材料力学第三章答案 景荣春

合集下载

材料力学第五版第三章习题答案

材料力学第五版第三章习题答案

即该轴满足强度条件。
补充 例题1
实心圆轴与空心圆轴通过牙嵌离合器连
接。已知轴的转速n=100 r/min,传递功率
P=10 kW, 许 用 切 应 力 [ τ]=80MPa,
d1/d2=0.6。试确定实心轴的直径d,空心轴 的内、外径d1和d2。
解:
1、扭矩:
T9.55 100.95k5N .m 100
3
D
扭矩图 M2
A
M3
M1
B
C
M4
D 6.37
4.78 9.56
Tmax = 9.56 kN·m
T 图(kN·m) 在BC段内
补充例 题1
图示圆轴中,各轮上的转矩分别为mA= 4kN·m, mB=10kN·m, mC=6kN ·m,试求1 -1截面和2-2截面上的扭矩,并画扭矩图。


mA
1
mB
由两种不同材料组成的圆轴,里层和外层材料
补充 的切变模量分别为G1和G2,且G1=2G2。圆轴尺 例题2 寸如图所示。圆轴受扭时,里、外层之间无相对
滑动。关于横截面上的切应力分布,有图中
(A)、(B)、(C)、(D)所示的四种结论,
请判断哪一种是正确的。
2d d
T
G2
O G1
(A)
(B)
(C)
(D)
3
5.10kN·m
3.82kN·m
7.64kN·m
§3-4 等直圆杆扭转时的应力·强度条件
Ⅰ、横截面上的应力 (一)几何方面
(a)
Me
Me
(b)
相邻圆周线绕杆的轴线相对转动,但圆周的大小、 形状、间距都未变;
纵向线倾斜了同一个角度 ,表面上所有矩形均变

材料力学第3版习题答案

材料力学第3版习题答案

材料力学第3版习题答案第一章:应力分析1. 某材料在单轴拉伸下的应力-应变曲线显示,当应力达到200 MPa 时,材料发生屈服。

若材料在该应力水平下继续加载,其应力将不再增加,但应变继续增加。

请解释这一现象,并说明材料的屈服强度是多少?答案:这种现象表明材料进入了塑性变形阶段。

在单轴拉伸试验中,当应力达到材料的屈服强度时,材料的晶格结构开始发生滑移,导致材料的变形不再需要额外的应力增加。

因此,即使继续加载,应力保持不变,但应变会因为材料内部结构的重新排列而继续增加。

在本例中,材料的屈服强度是200 MPa。

第二章:材料的弹性行为2. 弹性模量是描述材料弹性行为的重要参数。

若一块材料的弹性模量为210 GPa,当施加的应力为30 MPa时,其应变是多少?答案:弹性模量(E)与应力(σ)和应变(ε)之间的关系由胡克定律描述,即σ = Eε。

要计算应变,我们可以使用公式ε =σ/E。

将给定的数值代入,得到ε = 30 MPa / 210 GPa =1.43×10^-4。

第三章:材料的塑性行为3. 塑性变形是指材料在达到屈服点后发生的永久变形。

如果一块材料在单轴拉伸试验中,其屈服应力为150 MPa,当应力超过这个值时,材料将发生塑性变形。

请解释塑性变形与弹性变形的区别。

答案:塑性变形与弹性变形的主要区别在于材料在去除外力后是否能够恢复原状。

弹性变形是指材料在应力作用下发生的形状改变,在应力移除后能够完全恢复到原始状态,不留下永久变形。

而塑性变形是指材料在应力超过屈服点后发生的不可逆的永久变形,即使应力被移除,材料的形状也不会恢复到原始状态。

第四章:断裂力学4. 断裂韧性是衡量材料抵抗裂纹扩展的能力。

如果一块材料的断裂韧性为50 MPa√m,试样的尺寸为100 mm×100 mm×50 mm,试样中存在一个长度为10 mm的初始裂纹。

请计算在单轴拉伸下,材料达到断裂的临界应力。

材料力学简明教程(景荣春)课后答案4

材料力学简明教程(景荣春)课后答案4


案 b 解
FS
(x)
=
ql 4

qx
(0 < x < l)
答 M (x) = ql x − q x2 (0 ≤ x ≤ l)
42
课后 FS
max
=
3 ql 4

M = ql2 max 4
( ) c 解
∑MA =0
, − q × 2l × l
+
FB
× 2l
+ ql 2
=
0 , FB
=
ql 2

( ) ∑ Fy
网 FS+C
=
1 ql 2

M
+ C
=
− 1 ql 2 ; 8
FSB = 0 , M B = 0
案 4-2 已知各梁如图,求:(1)剪力方程和弯矩方程;(2)剪力图和弯矩图;(3) FS max
和M 。 max



解 设左支座为 A,右支座为 B
( ) ∑ M B = 0 , FA = −F ↓
FS (x) = −F
=
ba a+b
F
FS+C
=
−a a+b
F

M
+ C
=
ba a+b
F ; FSB
=
−A a+b
F
,MB
=
0
d解
图(d1), ∑ Fy
=
0,F
=
1 2
ql


M
A
= 0,M A
=
− 3 ql 2 8
仿题 a 截面法得

材料力学习题解答[第三章]

材料力学习题解答[第三章]
题3-24图
解:A-A截面上内力为:
截面的几何性:
欲使柱截面内不出现拉应力,则有:
=0(a)
分别代入(a)式得:
解之得:
此时: MPa
3-25传动轴上装有甲、乙两个皮带轮,它们的直径均为 ,重量均为 ,其受力情况如图示。若轴的直径为 。试分析该轴的危险截面和危险点,计算危险点的应力大小,并用图形标明该点所受应力的方向。
解:(1)约束反力:
(2)各杆轴力
题3-3图
(3)各杆的正应力
3-4钢杆 直径为20mm,用来拉住刚性梁 。已知F=10kN,求钢杆横截面上的正应力。
解:
题3-4图
3-5图示结构中,1、2两杆的横截面直径分别为10mm和20mm,试求两杆内的应力。设结构的横梁为刚体。
解:取BC段分析, 题3-5图
取AB段分析:
根据力矩平衡:
内力图如图所示。截面的几何特性计算:
危险点面在A面的D1和D2点,则合成弯矩为:
3-28圆截面短柱,承受一与轴线平行但不与轴线重合的压载荷F作用,圆截面半径为r,现要求整个截面只承受压应力,试确定F作用的范围。
解:压力引起的压应力:

解之得Zc=题3-21图所以:来自最大压应力在槽底上各点:
(3)如果在左侧也开槽,则为轴心受压:
3-22图示短柱受载荷 和 作用,试求固定端角点A、B、C及D的正应力,并确定其中性轴的位置。
题3-22图
解:在ABCD平面上的内力:
横截面的几何特性:
应力计算:
中性轴方程为:
3-23图3-64所示为一简易悬臂式吊车架。横梁AB由两根10号槽钢组成。电葫芦可在梁上来回移动。设电动葫芦连同起吊重物的重量共重 。材料的 。试求在下列两种情况下,横梁的最大正应力值:(1)、只考虑由重量W所引起的弯矩影响;(2)、考虑弯矩和轴力的共同影响。

材料力学简明教程(景荣春)课后答案第三章

材料力学简明教程(景荣春)课后答案第三章
图示为 1 阶梯形圆轴,其中 AE 段为空心圆截面,外径 D = 140 mm ,内径 d = 80 mm; BC 段为实心圆截面,直径 d1 = 100 mm。受力如图所示,外力偶矩分别为 3-9
E 。 2(1 + μ )
3-5 圆轴扭转时如何确定危险截面、危险点及强度条件? 答 等截面圆轴扭转时的危险截面为扭矩最大的横截面,变截面圆轴扭转时的危险截面 在其扭矩与扭转截面系数比值最大的横截面;其危险点在该横截面的外边缘。强度条件为
τ max =
Tmax ≤ [τ ] Wp
3-6 金属材料圆轴扭转破坏有几种形式? 答 塑性金属材料和脆性金属材料扭转破坏形式不完全相同。塑性材料试件在外力偶作 用下,先出现屈服,最后沿横截面被剪断,如图 a 所示;脆性材料试件受扭时,变形很小, 最后沿与轴线约 45°方向的螺旋面断裂,如图 b 所示。
ϕ = ∫ dϕ = ∫
l l
T (x ) dx GI p ( x )
上式适用于等截面圆轴和截面变化不大的圆锥截面轴。对等截面圆轴,若在长 l 的两横截面 间的扭矩 T 为常量,则
ϕ=
圆轴扭转的刚度条件为
Tl GI p
⎟ ≤ [θ ] θ max = ⎜ ⎜ GI ⎟ ⎝ p ⎠ max
⎛ T ⎞
对于等截面圆轴为 或
50 ⎛ ⎞ 8 × 1.5 × 10 3 × 50 × 10 −3 ⎜ 4 × + 2 ⎟ 8 FD(4c + 2) 8 ⎝ ⎠ = 458 MPa = 解 (1) τ max = 3 50 ( ) πd 4c − 3 ⎛ ⎞ π × 8 3 × 10 −9 × ⎜ 4 × − 3 ⎟ 8 ⎝ ⎠ τ max − [τ ] 8 = × 100% = 1.78% < 5% [τ ] 450

材料力学习题册参考答案

材料力学习题册参考答案

材料力学习题册参考答案材料力学习题册参考答案(无计算题)第1章:轴向拉伸与压缩一:1(ABE )2(ABD )3(DE )4(AEB )5(C )6(CE)7(ABD )8(C )9(BD )10(ADE )11(ACE )12(D )13(CE )14(D )15(AB)16(BE )17(D )二:1对2错3错4错5对6对7错8错9错10错11错12错13对14错15错三:1:钢铸铁 2:比例极限p σ 弹性极限e σ 屈服极限s σ 强度极限b σ3.横截面 45度斜截面4. εσE =, EAFl l =5.强度,刚度,稳定性;6.轴向拉伸(或压缩);7. llb b ?μ?=8. 1MPa=106 N/m 2 =1012 N/mm 2 9. 抵抗伸缩弹性变形,加载方式 10. 正正、剪 11.极限应力 12. >5% <5% 13. 破坏s σ b σ 14.强度校核截面设计荷载设计15. 线弹性变形弹性变形 16.拉应力 45度 17.无明显屈服阶段的塑性材料力学性能参考答案:1. A 2. C 3. C 4. C 5. C 6. 5d ; 10d 7. 弹塑8. s2s 9. 0.1 10. 压缩11. b 0.4σ 12. <;< 剪切挤压答案:一:1.(C ),2.(B ),3.(A ),二:1. 2bh db 2. b(d+a) bc 3. 4a δ a 2 4. F第2章:扭转一:1.(B ) 2.(C D ) 3.(C D ) 4. (C ) 5. (A E ) 6. (A )7. (D )8. (B D ) 9.(C ) 10. (B ) 11.(D ) 12.(C )13.(B )14.(A ) 15.(A E )二:1错 2对 3对 4错 5错 6 对三:1. 垂直 2. 扭矩剪应力 3.最外缘为零4. p ττ< 抗扭刚度材料抵抗扭转变形的能力5. 不变不变增大一倍6. 1.5879τ7.实心空心圆8. 3241)(α- 9. m ax m in αττ= 10. 长边的中点中心角点 11.形成回路(剪力流)第3章:平面图形的几何性质一:1.(C ),2.(A ),3.(C ),4.(C ),5.(A ),6.(C ),7.(C ),8.(A ),9.(D )二:1). 1;无穷多;2)4)4/5(a ; 3),84p R I π=p 4z y I 16R I I ===π4)12/312bh I I z z ==;5))/(/H 6bh 6BH W 32z -= 6)12/)(2211h b bh I I I I z y z y +=+=+;7)各分部图形对同一轴静矩8)两轴交点的极惯性矩;9)距形心最近的;10)惯性主轴;11)图形对其惯性积为零三:1:64/πd 114; 2.(0 , 14.09cm )(a 22,a 62)3: 4447.9cm 4, 4:0.00686d 4 ,5: 77500 mm 4 ;6: 64640039.110 23.410C C C C y y z z I I mm I I mm ==?==?第4章:弯曲内力一:1.(A B )2.(D )3.(B )4.(A B E )5.(A B D )6.(ACE ) 7.(ABDE ) 8.(ABE )9. (D ) 10. (D ) 11.(ACBE ) 12.(D ) 13.(ABCDE )二:1错 2错 3错 4对 5错 6对 7对三:1. 以弯曲变形 2.集中力 3. KNm 2512M .max =4. m KN 2q = 向下 KN 9P = 向上5.中性轴6.荷载支撑力7. 小8. 悬臂简支外伸9. 零第5章:弯曲应力一:1(ABD)2.(C )3.(BE )4.(A )5.(C )6.(C )7.(B )8.(C )9.(BC )二:1对 2错 3错 4 对 5 错 6错 7 对三:1.满足强度要求更经济、更省料2. 变成曲面,既不伸长也不缩短3.中性轴4.形心主轴5.最大正应力6.剪力方向7.相等8.平面弯曲发生在最大弯矩处9.平面弯曲第6章:弯曲变形一:1(B ),2(B ),3(A ),4(D ),5(C ),6(A ),7(C ),8(B ),9(A )10(B ),11(A )二:1对2错3错4错5错6对7错8错9错10对11错12对三:1.(转角小量:θθtan ≈)(未考虑高阶小量对曲率的影响)2. 挠曲线采用近似微分方程导致的。

工程力学简明教程(景荣春著)课后题答案下载

工程力学简明教程(景荣春著)课后题答案下载

工程力学简明教程(景荣春著)课后题答案下载《工程力学简明教程》可作为高等学校工科近机械类、近土木类,以及材料类等专业工程力学课程的教材。

下面是的工程力学简明教程(景荣春著),以供大家阅读。

点击此处下载???工程力学简明教程(景荣春著)课后答案???印次:1-1装帧:平装印刷日期:xx-12-17第1篇静力学第1章静力学公理和物体的受力分析51.1静力学基本概念51.2静力学公理61.3约束和约束反力91.4物体的受力分析13本章小结18思考题19习题20第2章平面力系222.1平面汇交力系222.1.1平面汇交力系合成与平衡的几何法222.1.2平面汇交力系合成与平衡的解析法252.2力对点之矩282.3平面力偶系292.4平面任意力系352.4.1力线平移定理352.4.2平面任意力系的简化362.4.3平面任意力系的平衡392.5物体系统的平衡432.6平面简单桁架的内力计算452.7考虑摩擦的平衡问题482.7.1滑动摩擦492.7.2摩擦角与自锁现象512.7.3考虑滑动摩擦的物体平衡问题52本章小结55思考题56习题58习题答案63第3章空间力系663.1空间汇交力系663.2力对点的矩和力对轴的矩693.3空间力偶系723.4空间任意力系743.5重心78本章小结83思考题84习题85习题答案87第2篇材料力学第4章材料力学的基本概念914.1材料力学的任务914.2变形固体的基本假设924.3内力截面法和应力的概念934.4位移与应变的概念964.5杆件变形的基本形式97本章小结100思考题101习题101习题答案103第5章拉伸、压缩与剪切1045.1轴力及轴力图1055.2轴向拉伸、压缩时的应力1075.2.1轴向拉伸、压缩时横截面上的正应力107 5.2.2轴向拉伸、压缩时斜截面上的应力110 5.3轴向拉伸、压缩时材料的力学性能1125.3.1轴向拉伸时材料的力学性能1125.3.2轴向压缩时材料的力学性能1165.4轴向拉伸、压缩时的强度计算117 5.5轴向拉伸、压缩时的变形1215.6拉伸、压缩超静定问题1245.7应力集中的概念1285.8连接件的实用强度计算1295.8.1剪切实用强度计算1305.8.2挤压实用强度计算132本章小结135思考题137习题138习题答案144第6章扭转1466.1外力偶矩的计算扭矩及扭矩图147 6.2薄壁圆筒的扭转1506.2.1薄壁圆筒扭转时的切应力1506.2.2切应力互等定理1526.2.3剪切胡克定律1526.3圆轴扭转时的应力和强度计算153 6.3.1圆轴扭转时横截面上的切应力153 6.3.2圆轴扭转时强度计算1566.4圆轴扭转时的变形和刚度计算159 6.4.1圆轴扭转时的变形1596.4.2圆轴扭转时的刚度计算1596.5圆轴扭转时的超静定问题162本章小结163思考题165习题165习题答案1671.工程力学理论力学部分(禹奇才张亚芳著)课后答案下载2.《工程力学》第二版(范钦珊唐静静著)课后答案下载3.分析化学第五版课后答案(华东理工化学系四川大学化工学院著)。

材料力学简明教程(景荣春)课后答案2

材料力学简明教程(景荣春)课后答案2
τ 45° = 50 MPa
7
σ 60o
= 100 cos2 60o
= 100 × (1 )2 2
= 25 MPa
F
τ 60o
= 100 sin 2 × 60o 2
= 100 × 2
3 = 43.3MPa 2
σ 90o
= 0 ,τ 90o
= 100 sin 2 × 90o 2
=0
F
60°
σ 90° = 0 90°
=
l1 − l l
×100% 知,对同
1
种材料, δ 5
> δ10 ,即对
后 δ 5 = 20% 的某材料,其δ10 < 20% ;显然,另 1 种材料δ10 = 20% 塑性性能较好。
课 2-12 由同一材料制成的不同构件,其许用应力是否相同?一般情况下脆性材料的安全
因数为什么要比塑性材料的安全因数选得大些? 答 由同一材料制成的不同构件,其许用应力不一定相同,这取决于工况、环境和重要
(a)
(b)
思考题 2-13 解图
2-14 计算拉压超静定问题时,轴力的指向和变形的伸缩是否可任意假设?为什么?
4
答 计算拉压超静定问题时,轴力的指向假设和变形的伸缩应对应(只有其中 1 个可任 意假设),即轴力设正(负)时,变形应设成拉(缩)。否则,计算结果有问题。
2-15 图示杆件表面有斜直线 AB ,当杆件承受图示轴向拉伸时,问该斜直线是否作平
2-7 某拉伸试验机的结构示意图如图所示。设试验机的杆 CD 与试样 AB 材料同为低 碳钢,其σ p = 200 MPa ,σ s = 240 MPa ,σ b = 400 MPa 。试验机最大拉力为 100 kN。
问:(1)用这一试验机作拉断试验时,试样直径最大可达多大?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

PC 30 = 9549 × = 573 N ⋅ m 500 n
T2 = M B − M A = −1146 N ⋅ m CD 段 T3 = − M D = −573 N ⋅ m
AC 段 由以上结果得
Tmax = −1146 N ⋅ m
(2)若将轮 A 与轮 C 位置对调,则 T1 , T3 值不变,而
28
ww
⎟ ≤ [θ ] θ max = ⎜ ⎜ GI ⎟ ⎝ p ⎠ max
Tmax ≤ [θ ] GI p Tmax 180° × ≤ [θ ] GI p π
T T = Wt αhb 2
Tl Tl = 3 GI t Gβhb
w.
⎛ T ⎞
kh
ϕ=
Tl GI p
da
上式适用于等截面圆轴和截面变化不大的圆锥截面轴。对等截面圆轴,若在长 l 的两横截面 间的扭矩 T 为常量,则

3-4 图示圆截面轴, AB 与 BC 段的直径分别为 d1 与 d 2 ,且 d1 = 4d 2 / 3 。求轴内的 最大扭转切应力。

32
kh
da
w.
co
试绘出图示截面上切应力的分布图,其中 T 为截面的扭矩。
m
其绝对值比第(1)种情况小,即对轴的受力有利。
τ max = τ max 2 =

思考题 3-15 图
答 τ c max > τ b max > τ a max 3-16 图示承受扭矩的 3 种截面形式,试分别画出其切应力沿壁厚的分布规律。
29
w.
思考题 3-14 解图
kh
da
3-13 答
试画出空心圆轴扭转时,横截面上切应力分布规律图。
w.
co
GB D 4 − d 4 = GA d4
G=
3-8
M e l0 M e l0 150 × 0.1 × 32 = = = 79.6 GPa 4 ϕI p ϕ ⋅ πd 0.012π × 20 4 × 10 −12
°
设有 1 圆截面传动轴,轴的转速 n = 300 r/min,传递功率 P = 80 kW,轴材料的
许用切应力 [τ ] = 80 MPa,单位长度许用扭转角 [θ ] = 1.0 / m ,切变模量 G = 80 GPa。试 设计轴的直径。 解
值相差较大) 。 3-7 两端承受外力偶矩 M e = 150 N⋅ m 作用。 直径 d = 20 mm, 一圆截面等直杆试样,
设由试验测得标距 l 0 = 100 mm 内轴的相对扭转角 ϕ = 0.012 rad,试确定切变模量 G 。 解

强度满足(工程中误差小于 5%,认为技术满足要求) 。 (2)用简化公式
27
m
E 。 2(1 + μ )
思考题 3-6 解图
பைடு நூலகம்
3-7 从强度方面考虑,空心圆轴为何比实心圆轴合理? 答 对于相同的横截面面积 (即用相同量材料) , 空心圆轴比实心圆轴的抗扭截面系数大, 从而强度高。 3-8 如何计算扭转变形?怎样建立刚度条件?什么样的构件需要进行刚度校核? 答 (1)写出扭矩方程或扭矩图;相距 l 的两截面间的扭转角
第 3 章 扭转
思考题
3-1 何谓扭矩?扭矩的正负号如何规定的?如何计算扭矩? 答 轴在外力偶矩作用下, 由截面法求出的横截面上分布内力向截面形心简化的合力 (力 偶矩)称为扭矩。 对扭矩 T 的正负规定为:若按右手螺旋法则把 T 表示为矢量,当矢量方向与截面的外法 线 n 的方向一致时, T 为正;反之为负。 用截面法计算扭矩,注意截面位置应偏离外力偶矩作用面。 圆轴扭转切应力公式分别是如何建立的?假设是什么?公式的应用条件 3-2 薄壁圆筒、 是什么? 答 等厚薄壁圆筒在两端垂直于轴线的平面内作用大小相等而转向相反的外力偶 M e 所 做试验结果现象表明, 当薄壁圆筒扭转时, 其横截面和包含轴线的纵向截面上都没有正应力, 横截面上只有切应力 τ , 因为筒壁的厚度 δ 很小, 可以假设沿薄壁圆筒筒壁厚度切应力不变。 又因在同一圆周上各点情况完全相同, 应力也就相同, 从而建立薄壁圆筒扭转切应力计算公 式; 在圆轴两端施加一对大小相等、方向相反的外力偶。从实验中观察到的现象,假设轴变 形后, 横截面仍保持平面, 其形状、 大小与横截面间的距离均不改变, 而且半径仍为直线 (圆 轴扭转平面假设) ,连同胡克定律和静力平衡条件推出圆轴扭转切应力计算公式。 公式应用条件为线弹性材料、小变形、等截面(锥度不大的变截面可近似用) 。 3-3 试述纯剪切和薄壁圆筒扭转变形之间的差异及相互关系。 答 单元体 4 个互相垂直的面上只作用切应力的状态称为纯剪切;薄壁圆筒扭转变形时 (忽略厚度影响)筒壁各点的应力状态为纯剪切。 (压缩) 胡克定律之间的异同点及 3 个弹性常量 E , G , μ 之 3-4 试述剪切胡克定律与拉伸 间关系。 答 剪切胡克定律 τ = Gγ (反映角度的变化)与拉伸(压缩)胡克定律 σ = Eε (反映
ww
(c) Tmax = −40 kN ⋅ m ;
(d) Tmax = 4 kN ⋅ m
w.
(a) (b) 31
解 (a) Tmax = 2M e ;
(b) Tmax = − M e
da
(d1)
w.
(c)
(d)
co
m
M D = M C = 9549 ×
用截面法如图(b)所示: AB 段 T1 = M B = 191 N ⋅ m



θ max =
τ max =
τ 1 = γτ max
(2)矩形截面杆扭转时,其横截面不再保持平面而发生翘曲。杆件两端相对扭转角
ϕ=
3-10 两根直径相同而长度和材料均不同的圆轴 1,2,在相同扭转作用下,试比较两者 最大切应力及单位长度扭转角之间的大小关系, 答最大切应力相同;单位长度扭转角不同。 3-11 同一变速箱中的高速轴一般较细,低速轴较粗,这是为什么?
kh
故薄壁管一般均用简化公式求平均切应力。
da

w.
讨论:误差
194 − 189 × 100% = 2.6% < 5% 194 194 − 189 × 100% = 2.6% < 5% 194
co
m
Me = 2 πR 2δ
500 ⎛ 41 ⎞ 2π⎜ ⎟ × 1 × 10 −9 ⎝ 2⎠
2
= 189 MPa


τ max =
Tmax ≤ [τ ] Wp
3-6 金属材料圆轴扭转破坏有几种形式? 答 塑性金属材料和脆性金属材料扭转破坏形式不完全相同。塑性材料试件在外力偶作 用下,先出现屈服,最后沿横截面被剪断,如图 a 所示;脆性材料试件受扭时,变形很小, 最后沿与轴线约 45°方向的螺旋面断裂,如图 b 所示。
T2 = M B + M C = 764 N ⋅ m Tmax = 764 N ⋅ m
3-3
(a1)
ww
w.
(b1) (c1)
解 BC 段


τ max 2 =
AB 段
τ max 1 =

M e 16M e = 3 Wp2 πd 2
2M e 16 × 2M e 32M e 13.5M e = = = < τ max 2 3 3 3 Wp1 πd1 πd 2 ⎛4 ⎞ π⎜ d 2 ⎟ ⎝3 ⎠
w.
ϕ = ∫ dϕ = ∫
T (x ) dx GI p ( x )
co
m
答 同一变速箱中的高速轴与低速轴指相对转速高低,其传递的功率相同(不计功率损 耗) ,啮合处线速度相同。要啮合处产生相同的线速度,则高速轴的啮合半径就较小;又因 为啮合处相互作用力相同,该作用力对啮合半径就较小的高速轴线产生的外力偶矩就较小, 从而在高速轴中产生的扭矩较小,故高速轴可做得较细。 3-12 图示轴 A 和套筒 B 牢固地结合在一起,两者切变模量分别为 G A 和 G B ,两端受扭 转力偶矩,为使轴和套筒承受的扭转相同而必须满足的条件是什么?
m
答 设套筒 B 的内、外径分别为 d 和 D,则两者切变模量须满足下列关系:
课 后 答 案 网 ww w. kh da w. co
思考题 3-16 图
30
m
习 题
3-1 求图示各轴的扭矩图,并指出其最大值。
(a)
(b)
(a1)
(b1)
(c1)
kh
3-2
图(a)所示某传动轴,转速 n = 500 r/min,轮 A 为主动轮,输入功率 PA = 70 kW,


ww
w.
kh
da
w.
co
长度的变化) 皆为应力与应变成正比关系。 3 个弹性常量 E , G , μ 之间关系为 G =

3-5 圆轴扭转时如何确定危险截面、危险点及强度条件? 答 等截面圆轴扭转时的危险截面为扭矩最大的横截面,变截面圆轴扭转时的危险截面 在其扭矩与扭转截面系数比值最大的横截面;其危险点在该横截面的外边缘。强度条件为
80 P = 9549 × = 2546 N ⋅ m 300 n T 180° θ= × ≤ [θ ] GI p π
T = 9549 ×
[τ ] = 80 MPa, G = 80 GPa, [θ ] = 1.2° / m 。试校核轴的强度和刚度。





解 扭矩图如图(b)。 (1)强度
τ BC max =
(
)
16 × 500 = 194 MPa ⎡ ⎛ 40 ⎞ 4 ⎤ 3 −9 π × 42 × 10 × ⎢1 − ⎜ ⎟ ⎥ ⎢ ⎝ 42 ⎠ ⎦ ⎥ ⎣
(2)若考虑薄壁 ,可求其平均扭转切应力
相关文档
最新文档