最优化方法课程设计参考模

合集下载

最优化方法课程设计

最优化方法课程设计

四川理工学院《最优化方法》课程论文题目:基于Matlab的单纯形法仿真实验姓名:刘宇泽专业:信息与计算科学班级:一班学号:12071030113完成日期:2015年6月27日四川理工学院理学院二O一五年六月摘要线性规划是运筹学中研究最早、发展最快、应用广泛、方法较成熟的一个重要分支,它是辅导人们进行科学管理的一种数学方法。

是研究线性约束条件下线性目标函数的极值问题的数学理论和方法。

为了得到线性目标函数的极值,我们有多重方法。

本文采用单纯形算法求解线性规划问题的最优解,并通过Matlab软件编写程序进行求解。

最终得到线性规划问题的最优解,进一步验证了求解问题的精度,较良好。

关键词:线性规划单纯性算法Matlab程序目录一、问题提出 (1)二、设计思路和步骤 (1)三、程序设计 (2)3.1问题分析 (2)3.2 算法设计 (2)3.3 程序编制 (3)3.4算法框图 (4)四、结果分析 (5)4.1设计结果 (5)4.2 进一步讨论和验证 (5)五、收获和总结 (5)六、结束语 (6)6.1设计的优缺点 (6)6.2设计工作展望 (6)6.3学习心得与体会 (6)一、 问题提出本文运用单纯形算法解下列问题:,0,0,0,43252-2.5.53.26.00.2)(min 43214321432143214321≥≥≥≥≤-++≥+++≤--+-+--=x x x x x x x x x x x x x x x x ts x x x x x f ,,二、设计思路和步骤2.1设计思路单纯形法的基本思路:根据单纯形法的原理,在线性规划问题中,决策变量(控制变量)x1,x2,…x n 的值称为一个解,满足所有的约束条件的解称为可行解。

使目标函数达到最大值(或最小值)的可行解称为最优解。

这样,一个或多个最优解能在整个由约束条件所确定的可行区域内使目标函数达到最大值(或最小值)。

求解线性规划问题的目的就是要找出最优解。

最优化课程设计

最优化课程设计

解决方法:设A项目的每年投资额是X11,X21,X31,X41,X51B项目的每年投资额是X12,X22,X32,X42C项目的投资额是X33D项目的投资额是X24根据题意建立目标函数和约束条件,在LINGO中输入以下编辑程序求解:第一问:MAX=0.1*x11+0.1*x12+0.1*x13+0.1*x14+0.1*x15+0.25*x21+0.25*x22+0.25*x23+0.25*x24+ 0.4*x33+0.55*x42+200;x11+x21<200;x12+x22+x42+x21-0.1*x11<200;x13+x23+x33+x42+x22-0.25*x21-0.1*x11-0.1*x12<200;x14+x24+x23+x33+x42-0.25*x21-0.25*x22-0.1*x11-0.1*x12-0.1*x13<200;x15+x24+x33+x42-0.25*x21-0.25*x22-0.25*x23-0.1*x11-0.1*x22-0.1*x13-0.1*x14<200;x21<30;x22<30;x23<30;x24<30;x33<80;x42<100;end运行结果由运行结果可知:第一年初在A项目投入170万元,B项目投入30万元;第二年在A项目投入57万元,B项目投入30万元,D项目投入100万元;第三年在B项目投入20.2万元,在C项目投入80万元;第四年在A项目投入7.5万元,B项目投入30万元;第五年在A 项目投入30.8万元可使第五年末拥有的资金本利金额最大,最大为341.08万元.第二问:MIN=x11+x12+x13+x14+x15+3*x21+3*x22+3*x23+3*x24+4*x33+5.5*x42;x11+x21<200;x12+x22+x42+x21-0.1*x11<200;x13+x23+x33+x42+x22-0.25*x21-0.1*x11-0.1*x12<200;x14+x24+x23+x33+x42-0.25*x21-0.25*x22-0.1*x11-0.1*x12-0.1*x13<200;x15+x24+x33+x42-0.25*x21-0.25*x22-0.25*x23-0.1*x11-0.1*x22-0.1*x13-0.1*x14<200;0.1*x11+0.1*x12+0.1*x13+0.1*x14+0.1*x15+0.25*x21+0.25*x22+0.25*x23+0.25*x24+0.4*x33 +0.55*x42+200>=330;x21<30;x22<30;x23<30;x24<30;x33<80;x42<100;End运行结果:在第五年末本利不小于330万元的情况下,为使风险系数最小课选择第一年在A项目投200万元;第二年在A项目投入120万元;第三年在A项目投入52万元,在C项目投入80万元;第四年在A项目投如11.63636万元;第五年在A项目投入46.36364万元,D项目投入100万元。

最优化方法及其应用课程设计

最优化方法及其应用课程设计

最优化方法及其应用课程设计一、引言随着计算机技术的不断发展,最优化问题得到了越来越广泛的应用,包括机器学习、数字信号处理、图像处理、智能控制等领域。

本文将介绍最优化方法及其应用课程设计的背景、目的、内容和教学方法。

二、背景与目的最优化方法是一种数学方法,其在现代工程领域应用广泛,包括寻找最优化解、优化设计、参数优化等方面。

本课程设计旨在让学生掌握最优化方法的基本原理与实际应用,培养学生的数学建模能力、计算机编程能力以及跨学科解决问题的综合能力。

三、内容本课程设计分为两个部分:最优化方法理论的讲授和实践操作。

1. 最优化方法理论在最优化方法理论的部分,我们将首先介绍最优化方法的基本思想和方法,包括:•单目标优化和多目标优化•线性规划•非线性规划•约束优化•动态优化紧接着,我们将通过实际案例演示最优化方法在实际问题中的应用,包括:•图像处理中的最优化问题•机器学习中的最优化问题•网络优化问题2. 实践操作在实践操作的部分,我们将采用Python语言讲授最优化方法的实现与应用。

具体包括:•Python语言基础•数值计算•优化算法通过课堂教学和实践操作的综合实践,学生将会掌握Python编程语言的基础知识、最优化方法的基本思想和方法、最优化方法在实际问题中的应用、采用Python语言对最优化方法的实现与应用。

四、教学方法本课程设计采用理论授课和实践操作相结合的教学模式。

在教学过程中,我们将引导学生积极参与,通过自主学习、探究和发现问题的方法,提高学生综合分析和解决问题的能力,同时注重教学的实际应用性,鼓励学生灵活运用所学知识解决实际问题。

五、总结本课程设计旨在为计算机科学与技术专业学生提供一门实践性很强并且具有广泛应用价值的课程,帮助学生了解最优化方法的基本思想和方法,掌握最优化方法在实际问题中的应用,提高专业能力和实践能力。

最优化课程设计

最优化课程设计

最优化课程设计一、课程目标知识目标:1. 学生能理解并掌握本章节最优化问题的基本概念,包括线性规划、整数规划和非线性规划等;2. 学生能够运用数学模型解决实际问题,并进行合理优化;3. 学生掌握常用的最优化方法,如单纯形法、分支定界法和梯度下降法等。

技能目标:1. 学生能够运用数学软件(如MATLAB、Excel等)进行最优化问题的求解;2. 学生通过小组合作,提高团队协作能力和沟通表达能力;3. 学生具备分析实际问题时,能够运用所学知识进行问题抽象和建模的能力。

情感态度价值观目标:1. 学生培养对数学学科的热爱,增强对最优化问题的兴趣;2. 学生通过解决实际最优化问题,培养解决问题的信心和耐心;3. 学生认识到数学知识在实际生活中的广泛应用,提高学习的积极性和主动性。

课程性质:本课程为数学学科的一章,主要研究最优化问题的基本概念、方法及其应用。

学生特点:学生为高中年级,具备一定的数学基础,对数学问题有一定的分析和解决能力。

教学要求:教师需结合学生特点,注重启发式教学,引导学生主动探究,提高学生的实践操作能力。

在教学过程中,将课程目标分解为具体的学习成果,以便于后续的教学设计和评估。

二、教学内容本章节教学内容主要包括以下几部分:1. 最优化问题的基本概念:介绍最优化问题的定义、分类和数学描述,包括线性规划、整数规划和非线性规划等。

2. 最优化方法:详细讲解以下几种常用最优化方法:- 单纯形法:解决线性规划问题;- 分支定界法:解决整数规划问题;- 梯度下降法:解决非线性规划问题。

3. 数学软件应用:结合实际案例,教授学生如何使用MATLAB、Excel等软件进行最优化问题的求解。

4. 实际案例分析与建模:选取与学生生活密切相关的实际案例,引导学生进行问题分析、建模和求解。

教学大纲安排如下:第一课时:最优化问题的基本概念;第二课时:线性规划及单纯形法的应用;第三课时:整数规划及分支定界法的应用;第四课时:非线性规划及梯度下降法的应用;第五课时:数学软件在求解最优化问题中的应用;第六课时:实际案例分析、建模与求解。

最优化方法及应用教学设计

最优化方法及应用教学设计

最优化方法及应用教学设计最优化方法是一种应用数学的方法,用于找到函数的最佳解决方案。

它通常包括数学建模、问题分析、目标函数和约束条件的定义、算法的选择和实施等步骤。

最优化方法在实际问题的解决中具有广泛的应用,包括经济学、工程学、运筹学等领域。

在教学设计中,可以通过结合理论讲解和实际案例演示,帮助学生理解最优化方法的原理和应用。

以下是一个教学设计示例:1. 引入最优化方法概念(150字)首先引入最优化方法的概念和基本步骤,解释最优化问题的定义和解的概念。

通过举例说明最优化方法的重要性和应用领域。

2. 数学建模与问题分析(300字)介绍数学建模的基本思想和步骤,通过给定实际问题,引导学生提出数学建模的思路和方法。

然后,讲解问题分析的过程和方法,包括确定目标函数、约束条件、自变量和因变量等内容。

通过演示具体案例,让学生理解建模和问题分析的重要性。

3. 目标函数和约束条件的定义(300字)详细讲解目标函数和约束条件的定义,包括约束条件的等式和不等式形式。

通过实例展示目标函数和约束条件的具体定义过程,例如最小化成本、最大化利润等。

引导学生理解目标函数和约束条件在最优化问题中的作用。

4. 算法的选择和实施(400字)介绍最优化算法的选择和实施过程,包括线性规划、整数规划、非线性规划等常见的最优化算法。

通过给定实例,引导学生选择合适的算法,并讲解算法的实施步骤,如建立数学模型、求解最优解等。

通过实际操作,让学生熟悉算法的选择和实施过程。

5. 应用案例分析(300字)引导学生分析和解决实际应用问题,如生产优化、资源分配等。

通过给定的应用案例,让学生运用最优化方法进行问题求解,并提出优化建议。

通过实践操作,让学生掌握最优化方法在实际问题中的应用。

6. 总结和讨论(150字)总结教学内容,回顾最优化方法的基本概念和应用步骤。

展开讨论,让学生发表对最优化方法的理解和看法,并提出相关问题。

鼓励学生思考如何将最优化方法应用到其他领域中。

最优化方法课程设计_斐波那契法分析与实现 完整版

最优化方法课程设计_斐波那契法分析与实现 完整版

最优化方法题目:斐波那契法分析与实现院系:信息与计算科学学院专业:统计学姓名学号:小熊熊 11071050137 指导教师:大胖胖日期: 2014 年 01 月 10 日摘要科学的数学化是当代科学发展的一个主要趋势,最优化理论与算法是一个重要的数学分支,它所研究的问题是讨论在众多的方案中什么样的方案最优以及怎样找出最优方案.一维搜索是指寻求一元函数在某个区间上的最优点的方法.这类方法不仅有实用价值,而且大量多维最优化方法都依赖于一系列的一维最优化.本文就斐波那契法的一维搜索进行了详细的分析,并且成功的用 MATLAB 实现了斐波那契法求解单峰函数的极小值问题.斐波那契法的一维搜索过程是建立在一个被称为斐波那契数列的基础上进行的,斐波那契法成功地实现了单峰函数极值范围的缩减.从理论上来说,斐波那契法的精度比黄金分割法要高.但由于斐波那契法要事先知道计算函数值的次数,故相比之下,黄金分割法更为简单一点,它不需要事先知道计算次数,并且当n 7 时,黄金分割法的收敛速率与斐波那契法越来越接近.因此,在实际应用中,常常采用黄金分割法. 斐波那契法也是一种区间收缩算法,和黄金分割法不同的是:黄金分割法每次收缩只改变搜索区间的一个端点,即它是单向收缩法. 而斐波那契法同时改变搜索区间的两个端点,是一种双向收缩法.关键字:一维搜索斐波那契法单峰函数黄金分割法MATLABAbstractMathematical sciences is a major trend in contemporary scientific development, optimization theory and algorithms is an important branch of mathematics, the problems it was discussed in numerous research programs in the best of what programs and how to find the optimal solution .One-dimensional search is the best method of seeking functions of one variable on the merits of a certain interval. Such methods not only have practical value, but also a large number of multi-dimensional optimization methods rely on a series of one-dimensional optimization article on Fibonacci the one-dimensional search method carried out a detailed analysis, and successful in MATLAB Fibonacci method for solving unimodal function minimization problem.Fibonacci method of one-dimensional search process is based on the Fibonacci sequence is called a Fibonacci conducted on, Fibonacci method successfully achieved a unimodal function extreme range reduction. Theory , Fibonacci method accuracy is higher than the golden section method, but the number of times due to the Fibonacci method to calculate function values to know in advance, so the contrast, the golden section method is more simply, it does not need to know in advance the number of calculations and at that time, the rate of convergence of golden section and the Fibonacci method getting closer, so in practical applications, often using the golden section method. Fibonacci method is also a range contraction algorithm, and the golden section method the difference is: golden section each contraction only one endpoint to change the search range that it is unidirectional shrinkage law Fibonacci search method while changing the two endpoints of the range, is a two-way contraction method.Key words: one-dimensional search Fibonacci method unimodal function Golden Section function MATLAB目录1.前言 (1)1.1 一维搜索 (1)1.2 单峰函数 (1)1.3 单峰函数的性质 (1)2.斐波那契法分析 (2)2.1 区间缩短率 (2)2.2 斐波那契数列 (3)2.3 斐波那契法原理 (3)2.4 斐波那契法与黄金分割法的关系 (6)3.斐波那契法实现 (7)3.1 斐波那契算法步骤 (7)3.2 斐波那契法的MATLAB 程序 (8)3.3 斐波那契算法举例 (10)4.课程设计总结 (12)4.1 概述 (12)4.2 个人心得体会 (12)5.参考文献 (13)1 *1. 前言一维搜索是指寻求一元函数在某区间上的最优值点的方法.这类方法不仅有 实用价值,而且大量多维最优化方法都依赖于一系列的一维最优化.斐波那契法的一维搜索过程是建立在一个被称为斐波那契数列的基础上进 行的.从理论上来说,斐波那契法的精度比黄金分割法要高.但由于斐波那契法要 事先知道计算函数值的次数,故相比之下,黄金分割法更为简单一点,它不需要 事先知道计算次数,并且当 n ≥ 7 时,黄金分割法的收敛速率与斐波那契法越来 越接近.因此,在实际应用中,常常采用黄金分割法. ·1.1 一维搜索很多迭代下降算法具有一个共同点,即得到点 x k 后,需要按某种规则确定 一个方向 d k ,再从 x k 出发,沿着方向 d k 在直线或射线上寻求目标函数的极小点, 进而得到 x k 的后继点 x k +1 .重复上面的做法,直至求得问题的解.这里所谓求目标 函数在直线上的极小点,称为一维搜索或线性搜索.·1.2 单峰函数定义 1.2.1 设 f 是定义在闭区间[a , b ]上的一元实函数,x * 是 f 在[a , b ]上的极小点,对 ∀x 1 , x 2 ∈ [a , b ] 且 x 1 < x 2 ,当 x 2 ≤ x 时, f (x 1 ) > f (x 2 ) ,当 x * ≤ x 时,f (x 2 ) > f (x 1 ) ,则称 f 是闭区间[a , b ]上的单峰函数.·1.3 单峰函数的性质单峰函数具有很重要的性质:通过计算闭区间[a , b ]内两个不同点处的函数 值,就能确定一个包含极小点的子区间.这也是斐波那契法的理论基础.为了后面分析的方便,先证明下面的定理,这个定理是斐波那契方法的理论 基础.定理 1.3.1 设 f 是闭区间 [a , b ] 上的单峰函数, x 1 , x 2 ∈ [a , b ] ,且 x 1 < x 2 .如果f (x 1 ) > f (x 2 ) , 则 对 ∀x ∈ [a , x 1 ] , 有 f (x ) > f (x 2 ) ; 如 果 f (x 1 ) ≤ f (x 2 ) , 则 对∀x ∈ [x 2 , b ],有 f (x ) ≥ f (x 1 ).证明:(反证法)先证第一种情形.假设当 f (x 1 ) > f (x 2 ) 时, []1x x a ,∈∃,使得* 2f (x )≤ f (x 2 ) .(1.3.1.1)显然 x 1 不是极小点.这时有两种可能性,要么极小点 x ∈ [a , x 1 ),要么 x ∈ (x 1 , b ] .当 x ∈ [a , x 1 )时,根据单峰函数的定义,有f (x 2 ) > f (x 1 ) .(1.3.1.2)这与假设矛盾.当 x ∈ (x 1 , b ]时,根据单峰函数的定义,有f (x )> f (x ). 1(1.3.1.3)由于假设 f (x 1 ) > f (x 2 ) ,因此(1.3.1.3)式与(1.3.1.1)式相矛盾.综上可知,当f (x 1 ) > f (x 2 ) 时,对∀x ∈ [a , x 1 ],必有f (x ) >f (x 2 ) .(1.3.1.4)同理可以证明第二种情形.证毕. 根据上面的定理知:只需选择两个试探点,就可以将包含极小点的区间缩短.事实上,如果 f (x 1 ) > f (x 2 ) ,则 x ∈ [x 1 , b ] ;如果 f (x 1 ) ≤ f (x 2 ) ,则 x * ∈ [a , x ].这就是斐波那契法的理论基础.2. 斐波那契法分析斐波那契法的一维搜索过程是建立在一个被称为斐波那契数列的基础上进 行的.在此之前,有必要知道区间缩短率以及斐波那契数列的概念. ·2.1 区间缩短率定义 2.1.1 在逐次缩短区间时,设)10(......)10()10(112211221111<<=--<<=--<<=----k k k k kk a b a b a b a b a b a b ττττττ称τk (k = 1,2,⋅ ⋅ ⋅) 为区间缩短率.对于上面的τk 不外乎两种情况,要么τk = c ,要么τk ≠ c ( c 为常数).第一种3情况就可以引入前面提到的黄金分割法,第二种情况就是下面要分析的斐波那契 法.·2.2 斐波那契数列斐波那契数列是 13 世纪,由意大利的数学家列昂纳多·斐波那契(Leonardo Fibonacci)提出的,当时和兔子的繁殖问题有关,它是一个很重要的数学模型. 斐波那契数列,又被称为“黄金分割数列”,它指的是这样的一个数列:数列的 第一个和第二个数都为 1,接下来每个数都等于前面两个数的和.在数学上,斐波那契数列有如下的递归定义:⎩⎨⎧=+===--,...3,2,12110n F F F F F n n n故,斐波那契数列如表 2.2.1 所示.表 2.2.1 斐波那契数列表n0 1 2 3 4 5 6 7 8 9 …F n11235813213455…斐波那契数列的通项公式(又称为“比内公式”)如下:⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛+=nn n a 25125151 此时).,3(,1,1*2121N n n a a a a a n n n ∈≥+===-- 2.3 斐波那契法原理在定义2.1.1中,若为常数)c c (k ≠τ,可取kk k F F 1-=τ.其中k F 满足斐波那契数列的递推关系。

实用最优化方法第三版课程设计

实用最优化方法第三版课程设计

实用最优化方法第三版课程设计一、引言随着数值计算技术和计算机硬件设施的快速发展,最优化方法在科学、工程和经济领域中得到了广泛应用。

实用最优化方法是一门交叉学科,涉及数学、计算机科学、应用统计学、运筹学、工业工程等多个领域。

本课程将介绍最优化方法的基本概念、数学理论和相关算法,以及它们在实际问题中的应用。

二、课程目标本课程旨在使学生掌握最优化方法的基本概念和理论,并能熟练应用各种最优化算法解决实际问题。

具体目标如下:1.理解最优化问题的定义、形式和分类;2.掌握最优化模型的建立方法和求解技巧;3.熟悉常用最优化算法的原理、优缺点和适用范围;4.能够使用软件工具解决实际的最优化问题;5.培养学生的科学素养和实际操作能力。

三、课程大纲第一章最优化问题的基本概念1.1 优化问题的定义与分类 1.2 最优解的存在与唯一性 1.3 凸优化问题的性质和解法 1.4 梯度下降法、牛顿法和拟牛顿法第二章线性规划2.1 线性规划问题的标准型 2.2 单纯形法和对偶理论 2.3 整数规划和混合整数规划第三章非线性规划3.1 非线性规划问题的形式化描述 3.2 无约束优化问题的解法3.3 约束优化问题的解法 3.4 全局优化问题的解法第四章非线性方程组和方程求解4.1 非线性方程组的求解方法 4.2 无约束最小化问题的求解及其应用 4.3 连续和离散函数最优化的重要应用第五章数值优化软件5.1 Matlab的优化工具箱 5.2 R语言的优化软件 5.3 Python的Scipy优化库第六章应用案例分析6.1 供应链优化 6.2 生产计划与排产 6.3 飞机航线优化 6.4 基于机器学习的最优化四、教学方法和评估方式本课程采用课堂讲授和实验练习相结合的教学方法,教师会提供许多实际问题和案例,学生可以在课后按照教材和指导文件完成实验练习。

评估方式主要包括平时成绩、实验成绩和期末考试成绩。

其中平时成绩包括作业成绩、上课表现及课堂积极性等方面。

最优化方法课程设计参考模版讲解

最优化方法课程设计参考模版讲解

《最优化方法》课程设计题目:共轭梯度法算法分析与实现院系:数学与计算科学学院专业:数学与应用数学姓名:梁婷艳学号:0800730103指导教师:李丰兵日期:2015 年12 月30 日在各种优化算法中,共轭梯度法是非常重要的一种。

本文主要介绍的共轭梯度法是介于最速下降法与牛顿法之间的一种无约束优化算法,它具有超线性收敛速度, 而且算法结构简单, 容易编程实现。

在本次实验中,我们首先分析共轭方向法、对该算法进行分析,运用基于共轭方向的一种算法—共轭梯度法进行无约束优化问题的求解。

无约束最优化方法的核心问题是选择搜索方向。

共轭梯度法的基本思想是把共轭性与最速下降方法相结合,利用已知点处的梯度构造一组共轭方向,并沿这组方向进行搜索,求出目标函数的极小点。

根据共轭方向的基本性质,这种方法具有二次终止性。

再结合该算法编写matlab程序,求解无约束优化问题,再结合牛顿算法的理论知识,编写matlab程序,求解相同的无约束优化问题,进行比较分析,得出共轭梯度法和牛顿法的不同之处以及共轭梯度法的优缺点。

共轭梯度法仅需利用一阶导数信息,避免了牛顿法需要存储和计算Hesse矩阵并求逆的缺点,共轭梯度法不仅是解决大型线性方程组最有用的方法之一,也是解大型非线性最优化最有效的算法之一。

共轭梯度法是一个典型的共轭方向法,它的每一个搜索方向是互相共轭的,而这些搜索方向仅仅是负梯度方向与上一次迭代的搜索方向的组合,因此,存储量少,计算方便。

关键词:共轭梯度法;超线性收敛;牛顿法;无约束优化In a variety of optimization algorithms, conjugate gradient method is a very important one.In this paper, the conjugate gradient method is between the steepest descent method and Newton method for unconstrained optimization between a method, it has superlinear convergence rate, and the algorithm is simple and easy programming.In this experiment, we first analyze the conjugate direction method, the algorithm analysis, the use of a conjugate direction-based algorithm - conjugate gradient method for unconstrained optimization problems. Unconstrained optimization method is to select the core issue of the search direction.Conjugate gradient method is the basic idea of the conjugate descent method with the most combined points in the gradient using the known structure of a set of conjugate directions, and search along the direction of this group, find the minimum point of objective function. According to the basic nature of the conjugate direction, this method has the quadratic termination. Combined with the preparation of this algorithm matlab program for solving unconstrained optimization problems, combined with Newton’s theory of knowledge, writing matlab program to solve the same problem of unconstrained optimization, comparison analysis, the conjugate gradient method and Newton method different Office and the advantages and disadvantages of the conjugate gradient method.Conjugate gradient method using only first derivative information, to avoid the Newton method requires storage and computing the inverse Hesse matrix and shortcomings, is not only the conjugate gradient method to solve large linear systems one of the most useful, but also large-scale solution nonlinear optimization algorithm is one of the most effective. Conjugate gradient method is a typical conjugate direction method, each of its search direction is conjugate to each other, and the search direction d is just the negative gradient direction with the last iteration of the search direction of the portfolio, therefore, storage less computational complexity.Key words: Conjugate gradient method; Superlinear convergence; Newton method Unconstrained optimization目录1、引言 (1)2、共轭梯度法的描述 (1)2.1 共轭方向法 (1)2.2 共轭梯度法 (2)2.3 Armijo准则 (6)3、数值实验 (7)3.1 代码实现 (7)3.2 算法测试 (8)3.3 结果分析 (10)4、算法比较 (10)4.1 牛顿法的构造 (10)4.2 算法实现 (11)4.3 算法测试 (12)4.4算法比较 (13)5、总结 (13)5.1 总结概括 (13)5.2 个人感言 (14)6、参考文献: (16)1、引言在各种优化算法中,共轭梯度法(Conjugate Gradient )是非常重要的一种。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《最优化方法》课程设计题目:共轭梯度法算法分析与实现院系:数学与计算科学学院专业:数学与应用数学姓名:梁婷艳学号: 0800730103指导教师:李丰兵日期: 2015 年 12 月 30 日在各种优化算法中,共轭梯度法是非常重要的一种。

本文主要介绍的共轭梯度法是介于最速下降法与牛顿法之间的一种无约束优化算法,它具有超线性收敛速度, 而且算法结构简单, 容易编程实现。

在本次实验中,我们首先分析共轭方向法、对该算法进行分析,运用基于共轭方向的一种算法—共轭梯度法进行无约束优化问题的求解。

无约束最优化方法的核心问题是选择搜索方向。

共轭梯度法的基本思想是把共轭性与最速下降方法相结合,利用已知点处的梯度构造一组共轭方向,并沿这组方向进行搜索,求出目标函数的极小点。

根据共轭方向的基本性质,这种方法具有二次终止性。

再结合该算法编写matlab程序,求解无约束优化问题,再结合牛顿算法的理论知识,编写matlab程序,求解相同的无约束优化问题,进行比较分析,得出共轭梯度法和牛顿法的不同之处以及共轭梯度法的优缺点。

共轭梯度法仅需利用一阶导数信息,避免了牛顿法需要存储和计算Hesse矩阵并求逆的缺点,共轭梯度法不仅是解决大型线性方程组最有用的方法之一,也是解大型非线性最优化最有效的算法之一。

共轭梯度法是一个典型的共轭方向法,它的每一个搜索方向是互相共轭的,而这些搜索方向仅仅是负梯度方向与上一次迭代的搜索方向的组合,因此,存储量少,计算方便。

关键词:共轭梯度法;超线性收敛;牛顿法;无约束优化In a variety of optimization algorithms, conjugate gradient method is a very important one. In this paper, the conjugate gradient method is between the steepest descent method and Newton method for unconstrained optimization between a method, it has superlinear convergence rate, and the algorithm is simple and easy programming.In this experiment, we first analyze the conjugate direction method, the algorithm analysis, the use of a conjugate direction-based algorithm - conjugate gradient method for unconstrained optimization problems. Unconstrained optimization method is to select the core issue of the search direction. Conjugate gradient method is the basic idea of the conjugate descent method with the most combined points in the gradient using the known structure of a set of conjugate directions, and search along the direction of this group, find the minimum point of objective function. According to the basic nature of the conjugate direction, this method has the quadratic termination. Combined with the preparation of this algorithm matlab program for solving unconstrained optimization problems, combined with Newton’s theory of knowledge, writing matlab program to solve the same problem of unconstrained optimization, comparison analysis, the conjugate gradient method and Newton method different Office and the advantages and disadvantages of the conjugate gradient method.Conjugate gradient method using only first derivative information, to avoid the Newton method requires storage and computing the inverse Hesse matrix and shortcomings, is not only the conjugate gradient method to solve large linear systems one ofthe most useful, but also large-scale solution nonlinear optimization algorithm is one of the most effective. Conjugate gradient method is a typical conjugate direction method, each of its search direction is conjugate to each other, and the search direction d is just the negative gradient direction with the last iteration of the search direction of the portfolio, therefore, storage less computational complexity.Key words: Conjugate gradient method; Superlinear convergence; Newton method Unconstrained optimization目录1、引言 (7)2、共轭梯度法的描述 (7)2.1 共轭方向法 (7)2.2 共轭梯度法 (8)2.3 Armijo准则 (6)3、数值实验 (7)3.1 代码实现 (7)3.2 算法测试 (8)3.3 结果分析 (10)4、算法比较 (10)4.1 牛顿法的构造 (10)4.2 算法实现 (11)4.3 算法测试 (12)4.4算法比较 (13)5、总结 (25)5.1 总结概括 (13)5.2 个人感言 (14)6、参考文献: (16)1、引言在各种优化算法中,共轭梯度法(Conjugate Gradient)是非常重要的一种。

其优点是所需存储量小,具有N步收敛性,稳定性高,而且不需要任何外来参数。

共轭梯度法是介于最速下降法与牛顿法之间的一个方法,它仅需利用一阶导数信息,但克服了最速下降法收敛慢的缺点,又避免了牛顿法需要存储和计算Hesse矩阵并求逆的缺点,共轭梯度法不仅是解决大型线性方程组最有用的方法之一,也是解大型非线性最优化最有效的算法之一。

共轭梯度法最早是又Hestenes和Stiefle(1952)提出来的,用于解正定系数矩阵的线性方程组,在这个基础上,Fletcher和Reeves (1964)首先提出了解非线性最优化问题的共轭梯度法。

由于共轭梯度法不需要矩阵存储,且有较快的收敛速度和二次终止性等优点,现在共轭梯度法已经广泛地应用与实际问题中。

共轭梯度法是一个典型的共轭方向法,它的每一个搜索方向是互相共轭的,而这些搜索方向仅仅是负梯度方向与上一次迭代的搜索方向的组合,因此,存储量少,计算方便。

2、共轭梯度法的描述2.1 共轭方向法共轭方向法是介于最速下降法与牛顿法之间的一个方法。

它仅需利用一阶导数信息,但克服了最速下降法收敛慢的缺点,又避免了存贮和计算牛顿法所需要的二阶导数信息。

共轭方向法是从研究二次函数的极小化产生的,但是它可以推广到处理非二次函数的极小化问题。

一般共轭方向法步骤如下:算法 2.1.1 (一般共轭方向法)给出*x 的初始点0x ,步1 计算)(00x f g ∇=步2 计算0d ,使000<g d T 步3 令0=k步4 计算k α和1+k x ,使得步5 计算1+k d 使得01=+j T k Gd d ,k j ,,1,0Λ=。

步6 令1 :+=k k ,转步4共轭方向法的一个基本性质是:只要执行精确线性搜索,就能得到二次终止性。

这就是下面的共轭方向法基本定理。

定理 2.1.1 (共轭方向法基本定理)对于正定二次函数,共轭方向法之多经n 步精确线性搜索终止;且每一1+i x 都是)(x f 在0x 和方向i d d ,,0Λ所张成的线性流行⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧∀+=∑=j i j j j d x x x αα,00中的极小点。

2.2 共轭梯度法共轭梯度法是最着名的共轭方向法,它首先由Hestenes 和Stiefel (1952)提出来作为解线性方程组的方法。

由于解线性方程组等价于极小化一个正定二次函数,故1964年Fletcher 和Reeves 提出了无约束极小化的共轭梯度法,它是直接从Hestenes 和Stiefel 解线性方程组的共轭梯度法发展而来的。

共轭方向法基本定理告诉我们,共轭性和精确线性搜索产生二次终止性。

共轭梯度法就是使得最速下降方向具有共轭性,从而提高算法的有效性和可靠性。

下面针对二次函数情形讨论共轭梯度法,我们先给出共轭梯度法的推导。

设c x b Gx x x f T T++=21)( (2.2.1)其中G 是n n ⨯对称正定矩阵,b 是1⨯n 向量,c 是实数。

f 的梯度为 b Gx x g +=)( (2.2.2)令00g d -= (2.2.3)则0001d x x α+= (2.2.4)由精确线性搜索性质,001=d g T(2.2.5)令0011d g d β+-= (2.2.6)选择0β,使得001=Gd d T . (2.2.7) 对(2.2.6)两边同乘以G d T 0,得 001101001100011)()(g g g g g g d g g g Gd d Gd g T T T T T T =--==β. (2.2.8) 由共轭方向法基本定理,02=i T d g ,1,0=i 。

相关文档
最新文档