最优化课程设计--共轭梯度法算法分析与实现
最优化方法-共轭方向和共轭梯度法

由3式可以看出
2020/3/6
16
2.共轭方向-共轭方向法
• 基本定义
利用共轭方向作为搜索方向的无约束极小化算法
• 通用步骤:
(1)任取X 0 ,以及在X 0的下降方向P0 , k 0; (1)求解一维搜索问题
min f ( X k Pk ),为最优步长,是个数值.
(3) X k1 X k k Pk ;
X
T QX
bT
X
c, Q正定,
X 0是初始点,
P0
f
(X0)
X k1 X k k Pk , k 0,1...m 1, k是最优步长,且
Pk1 f ( X k1) ak Pk (这是构造的结果)
其中ak
f
( X k1)T QPk PkT QPk
,
P0
(
X
)T
k 1
Pk
)T
PkT f ( X k1)
f ( X k1) QX k1 b Q( X k k Pk ) b, ( X k 1 X k k Pk )
f ( X k1) (QX k b) kQPk f ( X k ) kQPk
当m 2时 所以,P0,P1, Pm1是线性无关的。
P0T QP1
P0T Q f ( X 1 )
f ( X 1 )T QP0 P0T QP0
P0
P0T Qf ( X 1 ) f ( X 1 )T QP0 0
表明,P0与P1共轭。
2020/3/6
2020/3/6
4
1.共轭方向法的基本原理
• 已知 X1 点是在 X 0 点在直线 l0 上沿 P0 搜索方向的一个极小 点。(l0 与 P0 是平行的)
共轭方向与共轭梯度法-最优化方法

f (X1)T P0 0 ,所以 f (X1)T P0 1P1TQ P0 0
P1TQ P0 0
(1)
以上就是搜索方向P1所必须满足的(必要) 条件。这也是使X2是极小点的充分条件。 P1,P2称为关于Q的共轭方向。
讨论表明 对于二维的具有正定矩阵Q的 二次函数f(X),从任一初始点出发,依次沿关 于Q共轭的两个方向进行一维搜索,必可达到 f(X)的无约束精确极小点。
Pk 1
0
且对j 0,1 , k 2, 有
PjT QPk PjT Q f ( X k ) k1Pk1
PjT Qf
(X
k
)
k
PT
1 j
QPk
1
f ( X k )T QPj
f ( X k )T f ( X j1) f ( X j ) j
f ( X k1 ) QX k1 b Q( X k k Pk ) b (2)
f ( X k1 ) f ( X k ) k QPk
所以
f ( X m ) f ( X m1) m1QPm1
f ( X m2 ) m2QPm2 m1QPm1
其中1 是最优步长,1>0 .因为 X * 是无约束极小点。
故 f ( X * ) 0 即 QX * b 0
f (X1) QX1 b
Q( X * 1P1) b (QX * b) 1QP1 1QP1
又因为 X1是f(X)沿P0方向的直线l0上的极小点,故
设 X En ,
,Q为对称正定矩阵,P0,
P1,···,Pm-1是关于Q共轭的m个共轭方向,
共轭梯度法详细解读

共轭梯度法详细解读
嘿,朋友们!今天咱就来好好唠唠共轭梯度法。
你想想啊,咱平常解决问题就像走迷宫似的,有时候会在里面转来转去找不到出路,而共轭梯度法呀,就像是在迷宫里给咱指了一条明路!比如说你想找一条最快从山这头到那头的路,共轭梯度法就能帮上大忙啦!
它可不是随随便便就出现的哦,那可是数学家们绞尽脑汁研究出来的宝贝呢!就好比一个超级英雄,专门来打救我们这些在复杂问题里苦苦挣扎的人。
在实际应用里,它可厉害着呢!比如说在工程计算中,要设计一个最完美的结构,共轭梯度法就能迅速算出最优解。
哇塞,这不就相当于有个超厉害的军师在帮咱出谋划策嘛!
你再想想,我们日常生活中很多事情都可以类比成用共轭梯度法来解决问题呀。
比如说你要规划一次旅行,怎么安排路线最合理,不就是在找那个最优的旅行路径嘛,这时候共轭梯度法的思路就能派上用场啦!它就像一个隐藏在幕后的高手,默默地为我们排忧解难。
而且哦,一旦你掌握了它,那种感觉就像是你突然掌握了一种绝世武功,能在各种难题面前游刃有余。
这可太酷了吧!
哎呀呀,共轭梯度法真的是太神奇、太有用啦!大家可一定要好好去了
解它、运用它呀,你绝对会被它的魅力折服的!相信我,没错的!。
共轭梯度法在优化问题中的应用

共轭梯度法在优化问题中的应用共轭梯度法是一种高效的优化算法,在许多优化问题中都得到了广泛的应用。
它是一种迭代方法,用于解决最小化二次函数的优化问题。
在本文中,我将介绍共轭梯度法的原理和算法,并探讨它在优化问题中的应用。
一、共轭梯度法的原理共轭梯度法的核心思想是通过迭代的方式,找到一个与之前迭代步骤方向相互垂直的搜索方向,以加快收敛速度。
在每一次迭代中,共轭梯度法根据当前的搜索方向更新搜索点,直到找到最优解或达到预定的收敛标准。
具体来说,共轭梯度法从一个初始搜索点开始,计算对应的梯度,并沿着负梯度方向进行搜索。
通过一定的方法找到一个与之前搜索方向相互垂直的新搜索方向,并以一定步长更新搜索点。
迭代过程将重复进行,直到满足收敛标准或达到最大迭代次数。
二、共轭梯度法的算法共轭梯度法的算法包括以下几个步骤:1. 初始化搜索点x0和梯度g0,设置迭代次数k=0。
2. 计算当前搜索方向d_k=-g_k(k为当前迭代次数)。
3. 通过一维搜索方法找到最佳步长α_k。
4. 更新搜索点x_k+1 = x_k + α_k * d_k。
5. 计算更新后的梯度g_k+1。
6. 判断是否满足收敛标准,若满足则算法停止,否则转到步骤7。
7. 计算新的搜索方向β_k+1。
8. 将迭代次数k更新为k+1,转到步骤3。
这个算法保证了每一次迭代中的搜索方向都是彼此相互垂直的,从而加快了收敛速度。
三、共轭梯度法的应用共轭梯度法在优化问题中有广泛的应用,特别是在二次规划、线性规划和非线性规划等领域。
在二次规划问题中,共轭梯度法可以高效地求解线性系统Ax=b,其中A是一个对称正定的矩阵。
由于共轭梯度法的特性,它只需要进行n 次迭代,其中n是问题的维度,就能得到精确的解。
这使得共轭梯度法在大规模线性系统求解中具有重要的应用价值。
在线性规划问题中,共轭梯度法可以用于求解带有线性约束的最小二乘问题。
共轭梯度法通过将线性约束转化为一系列的正交子空间,从而在求解最小二乘问题时能够更快地收敛。
共轭梯度(CG)算法

共轭梯度(CG)算法共轭梯度(Conjugate Gradient, CG)算法是一种用于求解线性方程组的迭代算法。
它主要用于求解对称正定矩阵的线性方程组,如最小二乘问题、PDE(偏微分方程)问题等。
CG算法通过利用矩阵的对称性和正定性,以及向量的共轭关系,实现了高效的求解线性方程组的能力。
CG算法的基本思想是通过一系列共轭的方向,逐步逼近方程组的解。
它利用了矩阵的特性,减少了计算量和存储需求,并且具有较快的收敛速度。
下面将介绍CG算法的原理和过程。
首先,假设我们要求解一个线性方程组Ax=b,其中A是对称正定矩阵,b是已知向量,x是待求解向量。
我们通过迭代的方式逼近x的解,即x(k)。
CG算法的迭代过程如下:1.初始化:选择一个初始解x(0),设置r(0)=b-Ax(0),p(0)=r(0),k=0;2. 迭代计算:计算步长alpha(k)和更新向量x(k+1):alpha(k) = (r(k)^T * r(k)) / (p(k)^T * A * p(k))x(k+1) = x(k) + alpha(k) * p(k)3. 计算残差向量r(k+1)和比例系数beta(k+1):r(k+1) = r(k) - alpha(k) * A * p(k)beta(k+1) = (r(k+1)^T * r(k+1)) / (r(k)^T * r(k))4.更新方向p(k+1):p(k+1) = r(k+1) + beta(k+1) * p(k)5.终止条件判断:如果满足终止条件,停止迭代;否则,令k=k+1,返回步骤2在CG算法中,为了降低数值误差和迭代次数,通常会使用预条件技术,如Jacobi预条件、不完全Cholesky预条件等。
预条件技术可以通过对矩阵进行适当的近似,加速算法的收敛。
CG算法的收敛性和效率主要与矩阵的条件数有关。
对于条件数较大的矩阵,CG算法的迭代次数会增加,收敛速度会减慢。
因此,在实际应用中,通常会选择合适的预条件技术和求解策略,以提高CG算法的效率和稳定性。
共轭梯度算法分析与实现

共轭梯度算法分析与实现
梯度下降是一种常用的优化算法,用于求解优化问题。
它通过迭代的
方式不断沿着梯度的反方向更新参数,以最小化损失函数。
然而,梯度下
降算法在处理大规模数据时会变得非常慢,因为它需要计算全部训练样本
的梯度。
为了解决这个问题,共轭梯度算法被提出。
共轭梯度算法是一种适用于解决对称正定矩阵形式下的线性方程组的
优化算法。
它在每一步更新参数时,会按照预先选择好的方向进行更新。
这些方向通常是互相共轭的,这意味着每一个方向都是相对于其他方向来
说是正交的。
共轭梯度算法的原理是,通过每次迭代选择共轭方向来加速
梯度下降算法的收敛速度。
具体而言,共轭梯度算法中的每一步迭代可以分为四个部分:初始化、步长、更新参数和计算残差。
首先,在初始化阶段设定初始参数和初始残差,并选择一个适当的共轭方向。
然后,在步长阶段,通过线方法选择一
个合适的步长。
接下来,在更新参数阶段,根据步长和共轭方向更新参数。
最后,在计算残差阶段,计算新的残差,并检查是否达到停止条件。
如果
没有达到停止条件,那么就继续迭代进行和更新。
共轭梯度算法相对于梯度下降算法有几个优点。
首先,它不需要计算
全部训练样本的梯度,这样可以加速算法的收敛速度。
其次,它可以解决
对称正定矩阵形式下的线性方程组,这在很多实际问题中非常常见。
最后,共轭梯度算法在存储以及计算量上都比较少,所以可以处理大规模数据。
共轭梯度法总结

共轭梯度法总结
共轭梯度法总结
一、什么是共轭梯度法
共轭梯度法(Conjugate Gradient Method),是一种用于求解线性方程组的迭代优化算法,它是一种搜索梯度的迭代算法。
共轭梯度法的基本思想是沿梯度的反方向搜索,并在每一步令搜索的方向接近更新的局部梯度。
它是一种非常有效的求解有约束的非线性优化问题的方法,是求解线性方程组的有效算法。
共轭梯度法可以看作是一种极小化函数的迭代方法,它最主要的思想是不断更新梯度的方向,从而寻找函数值最小的点。
二、共轭梯度法的原理
共轭梯度法是一种迭代优化算法,它以凸二次型函数为例,可以用来求解最小值问题。
它的基本思想是:
(1)首先求得函数的梯度,即每一步优化的搜索方向,使梯度变为最小;
(2)以梯度的反方向搜索,令搜索的方向接近更新的局部梯度,而不是与旧的梯度成正比的步长;
(3)逐步更新搜索的方向为新的梯度;
(4)重复这个过程,直到所有的自变量满足限制条件。
三、共轭梯度法的优缺点
共轭梯度法最大的优点是它具有收敛速度快,可以在有限的迭代步数内收敛到最优解;另外,它还具有计算量小,不需要计算精确的
Hessian矩阵的优点。
共轭梯度法的缺点是它不能用来求解非凸优化问题,因为它只能求解凸优化问题;另外,它也不能用于强不可约的优化问题。
最优化方法3-5共轭梯度法和共轭方向法

算法 3.5.1
设目标函数为 f (x) 1 xTGx bT x c,其中G 正定。 2
给定控制误差 。
Step1. 给定初始点 x0及初始下降方向 p0,令k 0。
Step2. 作精确一维搜索,求步长k
f
( xk
k
pk )
min
0
f
( xk
pk
)
Step3. 令 xk1 xk k pk 。
称 Fletcher-Reeves 公式,简称 FR 公式。
k 1
gkT Gpk1 pkT1Gpk 1
Gpk 1
1
k 1
(gk
g
k 1 ) ,
gkT Gpk1
1
k 1
gkT
(gk
g
k 1)
,
pkT1Gpk 1
1
k 1
(g
k1 k2
pk2 )T
(gk
g
k 1)
1
k 1
g
g T
k 1 k
1
(2)Polak-Ribiere-Polyak 公式
故
k 1
g
T k
(
gk
g
k 1)
gkT1gk 1
此式是 Polak 和 Ribiere 以及 Polyak 分别于 1969
年提出的,故称 Polak-Ribiere-Polyak 公式,简称 PRP
0,i
1,2,L
,k
(ii) xk1是二次函数在k 维超平面Hk 上的极小点。
证明 由引理 3.5.2,只需证明(i),
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最优化课程设计--共轭梯度法算法分析与实现(设计程序)题目共轭梯度法算法分析与实现班级 / 学号 14140101/2011041401011 学生姓名黄中武指导教师王吉波王微微课程设计任务书课程名称最优化方法课程设计院(系) 理学院专业信息与计算科学课程设计题目共轭梯度法算法分析与实现课程设计时间: 2014 年 6月 16日至 2014 年 6月 27日课程设计的要求及内容:[要求]1. 学习态度要认真,要积极参与课程设计,锻炼独立思考能力;2. 严格遵守上机时间安排;3. 按照MATLAB编程训练的任务要求来编写程序;4. 根据任务书来完成课程设计论文;5. 报告书写格式要求按照沈阳航空航天大学“课程设计报告撰写规范”;6. 报告上交时间:课程设计结束时上交报告;7. 严禁抄袭行为,一旦发现,课程设计成绩为不及格。
一、运用共轭梯度法求解无约束最优化问题要求:1)了解求解无约束最优化问题的共轭梯度法;2)绘出程序流程图;3)编写求解无约束最优化问题的共轭梯度法MATLAB程序;4)利用编写文件求解某无约束最优化问题;5)给出程序注释。
指导教师年月日负责教师年月日学生签字年月日沈阳航空航天大学课程设计成绩评定单课程名称最优化理论与算法课程设计院(系) 理学院专业信息与计算科学课程设计题目共轭梯度法算法分析与实现学号 2011041401011 姓名黄中武指导教师评语:课程设计成绩指导教师签字年月日最优化方法课程设计沈阳航空航天大学课程设计用纸目录目录一、正文 (1)二、总结 ...............................................................8 参考文献 ............................................................... 9 附录 .. (10)第 I 页最优化方法课程设计沈阳航空航天大学课程设计用纸正文一、正文一无约束最优化问题的共轭梯度法共轭梯度法最初是由Hesteness和Stiefel于1952年为求解线形方程组而提出的。
后来,人们把这种方法用于求解无约束最优化问题,使之成为一种重要的最优化方法。
下面,重点介绍Fletcher-Reeves共轭梯度法,简称FR法。
共轭梯度法的基本思想是把共轭性与最速下降法相结合,利用已知点处的梯度构造一组共轭方向,并沿这组方向进行搜索,求出目标函数的极小点。
根据共轭梯度方向的基本性质,这种方法具有二次终止性。
首先讨论对于二次函数的共轭梯度法,然后再把这种方法推广到极小化一般函数的情形。
考虑问题TTmi fx(),,,0.5xAxbxcn其中A是对称正定矩阵,c是常数。
具体求解方法如下:(1)首先,任意给定一个初始点,计算出目变函数在这点的梯度,fx()xg若=0,则停止计算,否则,令 1(1)(1)dfxg,,,,,() 1(1)(2)(2),0沿方向搜索,得到点,计算在处的梯度,若g,则利用dxx2(1)(2)(2)和构造第二个搜索方向,再沿搜索。
,gddd2()k()k()k()k一般地,若已知点和搜索方向,则从出发,沿进行xdxd搜索,得到(1)()()kkk,xxd,,, k其中步长满足 ,k()()kk()()kkfxd(),,,fxd(),,min k此时可求出的显式表达。
令 ,k()()kk,,,()(),,fxd,,()求得极小点,令'(1)()kTk,,,()()0,,,fxd第 1 页最优化方法课程设计沈阳航空航天大学课程设计用纸正文根据二次函数的梯度表达式,即(1)()kTk, ()0Axbd,,T()()kkk Axdbd(+)0,,,,,kT()()kk (10.3.16) gAdd,,,0,,()kk由(10.3.16)式得到Tk()gd()()kTkk (10.3.17) ,,,dAdk(1)k,计算在处的梯度,若,则停止计算;否则,用fx()g,0x,gk,1k,1()k(1)k,(1)k,()k和构造下一个搜索方向,并使和关于A共轭。
按此设dddd想,令(1)()kk,dgd,,,, (10.3.18) kk,1()kT上式两端左乘,并令 dA()(1)()()()kTkkTkTk,dAddAgdAd,,,,,0 kk,1由此得到()kT()()kTk,,dAg (10.3.19) dAd,kk1(1)k,(1)k,再从出发,沿方向搜索 xd综上分析,在第一个搜索方向取负梯度的前提下,重复使用公式(10.3.14),(10.3.17),(10.3.18)和(10.3.19),就能伴随计算点的增加,构造出一组搜索方向。
第 2 页最优化方法课程设计沈阳航空航天大学课程设计用纸正文二程序流程图开始输入初始点x0精度e继续迭代满足精度要 N求Y输出迭代结果结束图一共轭梯度法程序流程图三共轭梯度法的MATLAB程序function [x,val,k]=frcg(fun,gfun,x0)maxk=5000;rho=0.6;sigma=0.4;k=0;epsilon=1e-7;n=length(x0);while (k<maxk)g=feval(gfun,x0);第 3 页最优化方法课程设计沈阳航空航天大学课程设计用纸正文itern=k-(n+1)*floor(k/(n+1));itern=itern+1;if(itern==1)d=-g;elsebeta=(g'*g)/(g0'*g0);d=-g+beta*d0;gd=g'*d;if(gd>=0)d=-g;endendif (norm(g)<epsilon)break;endm=0;mk=0;while (m<20)if(feval(fun,x0+rho^m*d)<feval(fun,x0)+sigma*rho^m*g'*d) mk=m;break;endm=m+1;endx0=x0+rho^mk*d;val=feval(fun,x0);g0=g;d0=d;k=k+1;end第 4 页最优化方法课程设计沈阳航空航天大学课程设计用纸正文 x=x0; val=feval(fun,x);function f=fun(x)f=100*(x(1)^2-x(2))^2+(x(1)-1)^2;function g=gfun(x)g=[400*x(1)*(x(1)^2-x(2))+2*(x(1)-1),-200*(x(1)^2-x(2))]'四利用所编程序求解实际问题222mifxxxx()100*()(1),,,,例 n121**Txfx,,(1,1),()0该问题有精确解利用所编程序求解此问题,在命令窗口输入:运行结果为:第 5 页最优化方法课程设计沈阳航空航天大学课程设计用纸正文五程序注释function [x,val,k]=frcg(fun,gfun,x0)%用FR共轭梯度法求解无约束问题:min f(x) %输入:x0时初始点,fun,gfun 分别是目标函数和梯度 %输出:x,val分别是近似最优点和最优值,k是迭代次数。
maxk=5000;%最大迭代次数rho=0.6;sigma=0.4;k=0;epsilon=1e-7;n=length(x0);while (k<maxk)g=feval(gfun,x0);%计算梯度itern=k-(n+1)*floor(k/(n+1));itern=itern+1;%计算搜索方向if(itern==1)d=-g;elsebeta=(g'*g)/(g0'*g0);d=-g+beta*d0;gd=g'*d;if(gd>=0)d=-g;endendif (norm(g)<epsilon)%检验终止条件break;endm=0;mk=0;while (m<20)第 6 页最优化方法课程设计沈阳航空航天大学课程设计用纸正文if(feval(fun,x0+rho^m*d)<feval(fun,x0)+sigma*rho^m*g'*d) mk=m;break;endm=m+1;endx0=x0+rho^mk*d;val=feval(fun,x0);g0=g;d0=d;k=k+1;endx=x0;val=feval(fun,x);function f=fun(x)f=100*(x(1)^2-x(2))^2+(x(1)-1)^2;%需要求解的函数function g=gfun(x)g=[400*x(1)*(x(1)^2-x(2))+2*(x(1)-1),-200*(x(1)^2-x(2))]'%梯度第 7 页最优化方法课程设计沈阳航空航天大学课程设计用纸正文二、总结不知不觉,一个学期就这样过去了,随着期末尾声的到来,《最优化》这门课也已经结课了,接着而来的是为期两个星期的课程设计。
作为信息与计算科学系的一员,我们在课堂上接触最多的就是理论部分,刚好课程设计可以给我们验证理论,联系实际的机会,所以,这次课程设计,我一直都在认真完成。
在拿到自己的课程设计题目的时候,我对它进行了一定时间的审题,题目中要求我用共轭梯度法求解无约束优化问题,所以我拿到课本,仔细地看了共轭梯度法的原理与例题求解,以便帮助我更好的理解共轭梯度法的应用。
我记得,再一次研究生面试中,有的老师问过考生:你在你的大学生涯中学到了什么,如果让我回答,我会说:我学到了一种发现问题与解决问题的方法,这种方法是在我的学习中慢慢形成的一种潜移默化的思想,关于学到的内容,我们不会一直保留太清晰的记忆,也不会在以后的生活中用到太多,就像买菜不会用到微积分,不会求导,但是,数学方法和思想给我们思考问题所带来的方法论却是大有裨益。
这次课程设计,我发现我的很多不足,比如在MATLAB上的应用上,我还不熟练,这与我在平时的练习中没有加以重视有关,而且在《最优化》的很多知识点上,自己还没有很好地掌握。
最后,我要感谢我们的任课教师王吉波老师,感谢他在给我们上课中的带来的幽默感和知识的传授。
在此,祝愿老师身体健康,工作顺利。
完稿日期: 2014 年 6月 21日第 8 页最优化方法课程设计沈阳航空航天大学课程设计用纸参考文献参考文献[1] 陈宝林.《最优化理论与算法》[M].北京,清华大学出版社,2013. [2] 刘卫国.《MATLAB程序设计教程》[M].北京,中国水利水电出版社,2010. [3] 马昌凤.《最优化方法及其MATLAB程序设计》[M].北京,科学出版社,2010.第 9 页最优化方法课程设计沈阳航空航天大学课程设计用纸附录附录源程序:function [x,val,k]=frcg(fun,gfun,x0)maxk=5000;rho=0.6;sigma=0.4;k=0;epsilon=1e-7;n=length(x0);while (k<maxk)g=feval(gfun,x0);itern=k-(n+1)*floor(k/(n+1));itern=itern+1;if(itern==1)d=-g;elsebeta=(g'*g)/(g0'*g0);d=-g+beta*d0;gd=g'*d;if(gd>=0)d=-g;endendif (norm(g)<epsilon)break;endm=0;mk=0;while (m<20)if(feval(fun,x0+rho^m*d)<feval(fun,x0)+sigma*rho^m*g'*d) 第 10 页最优化方法课程设计沈阳航空航天大学课程设计用纸附录mk=m;break;endm=m+1;endx0=x0+rho^mk*d;val=feval(fun,x0);g0=g;d0=d;k=k+1;endx=x0;val=feval(fun,x);function f=fun(x)f=100*(x(1)^2-x(2))^2+(x(1)-1)^2;function g=gfun(x)g=[400*x(1)*(x(1)^2-x(2))+2*(x(1)-1),-200*(x(1)^2-x(2))]' 第 11 页。