七年级上册 数学 第一章 知识点整理
七年级上册数学书第一章知识点

七年级上册数学书第一章知识点七年级上册数学书第一章知识点. 一、正数与负.. 1.在实际中表示意义相反的.上升5米记为5米.-8米则表示下降8米.. 2.正数:大于0的数.. 3.负数:在正数的前面加上“-〞.. 4.0的含义.. ①既不是正数也不是负数.. ②0在计数时表示没有,比如0元.. ③0表示某种量的基准,比如0℃表示温度的基.. 5.有理数的分.. 分数概.. (1)小学学的分数,百分数,有限小数,无限循环小数都可以转化为分数,现统称分数.. (2)无限不循环小数不属于有理数,如:π=3.141592...2.010010001.... “非〞的概.. 非负数:正数和.非正分数:负分.. 非正数:负数和.非负分数:正分.. 非负整数:正整数和.. 非正整数:负整数和..二、数.. 1.三要素:原点、正方向、单位长度。
通常原点用“O〞表示,向右的方向为正方向,单位长度为1.. 2.如何画数.. ①画直线(一般画成水平的),定原点,标出原点“O〞.. ②取原点向右的方向为正方向,并标出箭头.. ③选适当的长度为单位长度,并标出-3,-2,-1,1,2,3……各点.. 3.数轴上的点与有理数.. (1)数轴上的点与有理数一一对.(2)左边的数右边的.. 三、相反.. ①只有符号不同的两个数,叫做互为相反数。
0的相反数是0.. ②a的相反数-.. ③a与b互为相反数:a+b=.. ④a-b的相反数是:-a+b或b-.. ⑤a+b的相反数是:-a-.. ⑥求一个数的相反数方法:在这个数的前面加“-〞号.. ⑦在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等..四、绝对.. 1.几何意义:从数轴上表示a的点到原点的距离即为|a.. 2.①一个正数的绝对值等于它本身.当a是正数时,|a|=a.. ②一个负数的绝对值等于它的相反数.当a是负数时,|a|=-a.. ③0的绝对值等于0.当a=0时,|a|=0.. 3.互为相反数的两个数的绝对值相等.. 五、有理数的大小比.. 1.正数0负数.. 2.两个负数比.. ①右边的点表示的数比左边的点表示的数大.. ②绝对值大的反而小.. 六、有理数的运.. 1.有理数的加法.. 加法一般步骤.. ①确定符号:同号取相同的符号.. 异号取绝对值大的加数的符号.. ②确定绝对值:同号将绝对值相加.. 异号用较大的绝对值减去较小的绝对值.. 互为相反数的两个数相加得0。
新人教版七年级上册数学第一单元知识点归纳总结

新人教版七年级上册数学第一单元知识点
归纳总结
1. 自然数与整数:
- 自然数:1, 2, 3, 4, ...
- 整数:... -3, -2, -1, 0, 1, 2, 3, ...
2. 整式与代数式:
- 整式:由数字与字母通过运算符号组成的表达式,如3x + 4y。
- 代数式:由数字与字母组成的表达式,如x + 2。
3. 数轴与坐标:
- 数轴:用来表示有序数的直线。
0点位于数轴的中心,正数
向右延伸,负数向左延伸。
- 坐标:有序数在数轴上的位置。
4. 平行线与垂线:
- 平行线:在同一个平面内,永不相交的两条直线。
- 垂线:与另一条直线交点处呈直角的直线。
5. 解方程:
- 解方程是指找出方程中的未知数的值,使得等式成立。
- 方程的解是使方程成立的值。
6. 解不等式:
- 解不等式是指找出使得不等式成立的值。
- 不等式的解是满足不等式条件的值。
7. 测量与估算:
- 测量是通过使用合适的单位和测量工具来确定物体的长度、面积、体积等。
- 估算是通过近似计算来确定一个大致的数值。
8. 三角形与四边形:
- 三角形:具有三条边的图形。
- 四边形:具有四条边的图形。
以上是新人教版七年级上册数学第一单元的知识点归纳总结。
---
注:本文档内容整理自教材内容,确保准确性。
七年级上册数学第一单元知识点总结

七年级上册数学第一单元知识点总结
七年级上册数学第一单元主要涉及以下知识点:
1. 整数概念与大小比较:介绍了整数的定义、绝对值的概念,以及不同整数之间的大小比较规则。
2. 整数的加减法运算:介绍了整数的加减法运算法则,包括同号相加取符号、异号相加取绝对值大的符号等。
3. 整数乘法与除法运算:介绍了整数的乘法与除法运算法则,包括同号相乘为正、异号相乘为负等。
4. 整数混合运算:通过混合运算的题目,培养整数的综合运算能力。
5. 绝对值与坐标轴:通过绝对值的概念与坐标轴的引入,进一步讨论整数的大小比较与整数的加减法运算。
6. 实际问题的整数运算:通过实际生活中的问题,引导学生运用整数的概念与运算法则解决实际问题。
7. 数学语言与符号的正确使用:训练学生正确使用数学语言与符号,提高数学表达和交流能力。
以上是七年级上册数学第一单元的主要知识点总结,通过对这些知识点的学习与理解,学生可以掌握整数的概念、运算法则,并能够运用到实际生活中的问题解决中。
(完整版)人教版七年级数学上册知识点归纳

第一章 有理数1.1 正数和负数(1)正数:大于0的数;负数:小于0的数;(2)0既不是正数,也不是负数;(3)在同一个问题中,分别用正数和负数表示的量具有相反的意义;(4)-a 不一定是负数,+a 也不一定是正数;(5)自然数:0和正整数统称为自然数;(6)a>0 ⇔ a 是正数; a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数;a <0 ⇔ a 是负数; a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.1.2 有理数(1)正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数;(2)正整数、0、负整数统称为整数;(3)有理数的分类:⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 (4)数轴:规定了原点、正方向、单位长度的一条直线;(即数轴的三要素)(5)一般地,当a 是正数时,则数轴上表示数a 的点在原点的右边,距离原点a 个单位长度;表示数-a 的点在原点的左边,距离原点a 个单位长度;(6)两点关于原点对称:一般地,设a 是正数,则在数轴上与原点的距离为a 的点有两个,它们分别在原点的左右,表示-a 和a ,我们称这两个点关于原点对称;(7)相反数:只有符号不同的两个数称为互为相反数;(8)一般地,a 的相反数是-a ;特别地,0的相反数是0;(9)相反数的几何意义:数轴上表示相反数的两个点关于原点对称;(10)a 、b 互为相反数⇔a+b=0 ;(即相反数之和为0)(11)a 、b 互为相反数⇔1-=b a 或1-=ab ;(即相反数之商为-1) (12)a 、b 互为相反数⇔|a|=|b|;(即相反数的绝对值相等)(13)绝对值:一般地,在数轴上表示数a 的点到原点的距离叫做a 的绝对值;(|a|≥0)(14)一个正数的绝对值是其本身;一个负数的绝对值是其相反数;0的绝对值是0;(15)绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a (16)0a 1a a>⇔= ; 0a 1a a <⇔-=;(17)有理数的比较:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序。
七年级上数学各章知识点第一章

第一章:有理数
1.1自然数和整数的平方根
-平方根的定义和性质
-平方数
-二次方程
-平方跟的概念和计算方法
1.2有理数
-有理数的定义和性质
-有理数的加减运算和乘除运算
-有理数的比较和排序
-有理数的绝对值
-小数和有理数的表示方法
-实数的概念和实数在数轴上的表示1.3数轴及其应用
-数轴的定义和性质
-有理数和实数在数轴上的表示
-数轴上的有理数运算
-数轴上的加法和减法
-数轴上的乘法和除法
-数轴上的相反数和绝对值
1.4运算律的应用
-结合律、交换律和分配律的定义和性质
-运算律在有理数计算中的应用
-有理数运算中的应用问题
1.5有理数的乘方
-乘方及其运算法则
-幂次运算法则
-乘方的应用和问题
-有理数的开方
-有理数乘方的应用和问题
1.6有理数应用问题
-有理数的应用问题:交通运输、财务管理等实例
-有理数的实际应用问题解决方法和步骤
总结:第一章主要介绍了有理数的概念和基本性质,包括平方根、加减乘除运算、比较和排序、绝对值、小数表示、实数的概念和数轴表示等内容。
此外,还学习了运算律的应用和有理数的乘方运算,以及有理数的应用问题解决方法。
通过这一章的学习,学生可以掌握有理数的基本运算和应用,为后续数学学习打下坚实基础。
七年级上册数学知识点归纳

七年级上册数学知识点归纳七年级数学知识点第一章:有理数的运算:本章主要介绍概念知识,用图形或符号来区分分数之间的关系。
定义如下:1、有理数的概念:正整数、0、负整数、正分数、负分数统称为有理数;数轴与原点:用一条直线上的点表示数,这条直线就叫做数轴,在这条直线上任取一个点表示0,这个点叫做原点,在原点的左边或原点下边的点到原点的距离用负数表示,在原点的右边或上边的数到原点的距离用正数表示,在数轴上与原点距离相反相等的两个点代表的两个数为相反数,在数轴上表示的点a到原点的距离叫这个数的绝对值。
2、有理数的加减法:同号的两个数相加,符号不变,绝对值相加;绝对值不相等的异号两数相加,和取绝对值较大的加数的符号,并用较大的数的绝对值减较小的数的绝对值,互为相反数的两个数相加得0;一个有理数减去另一个有理数,相当于加这个数的相反数;3、有理数的乘除法:同号两个数相乘,同号得正,异号得负,乘法的积为他们的绝对值相乘,除法为被除数乘以除数的倒数,除数不能为0;乘积是1的两个数互为倒数,0没有倒数;整数的乘法交换率和结合率同样适用于有理数;求n个相同因数的积的运算叫乘方,乘方的结果叫做幂,在a的n次方中a叫做底数,n叫做指数,写作a∧n;4.有理数的混合运算:先乘法,后乘除,最后加减;同级操作,从左至右;如果有括号,先做括号内的运算,然后依次按照括号、中括号、大括号进行。
5、科学记数法:把一个大于10的数表示成a×10∧n的形式叫做科学计数法,其中a大于或等于1且小于10,n为正整数。
第二章:代数式的加减:代数式的加减是合并相似项的计算;在一个公式中,字母相同且相同字母索引相同的项称为相似项,几个常数项也是相似项;将多项式中的相似项合并成一项称为合并相似项。
相似项合并后,得到的项的系数为合并前相似项的系数之和,字母及其索引保持不变。
一般是几个整数相加。
如果有括号,先去掉括号,再合并相似项。
如果括号外的因子为正,则原括号中项目的符号与去掉括号后的原符号相同。
七年级上册数学知识点整理

七年级上册数学知识点整理人教版七年级上册数学知识点整理第一章有理数1.1.1 正数和负数①大于零的数叫做正数,小于零的数叫做负数。
② 1 是最小的自然数。
③ 0 是正数和负数的分界线。
④ 0 既不是正数也不是负数。
⑤在一些问题中,表示什么都没有,在另一些问题中,可视为标准量。
⑥相反意义的量必须包含两层意思,一是具有相反的意义;二是具有一定的量,但这个量可以不必要相等。
1.2.1 有理数①整数和分数统称为有理数。
②有理数的分类:有理数整数有理数整数正整数分数有限小数无限循环小数负整数分数正分数负分数1.2.2 数轴①规定了原点、正方向和单位长度的直线叫做数轴。
②数轴的三要素:原点、正方向、单位长度。
③数轴上的数从左至右依次增大。
即右边的点表示的数总比左边的点表示的数大。
④所有的有理数都可以用数轴上的点表示,但并不是所有数轴上的点都表示有理数。
1.2.3 相反数①只有符号不同的两个数叫做互为相反数。
② 0 的相反数是 0.③相反数的定义分析:1.相反数是成对出现的;2.互为相反数的两个数除了符号不同外,其余部分都相同;3.互为相反数的两个数可视为在原点两侧,到原点距离相同的两个点所表示的数。
1.2.4 绝对值①数轴上表示数 a 的点与原点的距离叫做 a 的绝对值,记作 |a|,读作 a 的绝对值。
②一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0 的绝对值是 0.a,a>0 丨a丨= a,a=0 -a,a<0 丨a丨= -a③正数大于负数,正数大于负数的绝对值。
④两个负数比较大小,绝对值大的反而小。
1.3.1 有理数的加法①同号两数相加,取相同的符号,并把绝对值相加。
②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加和为 0.③一个数同 0 相加,仍得这个数。
④有理数的加法交换律:两个数相加,交换加数的位置,和不变。
七年级数学上册:全册各章知识点总结

第一章有理数一、有理数:1.定义:凡能写成形式的数,都是有理数,整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;2.有理数的分类:3.注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性。
4.自然数Û0和正整数a>0 Ûa是正数;a<0 Ûa是负数;a≥0 Ûa是正数或0 Ûa是非负数;a≤0 Ûa是负数或0 Ûa是非正数.二、数轴1.定义:数轴是规定了原点、正方向、单位长度的一条直线。
三、相反数1.只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0。
2.注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;3.相反数的和为0 Ûa+b=0 Ûa、b互为相反数。
4.相反数的商为-1。
5.相反数的绝对值相等。
四、绝对值1.正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;2、绝对值可表示为:4.|a|是重要的非负数,即|a|≥0;五、有理数比大小1.正数永远比0大,负数永远比0小;2.正数大于一切负数;3.两个负数比较,绝对值大的反而小;4.数轴上的两个数,右边的数总比左边的数大;5.-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准。
六、倒数1.定义:乘积为1的两个数互为倒数;2.注意:(1)0没有倒数(2)若ab=1Ûa、b互为倒数(3)若ab=-1Ûa、b互为负倒数2.等于本身的数汇总:(1)相反数等于本身的数:0(2)倒数等于本身的数:1,-1(3)绝对值等于本身的数:正数和0(4)平方等于本身的数:0,1(5)立方等于本身的数:0,1,-1.七、有理数加法法则1.同号两数相加,取相同的符号,并把绝对值相加。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章有理数
1、正负数的概念:
正数就是大家小学学过的自然数+小数;在正数前面加“-”(负)的数叫做负数。
2、0既不是正数,也不是负数。
(0是正负数的分界线)
3、“-”(负号):表示相反意义的概念。
例如:增加记为“+”,则减少记为“-”。
(“+”通常省略不写)
4、整数和分数统称为有理数。
(π和无限不循环小数不是有理数)。
5、整数包括:正整数、0、负整数。
6、分数包括:正分数、负分数。
7、数轴三要素:原点、正方向、单位长度。
每一个数在数轴上都能找到它对应的位置。
8、一般地,设a是一个正数,则数轴上表示a的点要在数轴的_____边,与原点的距离是_____个单位长度;表示数-a的点在原点的_____边,它与原点的距离是_____个单位长度。
9、一般地,设a是一个正数,数轴上与原点的距离是a的点有____个,他们分别在原点的左右两边,表示为____和____。
10、只有______不同的两个数互为相反数,互为相反数的两个数到原点的距离______。
11、a的相反数记为____,容易看出,在任何一个数前面添上“-”号,新的数就表示原数的相反数。
12、_____的相反数是它本身。
13、如果a与b互为相反数,则a+b=____,a=___。
14、简单理解,一个数变相反数就是把这个数前面的符号变相反就行了。
即:
-(-5)=______ -(+5)=______
15、一般地,数轴上表示数a的点与_______的距离叫做数a的绝对值,记作
v1.0 可编辑可修改
|a|。
这里,a可以是任何数,显然,我们容易发现,正数的绝对值是_______,0的绝对值是______,负数的绝对值是__________。
所以,
16、由绝对值的定义不难的出,互为相反数的两个数,它们的绝对值_____,反过来|a|=5表示数a到原点的距离为5,显然这样的点左右两侧各有一个,也就是说|a|=5时,a=______。
|a|=0时,a=______。
17、不难发现,数a的绝对值|a|____0,即绝对值具有非负性。
18、比大小:
(1)数轴法:数轴上的点,越靠_____越大,
(2)过渡法:正数____0,0_____负数,正数_____负数。
(3)绝对值:两个负数比大小,绝对值___的反而小。
19、有理数的加法:先定符号,再算绝对值
(1)同号相加一边倒(正数加正数还是_____,负数加负数还是______),
(2)异号相加“大”减“小”(“大”减“小”指的是这些数的________)
符号跟着大的跑。
(3)绝对值相等“零”正好。
(4)“0+”“+0”不用管,照着原数抄下来。
(0在加法运算中不起作用)20、加法交换律:a+b=_________
加法结合律:(a+b)+c=_________
21、有理数的减法:减去一个数等于加上这个数的相反数,特别的,0减去一个数等于这个数的______。
引入相反数后,加减混合运算可以统一为加法运算,即:a+b-c=a+b+(-c)。
(推广:数可以带着它自身前面的符号到处跑。
)22、在数轴上,点A,B分别表示数a,b,则A,B之间的距离等于大数减小数,可记作|a-b|。
23、有理数的乘法:先定符号,再算绝对值
(1)两数相乘,同号得____,异号得____,先定符号,再把绝对值乘积算出来。
(2)任何数和0相乘都得0。
(3)几个不是0的数相乘,负数的个数是偶数个时,结果是______,负数的个数是奇数个时,结果是______。
24、乘积是1的两个数互为倒数。
____没有倒数,_______的倒数是它本身。
25、乘法交换律:ab=______
乘法结合律: (ab)c=_________
乘法分配律:a(b+c)=________________
字母与字母相乘:a×b=_________=___________
字母与数字相乘:2×a=_________=___________
(数字与字母之间要省略乘号必须把数字写前面)
26、除以一个不为0的数,等于乘以这个数的______。
即: a÷b=a×_____
27、有理数的加减乘除混合运算中:有括号先算括号,之后算乘除,最后算加减
28、一般地,n个相同的因式a相乘,记作_______,读作_______________。
求n个相同因数相乘的积的运算,叫做______,乘方的结果叫做_____,在
a n中,a叫做_______,n叫做_________。
29、负数的奇次幂是_______,负数的偶次幂是________。
正数的任何次幂都是___________,0的任何正整数次幂都是_________。
特别的,(-1)2017=__________ -12017=_________
(-1)2016=__________ -12016=_________
30、有理数的混合运算:
(1)先乘方,再乘除,最后加减
(2)同级运算,从左到右。
(3)如有括号,先做括号内的运算,按照小括号、中括号、大括号依次进行。
31、把一个大于10的数表示成a×10n的形式(其中a大于或等于___且小于____,n是正整数),使用科学记数法。
法则:用科学记数法表示一个n位数,其中10的指数是________。
32、近似数:四舍五入
(1)精确到百分位=精确到
(2)保留两位有效数字(从数值的左边第一个不为0的数字起,一直数到这个数字结束,中间的数字叫这个值的有效数字)。