效应模型能得到参数的一致估计量,甚至有效估计量。(3)面板数据建模比单截面数据建模可以获得更多的动态信息。例如1990-2000 年30 个省份的农业总产值数据。固定在某一年份上,它是由30 个农业总产值数字组成的截面数据;固定在某一省份上,它是由11 年农业总产值数据组成的一个时间序列。面板数据由30 个个体组成。共有330 个观测值。 面板数据模型的选择通常有三种形式:混合估计模型、固定效应模型和随机效应模型 第一种是混合估计模型(Pooled Regression Model)。如果从时间上看,不同个体之间不存在显著性差异;从截面上看,不同截面之间也不存在显著性差异,那么就可以直接把面板数据混合在一起用普通最小二乘法(OLS)估计参数。 第二种是固定效应模型(Fixed Effects Regression Model)。在面板数据散点图中,如果对于不同的截面或不同的时间序列,模型的截距是不同的,则可以采用在模型中加虚拟变量的方法估计回归参数,称此种模型为固定效应模型(fixed effects regression model)。 固定效应模型分为3种类型,即个体固定效应模型(entity fixed effects regression model)、时刻固定效应模型(time fixed effects regression model)和时刻个体固定效应模型(time and entity fixed effects regression model)。(1)个体固定效应模型。 个体固定效应模型就是对于不同的个体有不同截距的模型。如果对于不同的时间序列(个体)截距是不同的,但是对于不同的横截面,模型的截距没有显著性变化,那么就应该建立个体固定效应模型。注意:个体固定效应模型的EViwes输出结果中没有公共截距项。 (2)时刻固定效应模型。 时刻固定效应模型就是对于不同的截面(时刻点)有不同截距的模型。如果确知

面板数据分析步骤

转载:面板数据分析的思路和Eviews操作: 面板数据一般有三种:混合估计模型;随机效应模型和固定效应模型。首先,第一步是作固定效应和随机效应模型的选择,一般是用Hausman检验。 如果你选用的是所有的企业,反映的是总体的效应,则选择固定效应模型,如果你选用的是抽样估计,则要作Hausman检验。这个可以在Eviews 5.1里头做。 H0:应该建立随机效应模型。 H1:应该建立固定效应模型。 先使用随机效应回归,然后做Hausman检验,如果是小概率事件,拒绝原假设则应建立固定效应模型,反之,则应该采用随机效应模型进行估计。 第二步,固定效应模型分为三种:个体固定效应模型、时刻固定效应模型和个体时刻固定效应模型(这三个模型的含义我就不讲了,大家可以参考我列的参考书)。如果我们是对个体固定,则应选择个体固定效用模型。但是,我们还需作个体固定效应模型和混合估计模型的选择。所以,就要作F值检验。相对于混合估计模型来说,是否有必要建立个体固定效应模型可以通过F检验来完成。 H0:对于不同横截面模型截距项相同(建立混合估计模型)。SSEr H1:对于不同横截面模型的截距项不同(建立时刻固定效应模型)。SSEu

F统计量定义为:F=[( SSEr - SSEu)/(T+k-2)]/[ SSEu/(NT-T-k)] 其中,SSEr,SSEu分别表示约束模型(混合估计模型的)和非约束模型(个体固定效应模型的)的残差平方和(Sum squared resid)。非约束模型比约束模型多了T–1个被估参数。需要指出的是:当模型中含有k 个解释变量时,F统计量的分母自由度是NT-T- k。通过对F统计量我们将可选择准确、最佳的估计模型。 在作回归是也是四步:第一步,先作混合效应模型:在cross-section 一栏选择None ,Period也是None;Weights是cross-section Weights,然后把回归结果的Sum squared resid值复制出来,就是SSEr 第二步:作个体固定效用模型:在cross-section 一栏选择Fixed ,Period也是None;Weights是cross-section Weights,然后把回归结果的Sum squared resid值复制出来,就是SSEu 第三步:根据公式F=[( SSEr - SSEu)/(T+k-2)]/[ SSEu/(NT-T-k)]。计算出结果。其中,T为年数,不管我们的数据是unbalance还是balance 看observations就行了,也即Total pool (balanced) observations:的值,但是如果是balance我们也可以计算,也即是每一年的企业数的总和。比如说我们研究10年,每一年又500加企业,则NT=10×500=5000。K为解释变量,不含被解释变量。 第四步,根据计算出来的结果查F值分布表。看是否通过检验。检验准则:当F> Fα(T-1, NT-T-k) , α=0.01,0.05或0.1时,拒绝原假设,则结论是应该建立个体固定效应模型,反之,接受原假设,则不能建立个体固定效应模型。

最新 面板数据的自适应Lasso分位回归方法的统计分析-精品

面板数据的自适应Lasso分位回归方法 的统计分析 一、引言 面板数据模型是当前学术界讨论最多的模型之一。传统的面板数据模型实际上是一种条件均值模型,即讨论在给定解释变量的条件下响应变量均值变化规律。这种模型的一个固有缺陷是只描述了响应变量的均值信息,其他信息则都忽略了。然而,数据的信息应该是全方位的,这种只对均值建模的方法有待改进。Koenker等提出的分位回归模型是对均值回归模型的一种有效改进,该模型可以在给定解释变量后对响应变量的任意分位点处进行建模,从而可以从多个层次刻画数据的分布信息[1]。同时,分位回归的参数估计是通过极小化加权残差绝对值之和得到,比传统均值回归模型下二次损失函数获得的最小二乘估计更为稳健[2]。 对于简单的线性模型,与分位回归方法相对应的参数点估计、区间估计、模型检验及预测已经有很多成熟的研究结果,但有关面板数据模型的分位回归方法研究文献还不多见。Koenker对固定效应的面板数据模型采用带Lasso惩罚的分位回归方法,通过对个体固定效应实施L1范数惩罚,该方法能够在各种偏态及厚尾分布下得到明显优于均值回归的估计,然而惩罚参数如何确定是该方法的一个难点[3];罗幼喜等也提出了3种新的固定效应面板数据分位回归方法,模拟显示,这些新方法在误差非正态分布情况下所得估计优于传统的最小二乘估计和极大似然估计,但新方法对解释变量在时间上进行了差分运算,当解释变量中包含有不随时间变化的协变量时,这些方法则无法使用[4];Tian等对含随机效应的面板数据模型提出了一种分层分位回归法,并利用EQ算法给出模型未知参数的估计,但该算法只针对误差呈正态分布而设计,限制了其应用范围[5]。以上文献均是直接从损失函数的角度考虑分位回归模型的建立及求解;Liu等利用非对称拉普拉斯分布与分位回归检验损失函数之间的关系,从分布的角度建立了含随机效应面板数据的条件分位回归模型,通过蒙特卡罗EM算法解决似然函数高维积分问题[6];Luo等则在似然函数的基础上考虑加入参数先验信息,从贝叶斯的角度解决面板数据的分位回归问题,模拟显示,贝叶斯分位回归法能有效地处理模型中随机效应参数[7];朱慧明等也考虑过将贝叶斯分位回归法应用于自回归模型,模拟和实证显示该方法能有效地揭示滞后变量对响应变量的位置、尺度和形状的影响[8]。 然而,上述方法均不能对模型中自变量进行选择,但在实际的经济问题中,人们在建立模型之前经常会面临较多解释变量,且对哪个解释变量最终应该留在模型中没有太多信息。如果将一些不重要的噪声变量包含在模型之中,不仅会影响其他重要解释变量估计的准确性,也会使模型可解释性和预测准确性降低。Park等在研究完全贝叶斯分层模型时提出了一种新的贝叶斯Lasso方法,通过假定回归系数有条件Laplace先验信息给出了参数估计的Gibbs抽样算法,这一工作使得一些正则化的惩罚方法都能够纳入到贝叶斯的框架中来,通过特殊的先验信息对回归系数进行压缩,该方法能够在估计参数的同时对模型中自变量进行选择[9-10]。Alhamzawi等将贝叶斯Lasso方法引入到面板数据分位回归模型中来,使得在估计分位回归系数的同时能够对模型中重要解释变

面板数据的计量方法

面板数据的计量方法 1.什么是面板数据? 面板数据(panel data)也称时间序列截面数据(time series and cross section data)或混合数据(pool data)。面板数据是截面数据与时间序列综合起来的一种数据资源,是同时在时间和截面空间上取得的二维数据。 如:城市名:北京、上海、重庆、天津的GDP分别为10、11、9、8(单位亿元)。这就是截面数据,在一个时间点处切开,看各个城市的不同就是截面数据。如:2000、2001、2002、2003、2004各年的北京市GDP分别为8、9、10、11、12(单位亿元)。这就是时间序列,选一个城市,看各个样本时间点的不同就是时间序列。 如:2000、2001、2002、2003、2004各年中国所有直辖市的GDP分别为: 北京市分别为8、9、10、11、12; 上海市分别为9、10、11、12、13; 天津市分别为5、6、7、8、9; 重庆市分别为7、8、9、10、11(单位亿元)。 这就是面板数据。 2.面板数据的计量方法 利用面板数据建立模型的好处是:(1)由于观测值的增多,可以增加估计量的抽样精度。(2)对于固定效应模型能得到参数的一致估计量,甚至有效估计量。(3)面板数据建模比单截面数据建模可以获得更多的动态信息。例如1990-2000 年30 个省份的农业总产值数据。固定在某一年份上,它是由30 个农业总产值数字组成的截面数据;固定在某一省份上,它是由11 年农业总产值数据组成的一个时间序列。面板数据由30 个个体组成。共有330 个观测值。 面板数据模型的选择通常有三种形式:混合估计模型、固定效应模型和随机效应模型 第一种是混合估计模型(Pooled Regression Model)。如果从时间上看,不同个体之间不存在显著性差异;从截面上看,不同截面之间也不存在显著性差异,那么就可以直接把面板数据混合在一起用普通最小二乘法(OLS)估计参数。 第二种是固定效应模型(Fixed Effects Regression Model)。在面板数据散点图中,如果对于不同的截面或不同的时间序列,模型的截距是不同的,则可以采用在模型中加虚拟变量的方法估计回归参数,称此种模型为固定效应模型(fixed effects regression model)。 固定效应模型分为3种类型,即个体固定效应模型(entity fixed effects regression model)、时刻固定效应模型(time fixed effects regression model)和时刻个体固定效应模型(time and entity fixed effects regression model)。(1)个体固定效应模型。 个体固定效应模型就是对于不同的个体有不同截距的模型。如果对于不同的时间序列(个体)截距是不同的,但是对于不同的横截面,模型的截距没有显著性变化,那么就应该建立个体固定效应模型。注意:个体固定效应模型的EViwes输

分位数回归

分位数回归及其实例 一、分位数回归的概念 分位数回归(Quantile Regression):是计量经济学的研究前沿方向之一,它利用解释变量的多个分位数(例如四分位、十分位、百分位等)来得到被解释变量的条件分布的相应的分位数方程。与传统的OLS 只得到均值方程相比,它可以更详细地描述变量的统计分布。 传统的线性回归模型描述了因变量的条件分布受到自变量X 的影响过程。普通最dx--乘法是估计回归系数的最基本的方法,它描述了自变量X 对于因变量y 的均值影响。如果模型中的随机扰动项来自均值为零而且同方差的分布,那么回归系数的最dx--乘估计为最佳线性无偏估计(BLUE);如果近一步随机扰动项服从正态分布,那么回归系数的最dx--乘法或极大似然估计为最小方差无偏估计(M Ⅵ甩)。但是在实际的经济生活中,这种假设常常不被满足,饲如数据出现尖峰或厚尾的分布、存在显著的异方差等情况,这时的最小二乘法估计将不再具有上述优良性且稳健性非常差。最小二乘回归假定自变量X 只能影响因变量的条件分布的位置,但不能影响其分布的刻度或形状的任何其他方面。 为了弥补普通最dx--乘法(0Ls)在回归分析中的缺陷,Koenkel"和Pxassett 于1978年提出了分位数回归(Quantile Regression)的思想。它依据因变量的条件分位数对自变量X 进行回归,这样得到了所有分位数下的回归模型。因此分位数回归相比普通最小二乘回归只能描述自变量X 对于因变量y 局部变化的影响而言,更能精确地描述自变量X 对于因变量y 的变化范围以及条件分布形状的影响。 分位数回归是对以古典条件均值模型为基础的最小二乘法的延伸,用多个分位函数来估计整体模型。中位数回归是分位数回归的特殊情况,用对称权重解决残差最小化问题,而其他的条件分位数回归则用非对称权重解决残差最小化。 一般线性回归模型可设定如下: ()((0)),(0,1).x t t I t ρττ=-<∈ 在满足高斯-马尔可夫假设前提下,可表示如下: 01122(|)...k k E y x x x x αααα=++++ 其中u 为随机扰动项k αααα,...,,,210为待估解释变量系数。这是均值回归(OLS )模型表达式,类似于均值回归模型,也可以定义分位数回归模型如下: 01122(|)...()y k k u Q x x x x Q ταααατ=+++++ 对于分位数回归模型,则可采取线性规划法(LP )估计其最小加权绝对偏差,从而得到解释变量的回归系数,可表示如下: 01122min (...)x k k E y x x x ραααα----- 求解得:01122?????(|)y k k Q x a a x a x a x τ=++++ 其中,

面板数据分析方法步骤

1.面板数据分析方法步骤 面板数据的分析方法或许我们已经了解许多了,但是到底有没有一个基本的步骤呢?那些步骤是必须的?这些都是我们在研究的过程中需要考虑的,而且又是很实在的问题。面板单位根检验如何进行?协整检验呢?什么情况下要进行模型的修正?面板模型回归形式的选择?如何更有效的进行回归?诸如此类的问题我们应该如何去分析并一一解决?以下是我近期对面板数据研究后做出的一个简要总结,和大家分享一下,也希望大家都进来讨论讨论。 步骤一:分析数据的平稳性(单位根检验) 按照正规程序,面板数据模型在回归前需检验数据的平稳性。李子奈曾指出,一些非平稳的经济时间序列往往表现出共同的变化趋势,而这些序列间本身不一定有直接的关联,此时,对这些数据进行回归,尽管有较高的R平方,但其结果是没有任何实际意义的。这种情况称为虚假回归或伪回归(spurious regression)。他认为平稳的真正含义是:一个时间序列剔除了不变的均值(可视为截距)和时间趋势以后,剩余的序列为零均值,同方差,即白噪声。因此单位根检验时有三种检验模式:既有趋势又有截距、只有截距、以上都无。 因此为了避免伪回归,确保估计结果的有效性,我们必须对各面板序列的平稳性进行检验。而检验数据平稳性最常用的办法就是单位根检验。首先,我们可以先对面板序列绘制时序图,以粗略观测时序图中由各个观测值描出代表变量的折线是否含有趋势项和(或)截距项,从而为进一步的单位根检验的检验模式做准备。 单位根检验方法的文献综述:在非平稳的面板数据渐进过程中,Levin andLin(1993) 很早就发现这些估计量的极限分布是高斯分布,这些结果也被应用在有异方差的面板数据中,并建立了对面板单位根进行检验的早期版本。后来经过Levin et al. (2002)的改进,提出了检验面板单位根的LLC 法。Levin et al. (2002) 指出,该方法允许不同截距和时间趋势,异方差和高阶序列相关,适合于中等维度(时间序列介于25~250 之间,截面数介于10~250 之间) 的面板单位根检验。Im et al. (1997) 还提出了检验面板单位根的IPS 法,但Breitung(2000) 发现IPS 法对限定性趋势的设定极为敏感,并提出了面板单位根检验的Breitung 法。Maddala and Wu(1999)又提出了ADF-Fisher和PP-Fisher面板单位根检验方法。 由上述综述可知,可以使用LLC、IPS、Breintung、ADF-Fisher 和PP-Fisher5种方法进行面板单位根检验。 其中LLC-T 、BR-T、IPS-W 、ADF-FCS、PP-FCS 、H-Z 分别指Levin, Lin & Chu t* 统计量、Breitung t 统计量、lm Pesaran & Shin W 统计量、

面板数据分位数回归的一个简单方法

Econometrics Journal (2011),volume 14,pp.368–386. doi:10.1111/j.1368-423X.2011.00349.x A simple approach to quantile regression for panel data I VAN A.C ANAY ? ? Department of Economics,Northwestern University,2001Sheridan Rd,Evanston, IL 60208,USA. E-mail:iacanay@https://www.360docs.net/doc/264165595.html, First version received:May 2010;?nal version accepted:April 2011 Summary This paper provides a set of suf?cient conditions that point identify a quantile regression model with ?xed effects.It also proposes a simple transformation of the data that gets rid of the ?xed effects under the assumption that these effects are location shifters.The new estimator is consistent and asymptotically normal as both n and T grow. Keywords:Deconvolution ,Panel data models ,Quantile regression ,Two-step estimator . 1.INTRODUCTION Panel data models and quantile regression models are both widely used in applied econometrics and popular topics of research in theoretical papers.Quantile regression models allow the researcher to account for unobserved heterogeneity and heterogeneous covariates effects,while the availability of panel data potentially allows the researcher to include ?xed effects to control for some unobserved covariates.There has been little but growing work at the intersection of these two methodologies (e.g.Koenker,2004,Geraci and Bottai,2007,Abrevaya and Dahl,2008,Galvao,2008,Rosen,2009,and Lamarche,2010).This initial lack of attention is possibly due to a fundamental issue associated with conditional quantiles.This is,as it is the case with non-linear panel data models,standard demeaning (or differencing)techniques do not result in feasible approaches.These techniques rely on the fact that expectations are linear operators,which is not the case for conditional quantiles.This paper provides suf?cient conditions under which the parameter of interest is identi?ed for ?xed T and shows that there is a simple transformation of the data that eliminates the ?xed effects as T →∞,when the ?xed effects are viewed as location shift variables (i.e.variables that affect all quantiles in the same way).The resulting two-step estimator is consistent and asymptotically normal when both n and T go to in?nity.Also,the new estimator is extremely simple to compute and can be implemented in standard econometrics packages.The paper is organized as follows.Section 2presents the model.Section 3provides an identi?cation result based on deconvolution arguments.Section 4introduces a two-step estimator for panel data quantile regression models.Asymptotic properties of the new estimator are presented in the same section.Section 5includes a small Monte Carlo experiment to study the ?nite sample properties of the two-step estimator.Finally,Section 6concludes.Appendix A provides proofs of results.An estimator of the covariance kernel and the bootstrap method are given in Appendix B. C 2011The Author(s).The Econometrics Journal C 2011Royal Economic Society.Published by Blackwell Publishing Ltd,9600 Garsington Road,Oxford OX42DQ,UK and 350Main Street,Malden,MA,02148,USA. Journal The Econometrics

相关文档
最新文档