郑州市高三数学模拟试题
河南省郑州市2024高三冲刺(高考数学)苏教版摸底(综合卷)完整试卷

河南省郑州市2024高三冲刺(高考数学)苏教版摸底(综合卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知函数的图象如图所示,图象与轴的交点为,与轴的交点为,最高点,且满足.若将的图象向左平移1个单位得到的图象对应的函数为,则()A.B.0C.D.第(2)题,则()A.B.C.D.3第(3)题函数f(x)=sinx-cos(x+)的值域为A.[ -2 ,2]B.[-,]C.[-1,1 ]D.[-, ]第(4)题在的二项展开式中,若常数项为60,则n等于()A.3B.6C.9D.12第(5)题g(x),h(x)是R上的任意实值函数,如下定义两个函数(f°g)(x)和(f•g)(x)对任意x∈R,(f°g)(x)=f(g(x));(f•g)(x)=f(x)g(x),则下列等式恒成立的是A.((f°g)•h)(x)=((f•h)°(g•h))(x)B.((f•g)°h)(x)=((f°h)•(g°h))(x)C.((f°g)°h)(x)=((f°h)°(g°h))(x)D.((f•g)•h)(x)=((f•h)•(g•h))(x)第(6)题已知命题,命题q:复数为纯虚数,则命题是的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件第(7)题对于不重合的两个平面与,给定下列条件:①存在平面,使得,都垂直于;②存在平面,使得,都平行于;③存在直线,直线,使得;④存在异面直线,,使得,,,.其中,可以判定与平行的条件有()A.1个B.2个C.3个D.4个第(8)题已知是上的增函数,那么a的取值范围是()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题我国首先研制成功的“双曲线新闻灯”,如图,利用了双曲线的光学性质:,是双曲线的左、右焦点,从发出的光线射在双曲线右支上一点,经点反射后,反射光线的反向延长线过;当异于双曲线顶点时,双曲线在点处的切线平分.若双曲线的方程为,则下列结论正确的是()A.射线所在直线的斜率为,则B.当时,C.当过点时,光线由到再到所经过的路程为13D.若点坐标为,直线与相切,则第(2)题已知实数x,y满足(0<a<1),则下列关系式恒成立的有()A.B.C.D.第(3)题已知复数和,则下列命题是真命题的有()A.若满足,则其在复平面内对应点的轨迹是圆B.若满足,则其在复平面内对应点的轨迹是椭圆C.若满足,则其在复平面内对应点的轨迹是双曲线D.若满足,则其在复平面内对应点的轨迹是抛物线三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知为坐标原点,矩形的顶点A,C在抛物线上,则顶点B的轨迹方程为__________.第(2)题在五个数字、、、、中,若随机取出三个数字,则剩下的两个数字都是奇数的概率是______.第(3)题已知数列满足,,,单调递增,则的取值范围为______.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题在平面四边形中,,,,.(1)求的面积;(2)求的长.第(2)题若数列满足“对任意正整数,都存在正整数,使得”,则称数列具有“性质”.已知数列为无穷数列.(1)若为等比数列,且,判断数列是否具有“性质”,并说明理由;(2)若为等差数列,且公差,求证:数列不具有“性质”;(3)若等差数列具有“性质”,且,求数列的通项公式.第(3)题如图,在四棱锥中,底面是直角梯形,,且平面底面(1)求证:;(2)若,且直线与平面所成角的正弦值为.求平面与平面所成锐二面角的余弦值.第(4)题如图,已知直线与抛物线相交于两点,,且.(1)证明:直线AB经过一个定点,并求出定点坐标;(2)设动点P满足的垂心恰好是,记点C到直线AB距离为d,若,求实数的值.第(5)题如图,在四棱锥中,底面为直角梯形,其中,,,为棱的中点,是棱上一点,且.(1)证明:平面;(2)若,直线与平面所成的角为,求平面与平面夹角的余弦值.。
河南省郑州市2024高三冲刺(高考数学)部编版摸底(评估卷)完整试卷

河南省郑州市2024高三冲刺(高考数学)部编版摸底(评估卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题的展开式中含项的系数为()A.9B.10C.18D.20第(2)题设函数在上存在导数,,有,在上,若,则实数的取值范围为()A.B.C.D.第(3)题二进制转化为十进制数是()A.8B.9C.16D.18第(4)题已知过定点的直线与曲线相交于,两点,为坐标原点,当的面积最大时,直线的倾斜角为A.B.C.D.第(5)题如图所示的四棱锥中,底面与侧面垂直,且四边形为正方形,,点为边的中点,点在边上,且,过,,三点的截面与平面的交线为,则异面直线与所成的角为( )A.B.C.D.第(6)题在复平面内,复数z满足,则z的共轭复数为( )A.B.C.D.第(7)题设{a n}是等比数列,则“a1<a2<a3”是数列{a n}是递增数列的A.充分而不必要条件B.必要而不充分条件、C.充分必要条件D.既不充分也不必要条件第(8)题已知向量,,则“”是“和的夹角是锐角”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题中央广播电视总台《2023年春节联欢晩会》以温暖人心的精品节目、亮点满满的技术创新、美轮美奂的舞美效果为全球华人送上了一道红红火火的文化大䝳.某机构随机调查了18位观众对2023年春晩节目的满意度评分情况,得到如下数据:.若恰好是这组数据的上四分位数,则的值可能为()A.83B.84C.85D.87第(2)题已知空间中两条不同的直线和两个不同的平面,则下列说法正确的是()A.若,则B.若,则C.若,则D.若,则第(3)题已知函数的定义域为,为的导函数,且,,若为偶函数,则下列一定成立的有( )A .B .C .D .三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知平面向量,满足,,,则向量,夹角的余弦值为______.第(2)题过圆上一点作圆的切线,切点为,则的最小值为___________.第(3)题已知函数的定义域为,其导函数为,若函数为偶函数,函数为偶函数,则下列说法正确的序号有___________.①函数关于轴对称;②函数关于中心对称;③若,则;④若当时,,则当时,.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知函数.(1)若不等式有解,求实数的最大值;(2)在(1)的条件下,若正实数,满足,证明:.第(2)题如图,在三棱柱中,侧面为矩形,M ,N 分别为AC ,的中点.(1)求证:平面平面;(2)若二面角的余弦值为,,为正三角形,求直线和平面所成角的正弦值.第(3)题某公司有5台旧仪器,其中有2台仪器存在故障,(1)现有一位工人从这5台仪器中随机选择3台进行检测,记ξ为这3台仪器中存在故障的台数,求ξ的分布列和数学期望;(2)为了提高生产,该公司拟引进20台此种新仪器,若每台仪器的运行相互独立,且每台机器在运行过程中发生问题的概率为0.03,记X 为这20台新仪器在运行过程中发生故障的台数,借助泊松分布,估计时的概率.附:①若随机变量ξ的分布列为则称随机变量ξ服从泊松分布.②设,当且时,二项分布可近似看成泊松分布.即,其中.③泊松分布表(局部)表中列出了的值(如:时,…0.50.60.7…0...0.6065310.5488120.496585...1...0.3032650.3292870.347610...2...0.0758160.0987860.121663...3...0.0126360.0197570.028388 (4)…0.0015800.0029640.004968…5…0.0001580.0003560.000696…6…0.0000130.0000360.000081…7…0.0000010.0000030.000008…第(4)题已知函数.(1)若,求的单调区间;(2)当时,证明:在,上各有一个零点,且这两个零点互为倒数.第(5)题已知数列的前n项和为,且.(1)求数列的通项公式;(2)若,求数列的前n项和.。
河南省郑州市2024高三冲刺(高考数学)部编版摸底(押题卷)完整试卷

河南省郑州市2024高三冲刺(高考数学)部编版摸底(押题卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知函数,设甲:;乙:,则()A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件第(2)题函数的部分图象为()A.B.C.D.第(3)题已知、为单位向量,则向量与夹角的最大值为()A.B.C.D.第(4)题如图所示,矩形的一边在轴上,另外两个顶点在函数的图象上.若点的坐标为,记矩形的周长为,则A.220B.216C.212D.208第(5)题某学校安排音乐、阅读、体育和编程四项课后服务供学生自愿选择参加,甲、乙、丙、丁4位同学每人限报其中一项.已知甲同学报的项目其他同学不报的情况下,4位同学所报项目各不相同的概率等于()A.B.C.D.第(6)题已知复数满足,则的共轭复数的虚部为()A.2B.C.4D.第(7)题如图,可导函数在点处的切线为,设,则下列说法正确的是()A.B.C.是的极大值点D.是的极小值点第(8)题已知函数,若的图象与的图象重合,记的最大值为,函数的单调递增区间为A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知复数,,下列命题正确的是()A.B.若,则C.D.第(2)题现有十个点的坐标为,它们分别与关于点对称已知的平均数为,中位数为,方差为,极差为,则这组数满足()A.平均数为B.中位数为C.方差为D.极差为第(3)题已知曲线的方程为(且),,分别为与轴的左、右交点,为上任意一点(不与,重合),则()A.若,则为双曲线,且渐近线方程为B.若点坐标为,则为焦点在轴上的椭圆C.若点的坐标为,线段与轴垂直,则D.若直线,的斜率分别为,,则三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知函数,.若当时,恒成立,则实数的值等于___________.第(2)题已知实数,满足,实数,满足,则的最小值为__________.第(3)题如图所示,在直角梯形ABCD中,已知,,,,M为BD的中点,设P、Q分别为线段AB、CD上的动点,若P、M、Q三点共线,则的最大值为__.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题为调查某公司五类机器的销售情况,该公司随机收集了一个月销售的有关数据,公司规定同一类机器销售价格相同,经分类整理得到下表:机器类型第一类第二类第三类第四类第五类销售总额(万元)10050200200120销售量(台)521058利润率0.40.20.150.250.2利润率是指:一台机器销售价格减去出厂价格得到的利润与该机器销售价格的比值.(1)从该公司本月卖出的机器中随机选一台,设该台机器的利润为X万元,求X的分布列和数学期望;(2)从该公司本月卖出的机器中随机选取2台,设这2台机器的利润和恰好为13万元的概率;(3)假设每类机器利润率不变,销售一台第一类机器获利万元,销售一台第二类机器获利万元,…,销售一台第五类机器获利万元,依据上表统计数据,随机销售一台机器获利的期望为,设,试判断与的大小.(结论不要求证明)第(2)题已知双曲线与双曲线的渐近线相同,且经过点,的焦距为.(1)分别求和的方程;(2)如图,过点的直线(斜率大于0)与双曲线和的左、右两支依次相交于点、、、,证明.第(3)题已知椭圆的离心率为,右焦点为.(1)求椭圆的方程;(2)已知椭圆的上顶点在以点为圆心的圆外,过作圆的两条切线,分别与轴交于点,点,,分别与椭圆交于点,点(都不同于点),记面积为,的面积为,若,求圆的方程.第(4)题已知函数.(1)讨论函数的单调性;(2)若,函数在上恒成立,求证:.第(5)题已知等轴双曲线C的中心为坐标原点O,焦点在x轴上,且焦点到渐近线的距离为.(1)求C的方程;(2)若C上有两点P,Q满足,证明:是定值.。
河南省郑州市2024高三冲刺(高考数学)统编版摸底(评估卷)完整试卷

河南省郑州市2024高三冲刺(高考数学)统编版摸底(评估卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题蚊香具有悠久的历史,我国蚊香的发明与古人端午节的习俗有关.如图为某校数学社团用数学软件制作的“蚊香”.画法如下:在水平直线上取长度为1的线段AB,作一个等边三角形ABC,然后以点B为圆心,AB为半径逆时针画圆弧交线段CB的延长线于点D(第一段圆弧),再以点C为圆心,CD为半径逆时针画圆弧交线段AC的延长线于点E,再以点A为圆心,AE为半径逆时针画圆弧…….以此类推,当得到的“蚊香”恰好有11段圆弧时,“蚊香”的长度为()A.B.C.D.第(2)题设变量满足约束条件,则目标函数=2+4的最大值为( )A.10B.12C.13D.14第(3)题若某台电脑每秒生成一个数字1或2,则该电脑运行三秒后生成的数字之和能被3整除的概率为()A.B.C.D.第(4)题中国某些地方举行婚礼时要在吉利方位放一张桌子,桌子上放一个装满粮食的升斗(如图),斗面用红纸糊住,斗内再插一杆秤、一把尺子,寓意为粮食满园、称心如意、十全十美.如图为一种婚庆升斗的规格,把该升斗看作一个正四棱台,下底面边长为25cm,上底面边长为10cm,侧棱长为15cm,忽略其壁厚,则该升斗的容积约为(参考数据:,)()A.B.C.D.第(5)题已知函数在处取得最大值,则()A.B.C.D.第(6)题函数的图象大致为()A.B.C. D.第(7)题集合,,则A ∩B =A.B.C.D.第(8)题在等比数列中,若>0且,则的值为A .2B .4C .6D .8二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知正数满足,则( )A.的最小值为B .的最大值为C .的最小值为D .的最小值为第(2)题下列命题为真命题的是( )A.若,则B.若,则C.若的展开式中的常数项为60,则D .若随机变量的方差,则第(3)题已知,关于x 的不等式的解集为,则( )A.B.C.D.三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知椭圆与x 轴正半轴交于点A ,与y 轴正半轴交于点B ,点F 是椭圆的一个焦点,若△ABF 是等腰三角形,则的值为________.第(2)题甲、乙、丙三人投篮的命中率分别为,,,现要求三人各投篮一次.假设每人投篮相互独立,则至少有一人命中的概率为______;记三人命中总次数为,则______.第(3)题的展开式中所有不含字母的项的系数之和为___________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题习近平总书记在党的二十大报告的开篇部分开宗明义地指出,“大会的主题是:高举中国特色社会主义伟大旗帜,全面贯彻新时代中国特色社会主义思想,弘扬伟大建党精神,自信自强、守正创新,踔厉奋发、勇毅前行,为全面建设社会主义现代化国家、全面推进中华民族伟大复兴而团结奋斗”.为深入贯彻落实党的二十大精神,某单位党支部组织党员参加党的二十大主题知识答题竞赛活动,每位参赛者答题若干次,答题赋分方法如下:第1次答题,答对得20分,答错得10分:从第2次答题开始,答对则获得上一次答题得分的两倍,答错得10分.党员甲参加答题竞赛,每次答对的概率为,各次答题结果互不影响.(1)求甲前3次答题得分之和为40分的概率;(2)记甲第i次答题所得分数的数学期望为.①写出与满足的等量关系式(直接写出结果,不必证明);②若,求i的最小值.第(2)题已知的内角的对边分别为,且.(1)求边长和角;(2)求的面积的最大值,并判断此时的形状.第(3)题已知.(1)若在处的切线的斜率是,求当在恒成立时的的取值范围;(2)设,当时有唯一零点,求a的取值范围.第(4)题表示正整数a,b的最大公约数,若,且,,则将k的最大值记为,例如:,.(1)求,,;(2)设.(i)求数列的通项公式,(ii)设,求数列的前n项和.第(5)题已知函数(1)若恒成立,求实数的取值范围;(2)若方程有两个不同实根,,证明:.。
河南省郑州市(新版)2024高考数学统编版模拟(提分卷)完整试卷

河南省郑州市(新版)2024高考数学统编版模拟(提分卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题一元二次不等式的解为,那么的解集为()A.B.C.D.第(2)题已知函数,则“有两个极值”的一个充分不必要条件是()A.B.C.D.第(3)题设,定义符号函数,则方程的解是()A.1B.C.1或D.1或或第(4)题已知函数的定义域为,且,,则()A.B.为奇函数C.D.的周期为3第(5)题已知全集,集合,集合,则集合()A.B.C.D.第(6)题已知实数满足约束条件,则的最大值为()A.B.15C.4D.19第(7)题某活动小组对组内8名成员的身高(单位:)进行测量,制作出茎叶图如图所示.已知该小组成员的平均身高为,则该小组成员身高的中位数为()A.B.C.D.第(8)题已知(为常数)在上有最大值3,则函数在上的最小值为()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题函数的图象是双曲线,且直线和是它的渐近线.已知函数,则下列说法正确的是()A.,B.对称轴方程是C.实轴长为D.离心率为第(2)题已知函数,则以下结论正确的是().A.函数为增函数B.,,C .若在上恒成立,则自然数n的最小值为2D.若关于的方程有三个不同的实根,则第(3)题已知点在函数上,则下列结论正确的是()A.函数的最小正周期为B.C.函数的一条对称轴为直线D .函数在上单调递增三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题半正多面体(semiregularsolid)亦称“阿基米德多面体”,是由边数不全相同的正多边形围成的多面体,体现了数学的对称美.以正方体每条棱的中点为顶点构造一个半正多面体,它由八个正三角形和六个正方形构成,若它的所有棱长都为1,则该半正多面体外接球的体积为___________;若该半正多面体可以在一个正四面体内任意转动,则该正四面体表面积最小值为___________.第(2)题若函数的最大值为2,则常数的一个取值为_______.第(3)题已知则________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题为增强市民的环保意识,某市面向全市增招环保知识义务宣传志愿者,从符合条件的志愿者中随机选取名志愿者,其年龄频率分布直方图如图所示,其中年龄(岁)分成五组:第组,第组,第组,第组,第组,得到的频率分布直方图(局部)如图所示.(1)求第组的频率,并在图中补画直方图;(2)从名志愿者中再选出年龄低于岁的志愿者名担任主要宣讲人,求这名主要宣讲人的年龄在不同一组的概率.第(2)题在四棱锥Q-ABCD中,底面ABCD是正方形,若,,.(1)证明:平面⊥平面;(2)求四棱锥的体积与表面积.第(3)题近年来某城市空气污染较为严重,为了让市民及时了解空气质量情况,气象部门每天发布空气质量指数“API”和“PM2.5”两项监测数据,某段时间内每天两项质量指数的统计数据的频率分布直方图如下所示,质量指数的数据在内的记为优,其中“API”数据在内的天数有10天(1)求这段时间PM2.5数据为优的天数;(2)已知在这段时间中,恰有2天的两项数据均为优,在至少一项数据为优的这些天中,随机抽取2天进行分析,求这2天的两项数据为优的频率.第(4)题已知抛物线:的焦点为,点在抛物线上,且满足.(1)求抛物线的方程;(2)过抛物线上的任意一点作抛物线的切线,交抛物线的准线于点.在轴上是否存在一个定点,使以为直径的圆恒过.若存在,求出的坐标,若不存在,则说明理由.第(5)题以平面直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系,已知点的直角坐标为,若直线的极坐标方程为,曲线的参数方程是,(为参数).(1)求直线的直角坐标方程和曲线的普通方程;(2)设直线与曲线交于两点,求.。
2024届河南省郑州市高三毕业班第一次质量预测(一模)数学试题

2024届河南省郑州市高三毕业班第一次质量预测(一模)数
学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
二、多选题
9.溶液酸碱度是通过pH 来计量的.pH 的计算公式为pH lg H +
⎡⎤=-⎣⎦,其中H +⎡
⎤⎣⎦表示溶液中氢离子的浓度,单位是摩尔/升.例如纯净水中氢离子的浓度为710-摩尔/升,则
A .直线1//A P 平面1ACD
B .三棱锥1P ACD -的体积为
2
3
C .三棱锥11A CC
D -的外接球的表面积为
D .直线1A P 与平面11BCC B 所成角的正弦值的最大值为
12.在平面直角坐标系xOy (A
三、填空题
四、解答题
(1)求乙生产线的产品指标p 值的平均数到0.01),并判断乙生产线较甲生产线的产品指标则认为乙生产线的产品指标p 值较甲生产线的产品指标(2)用频率估计概率,现从乙生产线上随机抽取品个数用X 表示,求X 的数学期望与方差.
18.已知ABC 中,内角,,A B C 所对的边分别为(1)求角A 的值;
(1)求证:平面EAB ⊥平面ABCD ;(2)求平面ECD 与平面FCD 夹角的余弦值.
20.已知正项数列{}n a 满足12a =,22
1n n a a +-=3
21121
222n n n b b b b a -+
+++= .。
河南省郑州市2023届高三三模文科数学试题(2)

一、单选题二、多选题1. 在复平面内,与向量对应的复数为z ,则( )A.B.C.D.2.由数字组成的各位上没有重复数字的五位数中,从小到大排列第88个数为( )A .42031B .42103C .42130D .423013. 如图,函数、、的图象和直线将平面直角坐标系的第一象限分成八个部分:①②③④⑤⑥⑦⑧.若幂函数的图象经过的部分是④⑧,则可能是()A .y =x 2B.C.D .y=x -24. 已知a 为实数,复数为纯虚数,则A.B .1C.D .25. “”是“函数为偶函数”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6. 一组数据3,4,5,6,7的中位数是( )A .7B .6C .5D .47. 已知△ABC中,,动点P 自点C 出发沿线段CB 运动,到达点B 时停止,动点Q 自点B 出发沿线段BC 运动,到达点C 时停止,且动点Q 的速度是动点P 的2倍.若二者同时出发,且一个点停止运动时,另一个点也停止,则该过程中的最大值是( )A.B.C .4D .238. 设抛物线与直线交于点M (点M 在第一象限),且M 到焦点F 的距离为10,则抛物线C 的标准方程为( )A.B.C.D.9. 中国的华为公司是全球领先的(信息与通信)基础设施和智能终端提供商,其致力于把数字世界带给每个人、每个家庭、每个组织,构建万物互联的智能世界.其中华为的智能手机是全世界很多年轻人非常喜欢的品牌.为了研究某城市甲、乙两个华为智能手机专卖店的销售状况,统计了2020年4月到9月甲、乙两店每月的营业额(单位:万元),得到如下的折线图,则下列说法正确的是( )河南省郑州市2023届高三三模文科数学试题(2)河南省郑州市2023届高三三模文科数学试题(2)三、填空题四、解答题A .根据甲店的营业额折线图可知,该店月营业额的平均值在内B .根据乙店的营业额折线图可知,该店月营业额总体呈上升趋势C .根据甲、乙两店的营业额折线图可知乙店的月营业额极差比甲店小D .根据甲、乙两店的营业额折线图可知7、8、9月份的总营业额甲店比乙店少10.已知函数,若,则( )A .为偶函数B .在上为增函数C.D.11.已知点,若过点的直线交圆于两点,是圆上的动点,则( )A.的最小值为2B .的最大值为C.的最小值为D .当取最大值时,底边上的高所在的直线方程为12. 在某次高中学科知识竞赛中,从4000名考生的参赛成绩中随机选取400个成绩进行统计,可得到如图所示的频率直方图,其中60分以下视为不及格,则下列说法中正确的有()A.成绩在分内的考生人数最多B .4000名考生中约有1000名不及格C .估计考生竞赛成绩的平均分为70.5分D .估计考生竞赛成绩的中位数为75分13. 已知为虚数单位,则复数的虚部是______.14. 已知,关于x的不等式的解集为M ,设,当a 变化时,集合N 中的元素个数最少时的集合N 为______.15.若,则__________.16. 已知实数满足,方程表示双曲线.(1)若,命题为真命题,求实数的取值范围;(2)若是的充分不必要条件,求实数的取值范围.17. 已知数列满足.(1)求数列的通项公式;(2)求证:.18.如图,四棱锥中,底面为平行四边形,.(1)证明:;(2)若为等边三角形,求四棱锥的体积.19. 某采购商从采购的一批水果中随机抽取100个,利用水果的等级分类标准得到的数据如下:等级标准果优质果精品果礼品果个数10304020(1)若将频率视为概率,从这100个水果中有放回地随机抽取4个,求恰好有2个水果是礼品果的概率;(结果用分数表示)(2)用样本估计总体,果园老板提出两种购销方案给采购商参考.方案1:不分类卖出,售价为20元/kg;方案2:分类卖出,分类后的水果售价如下.等级标准果优质果精品果礼品果售价(元/16182224)从采购商的角度考虑,应该采用哪种方案?(3)用分层抽样的方法从这100个水果中抽取10个,再从抽取的10个水果中随机抽取3个,X表示抽取的是精品果的数量,求X的分布列及数学期望.20. 已知数列的前n项和为,,.(1)求数列的通项公式;(2)设的值;(3)设,数列的前n项和为,证明:.21. 近年来随着我国在教育科研上的投入不断加大,科学技术得到迅猛发展,国内企业的国际竞争力得到大幅提升.伴随着国内市场增速放缓,国内有实力企业纷纷进行海外布局,第二轮企业出海潮到来.如在智能手机行业,国产品牌已在赶超国外巨头,某品牌手机公司一直默默拓展海外市场,在海外共设30多个分支机构,需要国内公司外派大量80后、90后中青年员工.该企业为了解这两个年龄层员工是否愿意被外派工作的态度,按分层抽样的方式从80后和90后的员工中随机调查了200位,得到数据如下表:愿意被外派不愿意被外派合计80后40408090后8040120合计12080200(1)根据调查的数据,是否有99%的把握认为“是否愿意被外派与年龄有关”,并说明理由;(2)该公司举行参观驻海外分支机构的交流体验活动,拟安排6名参与调查的80后、90后员工参加.80后员工中有愿意被外派的3人和不愿意被外派的3人报名参加,从中随机选出3人,记选到愿意被外派的人数为x;90后员工中有愿意被外派的4人和不愿意被外派的2人报名参加,从中随机选出3人,记选到愿意被外派的人数为y,求的概率.参考数据:0.150.100.050.0250.0100.0052.072 2.7063.841 5.024 6.6357.879(参考公式:,其中)。
河南省郑州市(新版)2024高考数学部编版摸底(预测卷)完整试卷

河南省郑州市(新版)2024高考数学部编版摸底(预测卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题今年月日,日本不顾国际社会的强烈反对,将福岛第一核电站核污染废水排入大海,对海洋生态造成不可估量的破坏.据有关研究,福岛核污水中的放射性元素有种半衰期在年以上;有种半衰期在万年以上.已知某种放射性元素在有机体体液内浓度与时间(年)近似满足关系式为大于的常数且.若时,;若时,.则据此估计,这种有机体体液内该放射性元素浓度为时,大约需要()(参考数据:)A.年B.年C.年D.年第(2)题如图,将一个圆柱等分切割,再将其重新组合成一个与圆柱等底等高的几何体,越大,重新组合成的几何体就越接近一个“长方体”.若新几何体的表面积比原圆柱的表面积增加了10,则圆柱的侧面积为()A.B.C.D.第(3)题设等差数列的前n项和为,若,,则()A.0B.C.D.第(4)题小明同学过生日时,他和好朋友小天一起分享一个质地均匀但形状不规则的蛋糕,他们商量决定用刀把蛋糕平均分成两份(蛋糕厚度不计),你认为下面的判断中正确的是()A.无论从哪个位置(某个点)切一刀都可以平均分成两份B.只能从某个位置(某个点)切一刀才可以平均分成两份C.无论从哪个位置(某个点)切一刀都不可以平均分成两份D.至少要切两刀才可以平均分成两份第(5)题设复数满足(为虚数单位),则()A.B.C.1D.-1第(6)题设复数的共轭复数为,满足(为虚数单位),则()A.B.C.D.第(7)题定义运算如果,,满足等式,函数在单调递增,则取最大值时,函数的最小正周期为()A.B.C.D.第(8)题已知全集,集合,则()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题设z为复数(i为虚数单位),下列命题正确的有()A.若,则B.对任意复数,,有C.对任意复数,,有D.在复平面内,若,则集合M所构成区域的面积为第(2)题已知函数,设函数,则下列说法正确的是()A.若有4个零点,则B.存在实数t,使得有5个零点C.当有6个零点时.记零点分别为,且,则D.对任意恒有2个零点第(3)题已知函数,则()A.是的极小值点B.有两个极值点C.的极小值为D.在上的最大值为三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题大衍数列来源于《乾坤谱》中对易传“大衍之数五十”的推论,主要用于解释我国传统文化中的太极衍生原理,数列中的每一项都代表太极衍生过程.已知大衍数列满足,,则______,数列的前50项和为______.第(2)题斜线与平面成15°角,斜足为,为在内的射影,为的中点,是内过点的动直线,若上存在点,使,则则的最大值是_______,此时二面角平面角的正弦值是_______第(3)题过抛物线焦点的直线交抛物线于两点,点,沿轴将坐标系翻折成直二面角,当三棱锥体积最大时,____________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知函数.(1)讨论的单调性.(2)试问是否存在,使得对恒成立?若存在,求的取值范围;若不存在,请说明理由.第(2)题公比为q的等比数列满足.(1)求的通项公式;(2)若,记的前n项和为,求.第(3)题已知函数.(1)若在上单调递增,求a的取值范围;(2)当时,设,求证:.第(4)题点列,就是将点的坐标按照一定关系进行排列.过曲线上的点作曲线的切线与曲线交于,过点作曲线的切线与曲线交于点,依此类推,可得到点列:,,,…,,…,已知.(1)求数列、的通项公式;(2)记点到直线(即直线)的距离为,(I)求证:;(II)求证:,若值与(I)相同,则求此时的最小值.第(5)题在数列中,,.(1)求的通项公式;(2)设的前项和为,证明:.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学综合测试题(四)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)复数3Z =,则复数Z 对应的点在 ( )A .第一象限或第三象限B .第二象限或第四象限C .x 轴正半轴上D .y 轴负半轴上(2)已知椭圆的一个焦点为F(1,0),离心率21=e ,则椭圆的标准方程为 ( ) A.122=+y x 2 B.1222=+y x C.14=+3y x 22 D.13=+4y x 22(3),a b 为非零向量,“函数2()()f x ax b =+ 为偶函数”是“a b ⊥”的( ) (A ) 充分但不必要条件 (B ) 必要但不充分条件 (C ) 充要条件 (D ) 既不充分也不必要条件(4)如图所示,茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中一个数字被污损.则甲的平均成绩超过乙的平均成绩的概率为( )(A )52 (B )107 (C )54 (D )109(5)已知实数x 、y 满足⎪⎩⎪⎨⎧≤≤--≥-+301,094y y x y x ,则x -3y 的最大值是 ( )A .-1B .0C .1D .2(6)如果执行右面的程序框图,那么输出的t =( ) A .96B .120C .144D .300 (7)已知二项式2(n x (n N +∈)展开式中,前三项的二项式系数和是56,则展开式中的常数项为( )A .45256B .47256C .49256D .51256 (8) 已知各项都是正数的等比数列{}n a 满足:5672a a a +=若存在两项n m a a ,,使得,41a a a n m =⋅则nm 41+的最小值为( ) A.41 B. 23 C. 32D.1 (9)函数()()()⎪⎩⎪⎨⎧=≠-=2222f x a x x x 若函数()2-=x f y 有3三个零点,则实数a 的值为( )A.2- B.2 C. 4- D.不存在(10)已知c b a ,,为ABC ∆的三个内角C B A ,,的对边,向量()()A A n m sin ,cos ,1,3=-=,若n m⊥,且C c A b B a sin cos cos =+,则=B ( )6.πA 4.πB 3.πC 2.πD(11)函数的定义域为D ,若满足:①()x f 在D 内是单调函数;②存在],[b a 使得()x f 在],[b a 上的值域为]2,2[ba ,那么就称函数()x f y =为“成功函数”,若函数()()()1,0log ≠>+=c c t c x f x c 是“成功函数”,则t 的取值范围为( )A.()∞+,0 B.⎪⎭⎫ ⎝⎛∞-41, C.⎪⎭⎫⎝⎛+∞,41 D.⎪⎭⎫ ⎝⎛41,0 (12) 如图,平面四边形ABCD 中,1===CD AD AB ,CD BD BD ⊥=,2,将其沿对角线BD 折成四面体BCD A -',使平面⊥BD A '平面BCD ,若四面体BCD A -'顶点在同一个球面上,则该球的体积为 ( )A.π23B. π3C. π32 D. π2二、填空题:本大题共4小题,每小题5分。
(13)等差数列{}n a 的前n 项和n s ,若8a a a 1073=-+,4a a 411=-,则13s 等于(14) 如图,在一个边长为1的正方形AOBC 内,曲线2x y =和曲线x y =围成一个叶形图形(阴影部分),向正方形AOBC 内随机投一点(该点落在正方形AOBC 内任何一点都是等可能的),则所投的点落在叶形图内部的概率是.(15) 下列四个几何体中,每个几何体的三视图有且仅有两个视图相同的是 D C B A 'D C B A 第12题y x1CB1A O(16)已知双曲线22221(0,0)x y a b a b-=>>与抛物线28y x =有一个公共的焦点F ,且两曲线的一个交点为P ,若5PF =三、解答题:解答应写出文字说明,证明过程或演算步骤。
(17)(本小题满分12分)已知函数2sin 2)sin(3)(2xx x f ωω-=(0>ω)的最小正周期为π3, (Ⅰ)当⎥⎦⎤⎢⎣⎡∈43,2ππx 时,求函数)(x f 的最小值; (Ⅱ)在ABC ∆,若1)(=C f ,且)cos(cos sin 22C A B B -+=,求A sin 的值。
(18)(本小题满分12分)第26届世界大学生夏季运动会于2011年8月12日到23日在深圳举行 ,为了搞好接待工作,组委会在某学院招募了12名男志愿者和18名女志愿者。
将这30名志愿者的身高编成如右所示的茎叶图(单位:cm ): 若身高在175cm 以上(包括175cm )定义为“高个子”,身高在175cm 以下(不包括175cm )定义为“非高个子”,且只有“女高个子”才担任“礼仪小姐”。
(1)如果用分层抽样的方法从“高个子”和“非高个子”中选出5人,再从这5人中选2人,那么至少有一人是“高个子”的概率是多少?(2)若从所有“高个子”中选3名志愿者,用ξ表示所选志愿者中能担任“礼仪小姐”的人数,试写出ξ的分布列,并求ξ的数学期望。
(19)(本小题满分12分)如图,在四棱锥P ABCD -中,底面ABCD 为菱形,60BAD ︒∠=,Q 为AD 的中点。
2PA PD AD ===(1)点M 在线段PC 上,PM tPC =,试确定t 的值, 使//PA 平面MQB ;(2)在(1)的条件下,若平面PAD ⊥平面ABCD ,求①正方体 ②圆锥 ③三棱台 ④正四棱锥第15题 第18题y xO DA PB MQ D CB AP二面角M BQ C --的大小。
(20) (本小题满分12分)如图,在平面直角坐标系中,O 为坐标原点,点B (0,1),且点()0,a A (a ≠0)是x 轴上动点,过点A 作线段AB 的垂线交y 轴于点D ,在直线AD 上取点P ,使AP =DA. (Ⅰ)求动点P 的轨迹C 的方程(Ⅱ)点Q 是直线1y =-上的一个动点,过点Q 作轨迹C 的两条切线切点分别为M ,N 求证:QM ⊥QN (21)(本小题满分12分) 已知函数a ax x x x f +-+-=ln )1(21)(2. (I )若23=a ,求函数)(x f 的极值; (II )若对任意的)3,1(∈x ,都有0)(>x f 成立,求a 的取值范围.请考生22、23、24题中任选一题做答,如果多做,则按所做的第一题记分做答时请写清题号。
(22)(本小题满分10分)选修4-1:几何证明选讲 如图,在△ABC 中,为钝角,点E 、H 是边AB 上的点,点K 和M 分别是边AC 和BC 上的点,且AH=AC,EB=BC,AE=AK,BH=BM. (I )求证:E 、H 、M 、K 四点共圆;(II )若KE=EH,CE=3求线段 KM 的长.(23) (本小题满分10分)选修4-4:坐标系与参数方程 已知直线l 的参数方程为⎪⎪⎩⎪⎪⎨⎧+==t y t x 232221(t 为参数),若以直角坐标系xOy 的O 点为极点,Ox 方向为极轴,选择相同的长度单位建立极坐标系,得曲线C 的极坐标方程为)4cos(2πθρ-=(1)求直线l 的倾斜角;(2)若直线l 与曲线C 交于B A ,两点,求||AB . (24) (本小题满分10分)选修4-5:不等式选讲 若关于x 的方程 243x x a a -++-=0有实根 (1)求实数a 的取值集合A H EKM CBA 第22题(2)若存在a A ∈,使得不等式22120t a t -+<成立,求实数t 的取值范围。
理科数学(1)13.156 14.3115.②④ 160y ±= 三、解答题17.解:2)cos(12)sin(3)(x x x f ϖϖ-⋅-=1)cos()sin(3-+=x x ϖϖ1)6sin(2-+=πϖx依题意函数)(x f 的最小正周期为π3,即πϖπ32=,解得32=ϖ, 所以1)632sin(2)(-+=πx x f(Ⅰ)由432ππ≤≤x 得326322πππ≤+≤x ,所以,当23)632sin(=+πx 时,131232)(-=-⨯=最小值x f ……6分 (Ⅱ)由1)632sin(2)(-+=πC C f 及1)(=C f ,得1)632sin(=+πC 而656326πππ≤+≤C , 所以2632ππ=+C ,解得2π=C 在ABC Rt ∆中,2π=+B A ,)cos(cos sin 22C A B B -+=0sin sin cos 22=--A A A ,01sin sin 2=-+∴A A ,解得251sin ±-=A 1sin 0<<A ,215sin -=∴A ………………12分18. 解解:(1)根据茎叶图,有“高个子”12人,”非高个子”18人,………1分用分层抽样的方法,每人被抽中的概率是61305=………2分 所以选中的”高个子”有26112=⨯人,“非高个子”有36118=⨯人,………3分 用事件A 表示有“至少有一名‘高个子’被选中”,则它的对立事件A 表示“没有一名‘高个子’被选中”, 则()107103112523=-=-=C C A P ………5分 因此至少有一人是“高个子”的概率是107………6分 (2)依题意ξ的取值为:0,1,2,3………7分(),5514031238===ξC C P (),552813122814===ξC C C P (),551223121824===ξC C C P ()551331234===ξC C P ………9分 因此,ξ的分布列如下:ξ1 2 3p5514 5528 5512 551 ……10分15513551225528155140=⨯+⨯+⨯+⨯=ξ∴E .…………12分 19.解: (1)当13t =时,//PA 平面MQB下面证明:若//PA 平面MQB ,连AC 交BQ 于N 由//AQ BC 可得,ANQ BNC ∆∆∽, 12AQ AN BC NC ∴==.........2分//PA 平面MQB ,PA ⊂平面PAC , 平面PAC 平面MQB MN =,//PA MN ∴........................4分 13PM AN PC AC == 即:13PM PC =13t ∴=...6分(2)由PA=PD=AD=2, Q 为AD 的中点,则PQ ⊥AD 。
.7分又平面PAD ⊥平面ABCD ,所以PQ ⊥平面ABCD ,连BD ,四边形ABCD 为菱形, ∵AD=AB , ∠BAD=60°△ABD 为正三角形, Q 为AD 中点, ∴AD ⊥BQ ............8分 以Q 为坐标原点,分别以QA 、QB 、QP 所在的直线为,,x y z 轴,建立如图所示的坐标系,则各点坐标为A (1,0,0),B (3,0),Q (0,0,0),P (0,03 设平面MQB 的法向量为()z y x n ,,=,可得00,//,00n QB n QB PA MN n MN n PA ⎧⎧⋅=⋅=⎪⎪∴⎨⎨⋅=⋅=⎪⎪⎩⎩,⎪⎩⎪⎨⎧=-=0303z x y 取z=1,解得(3,0,1)n =.........10分 取平面ABCD 的法向量()3,0,0=设所求二面角为θ,则21cos ==θ 故二面角M BQ C --的大小为60°........12分20.(1)设动点(,)P x y ,1AB k a=-,AP AB ⊥,AP k a ∴=,∴直线AP 的方程为()y a x a =-.…………… 2分由AP DA =,2x a ∴=,∴点P 的轨迹C 的方程是24(0)x y y =≠.… 4分(2)设221212(,1),(,),(,)44x x Q t M x N x -,24x y =,1'2y x ∴=. 21212111111114,,,240222MQ NQ x k x k x x x tx x t +∴==∴=--=-.……… 7分 同理222240x tx --=,12,x x ∴是方程2240x tx --=的两个根,12122,4x x t x x +==-.…………………… 9分222222212121212121211(,1)(,1)()()144164x x QM QN x t x t x x t x x t x x x x ∴⋅=-+⋅-+=-++++++2221421(48)104t t t =--+++++=QM QN ∴⊥.…………………… 12分21.解:(I )()xx x x x x f 22522512+-=-+=', …………(2分)()0='x f ,得11=x ,或22=x ,列表: 函数)(x f 在2=x 处取得极大值2ln 8)2(-=f , …………(4分) 函数)(x f 在2=x 处取得极小值12ln )2(-=f ; …………(6分)(II )方法1:())1(1a x x x f +-+=',()3,1∈x 时,)310,2(1∈+x x ,(i )当21≤+a ,即1≤a 时,()3,1∈x 时,()0>'x f ,函数)(x f 在()3,1是增函数()3,1∈∀x ,()()01=>f x f 恒成立;…………(8分)(ii )当3101≥+a ,即37≥a 时,()3,1∈x 时,()0<'x f ,函数)(x f 在()3,1是减函数()3,1∈∀x ,()()01=<f x f 恒成立,不合题意 …………(10分)(iii )当31012<+<a ,即371<<a 时,()3,1∈x 时,()x f '先取负,再取0,最后取正,函数)(x f 在()3,1先递减,再递增,而()01=f ,∴()3,1∈∀x ,()()01=>f x f 不能恒成立; 综上,a 的取值范围是1≤a .…………(12分)方法2:∵2121=⋅≥+x x x x ,∴()a a xx x f -≥--+='111(i )当1≤a 时,()01≥-≥'a x f ,而()a xx x f --+='11不恒为0,∴函数)(x f 是单调递增函数,()3,1∈∀x ,()()01=>f x f 恒成立;…………(8分)(ii )当1>a 时,令()xx a x x f 1)1(2++-=',设01)1(2=++-x a x 两根是)(,2121x x x x <, ∵2121>+=+a x x ,121=x x ,∴2110x x <<< 当∈x ),(21x x 时,()0<'x f ,()x f 是减函数,∴)()1()(21x f f x f <<,而()01=f ,∴)(0)(21x f x f <<…………(10分) 若32≤x ,∵()3,1∈∀x ,()0>x f ,∴0)1()(2=>f x f ,不可能,若32>x ,函数)(x f 在()3,1是减函数,()0)1(3=<f f ,也不可能, 综上,a 的取值范围是1≤a .…………(12分) 22.证明:⑴连接CH ,,AC AH AK AE ==,∴四边形CHEK 为等腰梯形,注意到等腰梯形的对角互补,故,,,C H E K 四点共圆,----------- 3分 同理,,,C E H M 四点共圆,即,,,E H M K 均在点,,C E H 所确定的圆上,------------- 5分⑵连结EM ,由⑴得,,,,E H M C K 五点共圆,----------- 7分CEHM 为等腰梯形,EM HC ∴=, 故MKE CEH ∠=∠, 由KE EH =可得KME ECH ∠=∠,故MKE CEH ∆≅∆, 即3KM EC ==为所求. ----------10分 23.解:(1)60(2)l 的直角坐标方程为223+=x y , )4cos(2πθρ-=的直角坐标方程为1)22()22(22=-+-y x , 所以圆心)22,22(到直线l 的距离46=d ,210||=∴AB 24.解: (1)0)3(416≥-+-=∆a a 即 2721≤≤-a 所以 ⎥⎦⎤⎢⎣⎡-=27,21A ---------5分 (2)令212)(t t a a f ++-= 即 0)(min <a f 即可430127)27(2<<∴<+-=t t t f 所以 4334<<-<<-t t 或----10分HEKMCBA。