高中理科数学-离散型随机变量及分布列汇编
专题01 离散型随机变量分布列(解析版)

概率与统计专题01 离散型随机变量分布列常见考点考点一 离散型随机变量分布列典例1.某校组织“百年党史”知识比赛,每组有两名同学进行比赛,有2道抢答题目.已知甲、乙两位同学进行同一组比赛,每人抢到每道题的机会相等.抢到题目且回答正确者得100分,没回答者得0分;抢到题目且回答错误者得0分,没抢到者得50分,2道题目抢答完毕后得分多者获胜.已知甲答对每道题目的概率为45.乙答对每道题目的概率为35,且两人各道题目是否回答正确相互独立.(1)求乙同学得100分的概率;(2)记X 为甲同学的累计得分,求X 的分布列和数学期望. 【答案】(1)37100; (2)分布列见解析,()100E X =. 【解析】 【分析】(1)应用独立事件乘法公式及互斥事件的概率求法,求乙同学得100分的概率;(2)由题意知X 可能值为{0,50,100,150,200},分别求出对应概率,写出分布列,进而求期望. (1)由题意,乙同学得100分的基本事件有{乙抢到两题且一道正确一道错误}、{甲乙各抢到一题都回答正确}、{甲抢到两题且回答错误},所以乙同学得100分的概率为1312141311113722252525252525100⨯⨯⨯⨯+⨯⨯⨯⨯+⨯⨯⨯=. (2)由题意,甲同学的累计得分X 可能值为{0,50,100,150,200},1111111313134(0)225252525252525P X ==⨯⨯⨯+⨯⨯⨯⨯+⨯⨯⨯=;121112134(50)222525252525P X ==⨯⨯⨯⨯+⨯⨯⨯⨯=;1212111414139(100)2225252525252525P X ==⨯⨯⨯+⨯⨯⨯⨯+⨯⨯⨯⨯=;14124(150)2252525P X ==⨯⨯⨯⨯=;14144 (200)252525P X==⨯⨯⨯=;分布列如下:所以期望44944()050100150200100 2525252525E X=⨯+⨯+⨯+⨯+⨯=.变式1-1.第24届冬季奥林匹克运动会(The XXIV Olympic Winter Games),即2022年北京冬季奥运会,于2022年2月4日星期五开幕,2月20日星期日闭幕.北京冬季奥运会设7个大项,15个分项,109个小项.北京赛区承办所有的冰上项目;延庆赛区承办雪车、雪橇及高山滑雪项目;张家口赛区的崇礼区承办除雪车、雪橇及高山滑雪之外的所有雪上项目.某运动队拟派出甲、乙、丙三人去参加自由式滑雪.比赛分为初赛和决赛,其中初赛有两轮,只有两轮都获胜才能进入决赛.已知甲在每轮比赛中获胜的概率均为34;乙在第一轮和第二轮比赛中获胜的概率分别为45和58;丙在第一轮和第二轮获胜的概率分别是p和32p-,其中34p<<.(1)甲、乙、丙三人中,谁进入决赛的可能性最大;(2)若甲、乙、丙三人中恰有两人进人决赛的概率为2972,求p的值;(3)在(2)的条件下,设进入决赛的人数为ξ,求ξ的分布列.【答案】(1)甲进入决赛可能性最大(2)23 p=(3)分布列见解析【解析】【分析】(1)分别求出甲、乙、丙三人初赛的两轮均获胜的概率,然后比较即可;(2)利用相互独立事件的概率的求法分别求出甲和乙进入决赛的概率、乙和丙进入决赛的概率、甲和丙进入决赛的概率,即可通过甲、乙、丙三人中恰有两人进人决赛的概率为2972,列方程求解;(3)先确定进入决赛的人数为ξ的取值,依次求出每一个ξ值所对应的概率,列表即可.(1)甲在初赛的两轮中均获胜的概率为:13394416P =⨯= 乙在初赛的两轮中均获胜的概率为:2451582P =⨯=丙在初赛的两轮中均获胜的概率为:233322P P P P P ⎛⎫=⋅-=-+ ⎪⎝⎭∵3043012p p ⎧<<⎪⎪⎨⎪<-<⎪⎩,∵1324p <<,∵2339941616P P ⎛⎫=--+< ⎪⎝⎭ ∵甲进入决赛可能性最大. (2)()()()123132231111P P P PP P P P P P =⨯++⨯---222913931139111162216222216p p p p p p ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯⨯--+⨯-⨯-+⨯-⨯- ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 2972=整理得21827100p p -+=,解得23p =或56p =,又∵1324p <<,∵23p =; (3)由(2)得,丙在初赛的两轮中均获胜的概率为:345199P =-=, 进入决赛的人数为ξ可能取值为0,1 ,2,3,71417(0)162972P ξ==⨯⨯=, 71591471411(1)16291629162932P ξ==⨯⨯+⨯⨯+⨯⨯=, 91495171529(2)16291692162972P ξ==⨯⨯+⨯⨯+⨯⨯=, 9155(3)162932P ξ==⨯⨯=, ∵ξ的分布列为变式1-2.从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为12,13,14.(1)若有一辆车独立地从甲地到乙地,求这一辆车未遇到红灯的概率;(2)记X 表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X 的分布列和数学期望. 【答案】(1)14(2)分布列见解析,1312【解析】 【分析】(1)利用相互独立事件概率计算公式,计算出所求概率.(2)结合相互独立事件概率计算公式,计算出分布列并求得数学期望. (1)设“一辆车未遇到红灯”为事件A , 则()11111112344P A ⎛⎫⎛⎫⎛⎫=-⋅-⋅-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(2)随机变量X 的所以可能的取值为0,1,2,3, 则(0)P X ==1111(1)(1)(1)2344-⋅-⋅-=(1)P X ==1111111111111111123423423424⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⋅-⋅-+-⋅⋅-+-⋅-⋅= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭. (2)P X ==11111111111112342342344⎛⎫⎛⎫⎛⎫⋅-+⋅-⋅+-⋅⋅= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. (3)P X ==111123424⋅⋅=. 随机变量X 的分布列:随机变量X 的数学期望:1111113()012342442412E X =⨯+⨯+⨯+⨯=. 变式1-3.对飞机进行射击,按照受损伤影响的不同,飞机的机身可分为∵,∵,∵三个部分.要击落飞机,必须在∵部分命中一次,或在∵部分命中两次,或在∵部分命中三次.设炮弹击落飞机时,命中∵部分的概率是16,命中∵部分的概率是13,命中∵部分的概率是12,射击进行到击落飞机为止.假设每次射击均击中飞机,且每次射击相互独立. (1)求恰好在第二次射击后击落飞机的概率; (2)求击落飞机的命中次数X 的分布列和数学期望. 【答案】(1)14; (2)分布列见解析,83. 【解析】 【分析】(1)把恰好在第二次射击后击落飞机的事件拆成两个互斥事件的和,再利用独立事件概率公式计算作答.(2)求出X 的可能值,并求出每个取值的概率,列出分布列并求出期望作答. (1)设恰好第二次射击后击落飞机为事件A 是第一次未击中∵部分,在第二次击中∵部分的事件与两次都击中∵部分的事件的和,它们互斥,所以25111()()6634P A =⨯+=.(2)依题意,X 的可能取值为1,2,3,4,1X =的事件是射击一次击中∵部分的事件,1(1)6P X ==,由(1)知,1(2)4P X ==, 3X =的事件是前两次射击击中∵部分、∵部分各一次,第三次射击击中∵部分或∵部分的事件,与前两次射击击中∵部分,第三次射击击中∵部分或∵部分的事件的和,它们互斥,12211111111(3)C ()()()32632623P X ==⨯⨯⨯++⨯+=, 4X =的事件是前三次射击击中∵部分一次,∵部分两次,第四次射击的事件,123111(4)C ()1324P X ==⨯⨯⨯=,所以X的分布列为:X的数学期望()11118 123464343E X=⨯+⨯+⨯+⨯=.【点睛】关键点睛:利用概率加法公式及乘法公式求概率,把要求概率的事件分拆成两两互斥事件的和,相互独立事件的积是解题的关键.典例2.高三学生甲、乙为缓解紧张的学习压力,相约本星期日进行“某竞技体育项目”比赛.比赛采用三局二胜制,先胜二局者获胜.商定每局比赛(决胜局第三局除外)胜者得3分,败者得1分,决胜局胜者得2分,败者得0分.已知每局比赛甲获胜的概率为23,各局比赛相互独立.(1)求比赛结束,乙得4分的概率;(2)设比赛结束,甲得X分,求X的概率分布与数学期望.【答案】(1)827;(2)分布列见解析,()14227E X=.【解析】【分析】(1)根据题意,求得得4分的事件,即可求得其概率;(2)根据题意,求得X的取值,再求概率从而求得分布列,再根据分布列求得数学期望即可.(1)若比赛结束,乙得4分,则比赛结果是甲以2:1获胜,故前两局比赛,甲胜1场,败1场,最后一局比赛,甲胜.则比赛结束,乙得4分的概率为122128 33327C⨯⨯⨯=.(2)若甲连胜2局结束比赛,甲得6分,其概率为224 39⎛⎫=⎪⎝⎭;若甲连败2局结束比赛,甲得2分,其概率为21139⎛⎫= ⎪⎝⎭;若甲以2:1结束比赛,甲得6分,其概率为12212833327C ⨯⨯⨯=; 若乙以2:1结束比赛,甲得4分,其概率为12211433327C ⨯⨯⨯=; 故X 的分布列如下所示:故()14201422469272727E X =⨯+⨯+⨯=. 变式2-1.现有甲、乙、丙三道多选题,某同学独立做这三道题,根据以往成绩,该同学多选题的得分只有2分和0分两种情况.已知该同学做甲题得2分的概率为34,分别做乙、丙两题得2分的概率均为23.假设该同学做完了以上三道题目,且做每题的结果相互独立. (1)求该同学做完了以上三题恰好得2分的概率; (2)求该同学的总得分X 的分布列和数学期望()E X . 【答案】(1)736(2)分布列见解析,数学期望()256E X = 【解析】 【分析】(1)根据相互独立事件的概率公式进行求解即可;(2)写出随机变量X 的所有可能取值,求出对应概率,从而可求出分布列,再根据期望公式即可求出期望. (1)解:记“该同学做完了以上三题恰好得2分”为事件A ,“该同学做甲题得2分”为事件B ,“该同学做乙题得2分”为事件C .“该同学做丙题得2分”为事件D ,由题意知32(),()()43P B P C P D ===, 因为A BCD BCD BCD =++,所以()()P A P BCD BCD BCD =++()()()P BCD P BCD P BCD =++()()()()()P B P C P D P B P C =+⋅()()()()P D P B P C P D +322322322711111143343343336⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯-⨯-+-⨯⨯-+-⨯-⨯= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭; (2)解:根据题意,X 的可能取值为0,2,4,6, 所以3221(0)11143336P X ⎛⎫⎛⎫⎛⎫==-⨯-⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.由(1)知7(2)36P X ==, 322121(6)433363P X ==⨯⨯==4(4)1(0)(2)(6)9P X P X P X P X ==-=-=-==, 故X 的分布列为所以174125()024********E X =⨯+⨯+⨯+⨯=. 变式2-2.某运动会中,新增加的“趣味乒乓球单打”是这届运动会的热门项目,比赛规则如下:两人对垒,开局前抽签决定由谁先发球(机会均等),此后均由每个球的赢球者发下一个球,对于每一个球,若发球者贏此球,发球者得1分,对手得0分;若对手赢得此球,发球者得0分,对手得2分.当有一人累计得分超过5分时,比赛就结束,得分高者获胜.已知在选手甲和乙的对垒中,发球一方赢得此球的概率都是0.6,各球结果相互独立.(1)假设开局前抽签结果是甲发第一个球,求比赛出现比分2:2的概率;(2)已知现在比分3:3,接下来由甲发球,两人又打了X 个球后比赛结束,求X 的分布列及数学期望.【答案】(1)0.304;(2)分布列见解析,() 2.904E X =. 【解析】 【分析】(1)把比赛出现比分2:2的事件拆成两个互斥的和,再分别求出每个事件的概率即可得解. (2)求出X 的所有可能值,再分析计算求出各个值的概率,列出分布列,求出期望作答.(1)比赛出现比分2:2的事件A 是甲发三球,前两球甲赢,第三球乙赢的事件1A 与甲发球乙赢、乙发球甲赢的事件2A 的和,事件1A 与2A 互斥,1()0.60.60.40.144P A =⨯⨯=,2()0.40.40.16P A =⨯=, 因此,12()()0.1440.160.304P A P A A =+=+=, 所以比赛出现比分2:2的概率为0.304. (2)X 的所有可能值为:2,3,4,因比分已是3:3,接下来由甲发球,且有一人累计得分超过5分时,比赛就结束,2X =的事件是甲发球乙赢,乙发球乙赢比赛结束的事件,(2)0.40.60.24P X ==⨯=,3X =的事件是以下3个互斥事件的和:甲发三球甲赢,比赛结束的事件;甲发第一球甲赢,发第二球乙赢,乙发球比赛结束的事件;甲发第一球乙赢,乙发第二球甲赢,甲发球比赛结束的事件,3(3)0.60.60.410.40.410.616P X ==+⨯⨯+⨯⨯=,4X =的事件是甲发前两球甲赢,发第三球乙赢,乙再发球比赛结束的事件,2(4)0.60.410.144P X ==⨯⨯=,所以X 的分布列为:X 的数学期望:()20.2430.61640.144 2.904E X =⨯+⨯+⨯=.变式2-3.为进一步加强未成年人心理健康教育,如皋市教育局决定在全市深入开展“东皋大讲堂”进校园心理健康教育宣讲活动,为了缓解高三学生压力,高三年级某班级学生在开展“东皋大讲堂”过程中,同座两个学生之间进行了一个游戏,甲盒子中装有2个黑球1个白球,乙盒子中装有3个白球,现同座的两个学生相互配合,从甲、乙两个盒子中各取一个球,交换后放入另一个盒子中,重复进行n 次这样的操作,记甲盒子中黑球的个数为n X ,恰好有2个黑球的概率为n a ,恰好有1个黑球的概率为n b .(1)求第二次操作后,甲盒子中没有黑球的概率; (2)求3X 的概率分布和数学期望()3E X .【答案】(1)427; (2)答案见解析,()32827E X = 【解析】 【分析】(1)由题意得1112,33a b ==,然后分析第二次操作后,甲盒子中没有黑球的情况,从而求解出对应概率;(2)先计算22,a b ,判断3X 的取值为0,1,2,分别计算对应的概率,列出分布列,利用期望公式求解()3E X . (1)由题意知,1112,33a b ==,两次后甲盒子没有黑球时,必须第一次甲盒子中取出一个黑球,第二次甲盒子(黑1白2)再取出一个黑球,乙盒子中(黑1白2)取出一个白球,则11243327P b =⨯⨯= (2)211121733327b a a =⨯+⨯⨯=,21121122163333327b a b ⎛⎫=⨯+⨯+⨯⨯= ⎪⎝⎭,由题意,3X 的取值为0,1,2,则32124144(0)33273243P X b ==⨯⨯+⨯=,3222112242146(1)33333273243P X a b ⎛⎫==⨯+⨯+⨯⨯+⨯= ⎪⎝⎭,32212153(2)333243P X a b ==⨯+⨯⨯=所以3X 的分布列为所以()314653281224324327E X =⨯+⨯= 【点睛】求解分布列的问题时,一般需要先判断变量的可能取值,然后分析题目中的情况计算每个取值对应的概率,从而列出分布列,代入期望公式求解期望.巩固练习练习一 离散型随机变量分布列1.暑假里大学二年级的H 同学去他家附近的某个大型水果超市打工.他发现该超市每天以10元/千克的价格从中心仓库购进若干A 水果,然后以15元/千克的价格出售;若有剩余,则将剩余的水果以8元/千克的价格退回中心仓库.H 同学记录了打工期间A 水果最近50天的日需求量(单位:千克),整理得下表:以上表中各日需求量的频率作为各日需求量的概率,解答下面的两个问题.(1)若超市明天购进A 水果150千克,求超市明天获得利润X (单位:元)的分布列及期望; (2)若超市明天可以购进A 水果150千克或160千克,以超市明天获得利润的期望为决策依据,在150千克与160千克之中应当选择哪一个?若受市场影响,剩余的水果只能以7元/千克的价格退回水果基地,又该选哪一个?请说明理由. 【答案】(1)分布列见解析,数学期望为743元 (2)超市应购进160千克,理由见解析. 【解析】 【分析】(1)求出X 的可能取值及相应的概率,进而得到分布列及数学期望;(2)设该超市一天购进水果160千克,当天利润为Y 元,求出Y 的可能取值及相应的概率,求出数学期望,与第一问求出的期望值相比,得到结论. (1)若A 水果日需求量为140千克,则()()()1401510150140108680X =⨯---⨯-=,且()56800.150P X ===, 若A 水果日需求量不少于150千克,则()1501510750X =⨯-=,且()75010.10.9P X ==-=,故X 的分布列为:()6800.17500.9743E X =⨯+⨯=元(2)设该超市一天购进水果160千克,当天利润为Y 元,则Y 的可能取值为140×5-20×2,150×5-10×2,160×5,即660,730,800 且()56600.150P Y ===,()107300.250P Y ===,()358000.750P Y ===,则()6600.17300.28000.7772E Y =⨯+⨯+⨯=,因为772>743,所以超市应购进160千克.2.某工厂生产一种产品,由第一、第二两道工序加工而成,两道工序的加工结果相互独立,每道工序的加工结果只有A ,B 两个等级.两道工序的加工结果直接决定该产品的等级:两道工序的加工结果均为A 级时,产品为一等品;两道工序恰有一道.工序加工结果为B 级时,产品为二等品;其余均为三等品.每一道工序加工结果为A 级的概率如表一所示,一件产品的利润(单位:万元)如表二所示: 表一表二(1)用η(万元)表示一件产品的利润,求η的分布列和均值;(2)工厂对于原来的生产线进行技术升级,计划通过增加检测成本对第二工序进行改良,假如在改良过程中,每件产品检测成本增加()04x x ≤≤万元(即每件产品利润相应减少x 万元)时,第二工序加工结果为A 级的概率增加0.1x ,问该改良方案对一件产品的利润的均值是否会产生影响?并说明理由.【答案】(1)分布列答案见解析,()33.6E η=(2)该改良方案对一件产品的利润的均值会产生影响,理由见解析【解析】 【分析】(1)由题意η的可能取值为50,20,10,分别求出其概率得分布列,再由期望公式计算出期望; (2)设改良后一件产品的利润为ξ,同(1)求出ξ的各可能取值的概率,计算出期望,由期望函数()E ξ与()E η比较可得结论. (1)由题意可知,η的可能取值为50,20,10, 产品为一等品的概率为0.8×0.6=0.48, 产品为二等品的概率为0.8×0.4+0.2×0.6=0.44, 产品为三等品的概率为1-0.48-0.44=0.08, 所以η的分布列为()500.48200.44100.0833.6E η=⨯+⨯+⨯=.(2)改良方案对一件产品的利润的均值会产生影响,理由如下:由题意可知,改良过程中,每件产品检测成本增加()04x x ≤≤万元时,第二工序加工结果为A 级的概率增加0.1x ,设改良后一件产品的利润为ξ,则ξ可能的取值为50x -,20x -,10x -, 所以一等品的概率为()0.80.10.60.480.08x x ⨯+=+,二等品的概率为()()()0.810.60.110.80.60.10.440.06x x x ⨯-++-⨯+=-⎡⎤⎣⎦, 三等品的概率为()()10.480.080.440.060.080.02x x x -+--=-, 所以()()()()()()()0.480.08500.440.06200.080.0210 1.633.6E x x x x x x x ξ=+⨯-+-⨯-+-⨯-=+,因为()E ξ在[]0,4上单调递增,故当4x =时,()E ξ取到最大值为40, 又因为()()E E ξη≥,所以该改良方案对一件产品的利润的均值会产生影响.3.2022年北京冬奥会有包括中国队在内的12支男子冰球队参加比赛,12支参赛队分为三组,每组四队,2月9号至13号将进行小组赛,小组赛采取单循环赛制,即每个小组的四支参赛队在比赛中均能相遇一次,最后按各队在比赛中的得分多少来排列名次.小组赛结果的确定规则如下: ∵在常规时间里,获得最多进球的队为获胜者,获胜者得3分;∵在常规时间里,如果双方进球相等,每队各得1分.比赛继续进行,以突然死亡法(即在规定的时间内有一方进球)加时赛决出胜负,突然死亡法加时赛中获胜的队将额外获得1分;∵在突然死亡法加时赛中,如果双方都没有得分,那么进行点球赛,直至决出胜负,在点球赛中获胜的队将额外获得1分.若在小组赛中,甲队与乙队相遇,在常规时间里甲队获胜的概率为12,进球数相同的概率为14;在突然死亡法加时赛中,甲队获胜的概率为23,双方都没有得分的概率为16;在点球赛中,甲队获胜的概率为23,假设各比赛结果相互独立.(1)在甲队与乙队的比赛中,求甲队得2分获胜的概率;(2)在甲队与乙队的比赛中,求甲队得分X 的分布列及数学期望. 【答案】(1)736; (2)分布列见解析;3518. 【解析】 【分析】(1)由题可得甲队得2分获胜有两种情况,甲在加时赛中获胜或甲在点球赛中获胜,分别计算概率即得;(2)由题可得X 可取0,1,2,3,分别计算概率即得分布列,然后利用期望计算公式即得. (1)设甲在加时赛中获胜为事件A ,甲在点球赛中获胜为事件B , 则()(),121112143646336P A P B =⨯==⨯⨯=, ∵甲队得2分获胜的概率为()()11763636P P A P B =+=+=. (2)甲队得分X 可取0,1,2,3,()11101244P X ==--=,()121112111143646318P X ⎛⎫⎛⎫==⨯--+⨯⨯-= ⎪ ⎪⎝⎭⎝⎭,()7236P X ==, ()132P X ==, ∵X 的分布列为∵甲队得分X 的数学期望为()117135012341836218E X =⨯+⨯+⨯+⨯=. 4.为进一步完善公共出行方式,倡导“绿色出行”和“低碳生活”,某市建立了公共自行车服务系统,为了鼓励市民租用公共自行车出行,同时希望市民尽快还车,方便更多的市民使用,公共自行车按每次的租用时间进行缴费,具体缴费标准如下:∵租用时间不超过1小时,免费;∵超出一小时后每小时1元(不足一小时按一小时计算),一天24小时最高收费10元.某日甲、乙两人独立出行,各租用公共自行车一次,且两人租车时间都不会超过3小时,设甲、乙租用时间不超过一小时的概率分别是0.5,0.4;租用时间为1小时以上且不超过2小时的概率分别是0.2,0.4. (1)求甲比乙付费多的概率;(2)设甲、乙两人付费之和为随机变量ξ,求ξ的分布列和数学期望. 【答案】(1)0.32 (2)分布列见解析,1.6 【解析】 【分析】(1)用合适的字母表达每个事件,并按照题意搞清楚事件之间的关系以及每个事件的概率即可; (2)求分布列和数学期望就是要搞清楚随机变量的可能取值范围,以及每个值都是由那些事件构成的. (1)根据题意,记“甲付费为0元、1元、2元、”为事件1A ,2A ,3A它们彼此互斥,且()10.5p A =,()20.2p A =,()()()31210.3p A P A P A =-+=⎡⎤⎣⎦, 同理,记“乙付费为0元、1元、2元”为事件1B ,2B ,3B它们彼此互斥,且()10.4p B =,()20.4p B =,()()()31110.2p B P B P B =-+=⎡⎤⎣⎦, 由题知,事件1A ,2A ,3A 与事件1B ,2B ,3B相互独立记,甲比乙付费多为事件M ,则有:213132M A B A B A B =++可得:()()()()()()()2131320.20.40.30.40.30.40.32P M P A P B P A P B P A P B =++=⨯+⨯+⨯= 故:甲比乙付费多的概率为:0.32; (2)由题知,ξ的可能取值为:0,1,2,3,4 则有:()()()1100.50.40.2P P A P B ξ===⨯=,()()()()()122110.50.40.20.40.28P P A P B P A P B ξ==+=⨯+⨯=,()()()()()()()13312220.50.20.30.40.20.40.3P P A P B P A P B P A P B ξ==++=⨯+⨯+⨯=, ()()()()()233230.20.20.30.40.16P P A P B P A P B ξ==+=⨯+⨯=, ()()()3340.30.20.06P P A P B ξ===⨯=;所以ξ的分布列为:ξ的数学期望:()00.210.2820.330.1640.06 1.6E ξ=⨯+⨯+⨯+⨯+⨯=,故答案为:0.32,1.6.5.随着2022年北京冬季奥运会的如火如茶的进行.2022年北京冬季奥运会吉祥物“冰墩墩”受到人们的青睐,现某特许商品专卖店每天均进货一次,卖一个吉祥物“冰墩墩”可获利50元,若供大于求,则每天剩余的吉祥物“冰墩墩”需交保管费10元/个;若供不应求,则可从其他商店调剂供应,此时调剂的每一个吉祥物“冰墩墩”该店仅获利20元.该店调查上届冬季奥运会吉祥物每天(共计20天)的需求量(单位:个),统计数据得到下表:以上述20天吉祥物的需求量的频率作为各需求量发生的概率.记X表示每天吉祥物“冰墩墩”的需求量.(1)求X的分布列;(2)若该店某一天购进164个吉祥物“冰墩墩”,则当天的平均利润为多少元.【答案】(1)(2)8187(元)【解析】【分析】(1)X可取162,163,164,165,166,求出对应概率,然后再写出分布列即可;(2)设Y表示每天的利润,求出所有Y的取值,再根据期望公式即可得解.(1)解:X可取162,163,164,165,166,()21P X===,1622010()41P X===,163205()63P X===,1642010()51P X===,165204()3P X==,16620所以分布列为:(2)设Y 表示每天的利润,当162X =时,162502108080Y =⨯-⨯=, 当163X =时,16350108140Y =⨯-=, 当164X =时,164508200Y =⨯=, 当165X =时,16450208220Y =⨯+=, 当166X =时,164502208240Y =⨯+⨯=, 所以平均利润为1131380808140820082208240818710510420⨯+⨯+⨯+⨯+⨯=(元). 6.在中国共产党的正确领导下,我国顺利实现了第一个百年奋斗目标——全面建成小康社会.某地为了巩固扶贫成果,决定继续对甲、乙两家乡镇企业进行指导.指导方式有两种,一种是精准指导,一种是综合指导.已知对甲企业采用精准指导时,投资50万元,增加100万元收入的概率为0.2,增加200万元收入的概率为0.8,采用综合指导时,投资100万元,增加200万元收入的概率为0.6,增加400万收入的概率为0.4;对乙企业采用精准指导时,投资50万元,增加100万元收入的概率为0.3,增加200万元收入的概率为0.7,采用综合指导时,投资100万元,增加200万元收入的概率为0.7,增加400万元收入的概率为0.3.指导结果在两家企业之间互不影响.(1)若决策部门对甲企业进行精准指导、对乙企业进行综合指导,设两家企业增加的总收入为X 万元,求X 的分布列;(2)若有150万元无息贷款可供甲、乙两家企业使用,对两家企业应分别进行哪种指导总收入最高?请说明理由.【答案】(1)分布列见解析;(2)对甲企业进行综合指导、对乙企业进行精准指导总收入最高,理由见解析. 【解析】 【分析】(1)根据题意确定随机变量X 的所有可能取值,再求出每个取值对应事件的概率并列出分布列即可; (2)由条件知指导方案共有三种:对两家企业均进行精准指导;对甲企业精准指导、对乙企业综合指导;对甲企业综合指导、对乙企业精准指导,然后求出每种方案增加的总收入的数学期望,比较它们大小即可.(1)由题意知X 可能取值为300,400,500,600,则()3000.20.70.14P X ==⨯=,()4000.80.70.56P X ==⨯=,()5000.20.30.06P X ==⨯=,()6000.80.30.24P X ==⨯=,∵当决策部门对甲企业进行精准指导、对乙企业进行综合指导时,两家企业增加的总收入X 的分布列为(2)指导方案1:对甲、乙两家企业均进行精准指导.设两家企业增加的总收入为Y 万元,则Y 可能取值为200,300,400,且()2000.20.30.06P Y ==⨯=,()3000.20.70.80.30.38P Y ==⨯+⨯=,()4000.80.70.56P Y ==⨯=,()2000.063000.384000.56350E Y =⨯+⨯+⨯=(万元);指导方案2:对甲企业进行精准指导、对乙企业进行综合指导. 由(1)得()3000.144000.565000.066000.24440E X =⨯+⨯+⨯+⨯=(万元); 指导方案3:对甲企业进行综合指导、对乙企业进行精准指导.设两家企业增加的总收入为Z ,则Z 的可能取值为300,400,500,600, 且()3000.60.30.18P Z ==⨯=,()4000.70.60.42P Z ==⨯=,()5000.40.30.12P Z ==⨯=,()6000.40.70.28P Z ==⨯=, ()3000.184000.425000.126000.28450E Z =⨯+⨯+⨯+⨯=(万元).∵350440450<<,∵指导方案3:对甲企业进行综合指导、对乙企业进行精准指导总收入最高.7.2021年10月16日,神舟十三号载人飞船与天宫空间站组合体完成自主快速交会对接,航天员翟志刚、王亚平、叶光富顺利进驻天和核心舱,由此中国空间站开启了有人长期驻留的时代.为普及航天知识,某航天科技体验馆开展了一项“摸球过关”领取航天纪念品的游戏,规则如下:不透明的口袋中有3个红球,2个白球,这些球除颜色外完全相同.参与者每一轮从口袋中一次性取出3个球,将其中的红球个数记为该轮得分X ,记录完得分后,将摸出的球全部放回袋中.当参与完成第n 轮游戏,且其前n 轮的累计得分恰好为2n 时,游戏过关,可领取纪念品,同时游戏结束,否则继续参与游戏.若第3轮后仍未过关,则游戏也结束.每位参与者只能参加一次游戏. (1)求随机变量X 的分布列及数学期望;(2)若甲参加该项游戏,求甲能够领到纪念品的概率. 【答案】(1)分布列见解析,数学期望为1.8 (2)0.696 【解析】 【分析】(1)先得出随机变量X 可取的,并求出相应概率,列出分布列,计算数学期望;(2)分别求出甲取球1次后、取球2次后、取球3次后可领取纪念的概率,再相加得出甲能够领到纪念品的概率. (1)由题意得,随机变量X 可取的值为1,2,3,易知()10.3P X ==,()20.6P X ==,所以()30.1P X ==, 则随机变量X 的分布列如下:所以()10.320.630.1 1.8E X =⨯+⨯+⨯= (2)由(1)可知,参与者每轮得1分,2分,3分的概率依次为0.3,0.6,0.1, 记参与者第i 轮的得分为i X ,则其前n 轮的累计得分为12n Y X X X =+++,若参与者取球1次后可领取纪念品,即参与者得2分,则()20.6P Y ==;若参与者取球2次后可领取纪念品,即参与者获得的分数之和为4分,有“13+”、“31+”的情形, 则()420.30.10.06P Y ==⨯⨯=;若参与者取球3次后可领取纪念品,即参与者获得的分数之和为6分, 有“123++”、“321++”的情形,则()620.30.10.60.036P Y ==⨯⨯⨯=;记“参与者能够领取纪念品”为事件A ,则()()()()2460.60.060.0360.696P A P Y P Y P Y ==+=+==++=.8.为庆祝中国共产党建党100周年,某单位举办了以“听党召唤,使命在肩”为主题的知识竞赛活动,经过初赛、复赛,小张和小李进入决赛,决赛试题由3道小题组成,每道小题选手答对得1分,答错得0分,假设小张答对第一、第二、第三道小题的概率依次是45,34,12,小李答对每道小题的概率都是34.且他们每道小题解答正确与否相互之间没有影响,用X 表示小张在决赛中的得分,用Y 表示小李在决赛中的得分.(1)求随机变量X 的分布列和数学期望E (X ),并从概率与统计的角度分析小张和小李在决赛中谁的得分能力更强一些;(2)求在事件“4X Y +=”发生的条件下,事件“X Y >”的概率.【答案】(1)分布列答案见解析,数学期望:2.05,小李的得分能力更强一些 (2)431 【解析】【分析】(1)结合相互独立事件、独立重复试验的知识计算出X 的分布列以及()(),E X E Y ,由此作出判断. (2)利用条件概型概率计算公式,计算出事件“X Y >”的概率.(1)由题设知X 的可能取值为0,1,2,3所以()4311011154240P X ⎛⎫⎛⎫⎛⎫==---= ⎪⎪⎪⎝⎭⎝⎭⎝⎭; ()431431431111111115425425425P X ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==⨯-⨯-+-⨯⨯-+-⨯-⨯= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ ()43143143119211154254254240P X ⎛⎫⎛⎫⎛⎫==⨯⨯-+⨯-⨯+-⨯⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ()4313354210P X ==⨯⨯=, 所以随机变量X 的分布列为。
离散型随机变量及其分布列、数字特征-高考数学复习

0.8 .
解析:由结论2易得 E ( X )=0.8.
目录
课堂演练
考点 分类突破
精选考点 典例研析 技法重悟通
PART
2
目录
分布列的性质
【例1】 (1)(2024·云南一中检测)设离散型随机变量ξ的分布列
如下表所示,则下列各式正确的是(
ξ
-1
0
)
1
2
3
P
D. P (ξ<0.5)=0
目录
1
1
1
3
3
3
3
3
2
1
1
+ d ≤ ,所以- ≤ d ≤ .
3
3
3
目录
解题技法
离散型随机变量分布列性质的应用
(1)利用“总概率之和为1”可以求相关参数的取值范围或值;
(2)利用“离散型随机变量在某一范围内的概率等于它取这个范围
内各个值的概率之和”求某些特定事件的概率;
(3)可以根据性质判断所得分布列结果是否正确.
【例2】 (多选)设离散型随机变量 X 的分布列为
X
P
0
q
1
0.4
2
0.1
3
0.2
4
0.2
若离散型随机变量 Y 满足 Y =2 X +1,则下列结果正确的有(
)
A. q =0.1
B. E ( X )=2, D ( X )=1.4
C. E ( X )=2, D ( X )=1.8
D. E ( Y )=5, D ( Y )=7.2
(2) E ( aX + b )= aE ( X )+ b , D ( aX + b )= a 2 D
( X );
【高中数学】离散型随机变量及其分布列+练习题

离散型随机变量及其分布列一、离散型随机变量随着试验结果变化而变化的变量称为随机变量,常用字母X 、Y 、ξ、η…表示.所有取值可以一一列出的随机变量称为离散型随机变量.二、离散型随机变量的分布列一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…x i ,…,x n ,X 取每一个值x i (i =1,2,…,n)的概率P(X =x i )=p i ,则表称为离散型随机变量X 的概率分布列,简称为X 的分布列.有时为了表达简单,也用等式P(X =x i )=pi ,i =1,2,…,n 表示X 的分布列.X x 1x 2…x i …x nPp 1P 2…p i …p n三、离散型随机变量分布列的性质:1.i P ≥0,i =1,2,…,n ;211ni i p ==∑.四、常见离散型随机变量的分布列1.两点分布X 01P 1-p p如果随机变量X 的分布列为两点分布列,就称X 服从两点分布,而称p =P(X =1)为成功概率.2.超几何分布列一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{X =k}发生的概率为(),0,1,2,k n k M N MnNC C P X k k m C --=== .其中m =min{M ,n},且n≤N ,M≤N ,n ,M ,N ∈N*.称分布列X 01…mP00n M N Mn NC C C --11n M N Mn NC C C --…m n m M N Mn NC C C --为超几何分布列.如果随机变量X 的分布列为超几何分布列,则称随机变量X 服从超几何分布.例1:设随机变量X 的分布列如下:则p 为()X 1234P 161316pA.16B.13C.23D.12解:由16+13+16+p =1,∴p =13.2.抛掷2颗骰子,所得点数之和记为X ,那么X =4表示的随机试验结果是()A .2颗都是4点B .1颗是1点,另一颗是3点C .2颗都是2点D .1颗是1点,另1颗是3点,或者2颗都是2点解:X =4表示的随机试验结果是1颗1点,另1颗3点或者两颗都是2点.例3:若随机变量X 的分布列P (x =i )=i2a(i =1、2、3),则P (x =2)=()A.19B.16C.13D.14解:由12a +22a +32a =62a =1,得a =3.∴P (x =2)=22×3=13.=0.3,那么n =________.解:1n×3=0.3,∴n =10.例5:从装有3个红球,2个白球的袋中随机取出2个球,设其中有X 个红球,则随机变量X 的概率分布为X 012P解:P (X =0)=1C 25=110,P (X =1)=C 13C 12C 25=35,P (X =2)=C 23C 25=310.1.对随机变量的理解(1)随机变量具有如下特点:其一,在试验之前不能断言随机变量取什么值,即具有随机性;其二,在大量重复试验中能按一定统计规律取实数值的变量,即存在统计规律性.(2)由离散型随机变量分布列的概念可知,离散型随机变量的各个可能值表示的事件是彼此互斥的.因此,离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和.2.分布列正误的检验方法对于离散型随机变量的分布列,要注意利用它的两条性质检验所列分布列是否正确,如果求出的离散型随机变量的分布列不满足这两条性质,就说明计算过程中存在错误;反之,也不能说明所得分布列一定是正确的.但要掌握利用这两条性质判断计算过程是否存在错误的方法.例6:设X 是一个离散型随机变量,其分布列为:X -101P 121-2q q 2则q 等于()A .1B .1±22C .1-22D .1+22解:由分布列的性质知1-2q ≥0,q 2≥0,12+1-2q +q 2=1,∴q =1-22.ξ123…nP k n k n k n …k n则k 的值为()A.12B .1C .2D .3解:由k n +k n +…+kn=1,∴k =1.ξ-2-10123P112312412112212112若P (ξ2<x )=1112,则实数x 的取值范围是__________.解:由P (ξ2<x )=1112且结合分布列得4<x ≤9.i i =1,2….2.P 1+P 2+…+P n =1.其主要作用是用来判断离散型随机变量的分布列的正确性,或者用来计算随机变量取某些值的概率.例9:某饮料公司招聘了一名员工,现对其进行一项测试,以便确定工资级别.公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A 饮料,另外4杯为B 饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A 饮料.若4杯都选对,则月工资定为3500元;若4杯选对3杯,则月工资定为2800元;否则月工资定为2100元.令X 表示此人选对A 饮料的杯数.假设此人对A 和B 两种饮料没有鉴别能力.求X 的分布列.解:X 的所有可能取值为:0,1,2,3,4,P (X =i )=C i 4C 4-i4C 48(i =0,1,2,3,4),即X 01234P170167036701670170例10:袋中有3个白球,3个红球和5个黑球.从中抽取3个球,若取得1个白球得1分,取得1个红球解:得分ξ的取值为-3,-2,-1,0,1,2,3.ξ=-3时表示取得3个球均为红球,∴P (ξ=-3)=C 33C 311=1165.ξ=-2时表示取得2个红球和1个黑球,∴P (ξ=-2)=C 23C 15C 311=111.ξ=-1时表示取得2个红球和1个白球,或1个红球和2个黑球.∴P (ξ=-1)=C 23C 13+C 13C 25C 311=1355.ξ=0时表示取得3个黑球或1红、1黑、1白,∴P (ξ=0)=C 35+C 13C 13C 15C 311=13.ξ=1时表示取得1个白球和2个黑球或2个白球和1个红球,∴P (ξ=1)=C 13C 25+C 23C 13C 311=1355.ξ=2时表示取得2个白球和1个黑球,∴P (ξ=2)=C 23C 15C 311=111.ξ=3时表示取得3个白球,∴P (ξ=3)=C 33C 311=1165.∴所求概率分布列为:ξ-3-2-10123P116511113551313551111165例11:在学校组织的足球比赛中,某班要与其他4个班级各赛一场,在这4场比赛的任意一场中,此班级每次胜、负、平的概率相等.已知当这4场比赛结束后,该班胜场多于负场.(1)求该班级胜场多于负场的所有可能的个数和;(2)若胜场次数为X ,求X 的分布列.解:(1)若胜一场,则其余为平,共有C 14=4种情况;若胜两场,则其余两场为一负一平或两平,共有C 24C 12+C 24=18种情况;若胜三场,则其余一场为负或平,共有C 34×2=8种情况;若胜四场,则只有一种情况.综上,共有31种情况.(2)X 的可能取值为1,2,3,4,P (X =1)=431,P (X =2)=1831,P (X =3)=831,P (X =4)=131,所以X 的分布列为X 1234P4311831831131解:(1)所选3人中恰有一名男生的概率P =C 25C 14C 39=1021.(2)ξ的可能取值为0,1,2,3.P (ξ=0)=C 35C 39=542,P (ξ=1)=C 25C 14C 39=1021,P (ξ=2)=C 15C 24C 39=514,P (ξ=3)=C 34C 39=121.∴ξ的分布列为ξ0123P5421021514121解:由题意知η可取3,2,1,0即当η=3时,ξ=0.η=2时,ξ=1.η=1时,ξ=2.η=0时,ξ=3.∴η的分布列为η3210P5421021514121例13:第:31届奥林匹克夏季运动会于2016年8月5日至21日在里约热内卢举行,为了搞好接待工作,组委会在某学院招募了12名男志愿者和18名女志愿者,将这30名志愿者的身高编成如下茎如图(单位:cm):若身高在175cm 以上(包括175cm)定义为“高个子”,身高在175cm 以下定义为“非高个子”,且只有“女高个子”才能担任“礼仪小姐”.(1)如果用分层抽样的方法从“高个子”和“非高个子”中抽取5人,再从这5人中选2人,那么至少有1人是“高个子”的概率是多少?(2)若从所有“高个子”中选3名志愿者,用ξ表示所选志愿者中能担任“礼仪解:(1)根据茎叶图,有“高个子”12人,“非高个子”18人,用分层抽样的方法,每个人被抽中的概率是530=16,所以抽中的“高个子”有12×16=2人,“非高个子”有18×16=3人.用事件A 表示“至少有1名‘高个子’被选中”,则它的对立事件A 表示“没有1名‘高个子’被选中”,则P (A )=1-P (A )=1-C 23C 25=1-310=710.因此,至少有1人是“高个子”的概率是710.(2)依题意,ξ的可能取值为0,1,2,3,则P (ξ=0)=C 38C 312=1455,P (ξ=1)=C 14C 28C 312=2855,P (ξ=2)=C 24C 18C 312=1255,P (ξ=3)=C 34C 312=155.因此,ξ的分布列为ξ0123P145528551255155胜A 、乙胜B 、丙胜C 的概率分别为0.6,0.5,0.5.假设各盘比赛结果相互独立.(1)求红队至少两名队员获胜的概率;(2)用ξ表示红队队员获胜的总盘数,求ξ的分布列和数学期望E(ξ).解:(1)设甲胜A 的事件为D ,乙胜B 的事件为E ,丙胜C 的事件为F ,则D 、E 、F 分别表示甲不胜A 、乙不胜B 、丙不胜C 的事件.因为P (D )=0.6,P (E )=0.5,P (F )=0.5,由对立事件的概率公式知P (D )=0.4,P (E )=0.5,P (F )=0.5红队至少两人获胜的事件有:DE F ,D E F ,D EF ,DEF .由于以上四个事件两两互斥且各盘比赛的结果相互独立,因此红队至少两人获胜的概率为P =P (DE F )+P (D E F )+P (D EF )+P (DEF )=0.6×0.5×0.5+0.6×0.5×0.5+0.4×0.5×0.5+0.6×0.5×0.5=0.55.(2)由题意知ξ可能的取值为0,1,2,3.又由(1)知F 、E 、D 是两两互斥事件,且各盘比赛的结果相互独立,因此p (ξ=0)=P (DEF )=0.4×0.5×0.5=0.1,P (ξ=1)=P (DE F )+P (DEF )+P (D EF )=0.4×0.5×0.5+0.4×0.5×0.5+0.6×0.5×0.5=0.35,P (ξ=3)=P (DEF )=0.6×0.5×0.5=0.15.由对立事件的概率公式得P (ξ=2)=1-P (ξ=0)-P (ξ=1)-P (ξ=3)=0.4.所以ξ的分布列为:ξ0123P0.10.350.40.15因此E (ξ)=0×0.1+1×0.35+2×0.4+3×0.15=1.6.离散型随机变量及其分布列训练题1一、选择题1.下列4个表格中,可以作为离散型随机变量分布列的一个是()A. B.C.D.2.袋中装有10个红球、5个黑球.每次随机抽取1个球后,若取得黑球则另换1个红球放回袋中,直到取到红球为止.若抽取的次数为ξ,则表示“放回5个红球”事件的是()A .ξ=4B .ξ=5C .ξ=6D .ξ≤53.离散型随机变量X 的概率分布规律为P (X =n )=a n (n +1)(n =1,2,3,4),其中a 是常数,则P (12<X <52)的值为()A.23B.34C.45D.564.一盒中有12个乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X 是一个随机变量,其分布列为P (X ),则P (X =4)的值为()A.1220 B.2755 C.27220 D.21255.一只袋内装有m 个白球,n -m 个黑球,连续不放回地从袋中取球,直到取出黑球为止,设此时取出了ξ个白球,下列概率等于(n -m )A 2mA 3n的是()A .P (ξ=3)B .P (ξ≥2)C .P (ξ≤3)D .P (ξ=2)二、填空题6.随机变量X 的分布列如下:X -101P a b c 其中a ,b ,c 成等差数列,则P (|X |=1)=______.7.设随机变量X 只能取5、6、7、…、16这12个值,且取每个值的概率相同,则P (X >8)=________,P (6<X ≤14)=________.三、解答题8.口袋中有n (n ∈N *)个白球,3个红球,依次从口袋中任取一球,如果取到红球,那么继续取球,且取出的红球不放回;如果取到白球,就停止取球.记取球的次数为X .若P (X =2)=730,求:(1)n 的值;(2)X 的分布列.X 012P0.30.40.5X 012P0.3-0.10.8X1234P0.20.50.3X 012P1727379.一项试验有两套方案,每套方案试验成功的概率都是23,试验不成功的概率都是13.甲随机地从两套方案中选取一套进行这项试验,共试验了3次,且每次试验相互独立.(1)求3次试验都选择了同一套方案且都试验成功的概率;(2)记3次试验中,都选择了第一套方案并试验成功的次数为X ,求X 的分布列.10.在某射击比赛中,比赛规则如下:每位选手最多射击3次,射击过程中若击中目标,方可进行下一次射击,否则停止射击;同时规定第i (i =1,2,3)次射击时击中目标得4-i 分,否则该次射击得0分.已知选手甲每次射击击中目标的概率为0.8,且其各次射击结果互不影响.(1)求甲恰好射击两次的概率;(2)设选手甲停止射击时的得分总数为ξ,求随机变量ξ的分布列.1.C2.C3.解析:由(11×2+12×3+13×4+14×5)×a =1.知45a =1∴a =54.故P (12<X <52)=P (1)+P (2)=12×54+16×54=56.答案:D4.解析:由题意取出的3个球必为2个旧球1个新球,故P (X =4)=C 23C 19C 312=27220.答案:C5.解析:由超几何分布知P (ξ=2)=n -m A 2mA 3n答案:D6.解析:∵a ,b ,c 成等差数列,∴2b =a +c .又a +b +c =1,∴b =13,∴P (|X |=1)=a +c =23.答案:237.解析:P (X >8)=23,P (6<X ≤14)=23.答案:23238.解:(1)由P (X =2)=730知C 13C 1n +3×C 1n C 1n +2=730,∴90n =7(n +2)(n +3).∴n =7.(2)X =1,2,3,4且P (X =1)=710,P (X =2)=730,P (X =3)=7120,P (X =4)=1120.∴X 的分布列为X 1234P710730712011209.解:(1)记事件“一次试验中,选择第i 套方案并试验成功”为A i ,i =1,2,则P (A i )=1C 12×23=13.3次试验选择了同一套方案且都试验成功的概率P =P (A 1·A 1·A 1+A 2·A 2·A 2)=313⎛⎫ ⎪⎝⎭+313⎛⎫ ⎪⎝⎭=227.(2)由题意知X 的可能取值为0,1,2,3,则X ~B (3,23),P (X =k )=C k 3313k-⎛⎫ ⎪⎝⎭23k⎛⎫⎪⎝⎭,k =0,1,2,3.X 的分布列为X 0123P127294982710.解:(1)记“选手甲第i 次击中目标的事件”为A i (i =1,2,3),则P (A i )=0.8,P (A i )=0.2,依题意可知:A i 与A j (i ,j =1,2,3,i ≠j )相互独立,所求的概率为P (A 1A 2)=P (A 1)P (A 2)=0.8×0.2=0.16.(2)ξ的可能取值为0,3,5,6.P (ξ=0)=0.2,P (ξ=3)=0.8×0.2=0.16,P (ξ=5)=0.82×0.2=0.128,P (ξ=6)=0.83=0.512.所以ξ的分布列为:ξ0356P 0.20.160.1280.512【参考答案】离散型随机变量及其分布列训练题2一.选择题(共15小题)1.设随机变量ξ的分布列由,则a 的值为()A .1B .C .D .2.设随机变量X 等可能取值1,2,3,…,n ,如果P (X <4)=0.3,那么()A .n=3B .n=4C .n=10D .n=93.下列表中能成为随机变量ξ的分布列的是()A .B .C .D .4.已知8件产品中有2件次品,从中任取3件,取到次品的件数为随机变量,用ξ表示,那么ξ的取值()A .0,1B .1,2C .0,1,2D .0,1,2,35.设离散型随机变量X 的概率分布如表:则随机变量X 的数学期望为()A .B .C .D .6.设随机变量X 的概率分布列为X 1234P m则P (|X ﹣3|=1)=()A .B .C .D .7.设随机变量X 的概率分布如右下,则P (X≥0)=()X ﹣101P p A .B .C .D .8.随机变量ξ的分布列为P (ξ=k )=,k=1,2,3,其中c 为常数,则P (ξ≥2)等于()A .B .C .D .9.两名学生参加考试,随机变量x 代表通过的学生数,其分布列为x 012p那么这两人通过考试的概率最小值为()A .B .C .D .10.一盒中有12个乒乓球,其中9个新的,3个旧的,从盒子中任取3个球来用,用完后装回盒中,此时盒中旧球个数X 是一个随机变量,其分布列为P (X ),则P (X=4)的值为()A .B .C .D .ζ﹣101P 0.30.40.4ζ123P 0.40.7﹣0.1ζ﹣101P0.30.40.3ζ123P0.30.40.4X123P ip11.6件产品中有2件次品与4件正品,从中任取2件,则下列可作为随机变量的是()A.取到产品的件数B.取到正品的件数C.取到正品的概率D.取到次品的概率12.已知随机变量ξ~B(9,)则使P(ξ=k)取得最大值的k值为()A.2B.3C.4D.513.设随机变量的ξ的分布列为P(ξ=k)=(k=1,2,3,4,5,6),则P(1.5<ξ<3.5)=()A.B.C.D.14.已知随机变量X的分布列为:P(X=k)=,k=1,2,…,则P(2<X≤4)等于()A.B.C.D.15.袋中共放有6个仅颜色不同的小球,其中3个红球,3个白球,每次随机任取1个球,共取2次,则下列不可作为随机变量的是()A.取到红球的次数B.取到白球的次数C.2次取到的红球总数D.取球的总次数二.填空题(共5小题)16.设ξ是一个离散型随机变量,其概率分布列如下:ξ﹣101P0.5q2则q=.17.设随机变量X的分布列为P(X=i)=,i=1,2,3,则P(X=2)=.18.随机变量X的分布列为X x1x2x3P p1p2p3若p1,p2,p3成等差数列,则公差d的取值范围是.19.设随机变量X的概率分布为P(X=2k)=ak(a为常数,k=1,2,3,4,5),则P(X>6)=.20.(2014•嘉定区校级模拟)己知A、B两盒中都有红球、白球,且球的形状、大小都相同,盒子A中有m 个红球与10﹣m个白球,盒子B中有10﹣m个红球与m个白球(0<m<10).分别从A、B中各取一个球,ξ表示红球的个数,表中表示的是随机变量ξ的分布列则当m为时,D(ξ)取到最小值.ξ012P?三.解答题(共8小题)21.M公司从某大学招收毕业生,经过综合测试,录用了14名男生和6名女生,这20名毕业生的测试成绩如茎叶图所示(单位:分),公司规定:成绩在180分以上者到“甲部门”工作;180分以下者到“乙部门”工作.另外只有成绩高于180分的男生才能担任“助理工作”.(Ⅰ)如果用分层抽样的方法从“甲部分”人选和“乙部分”人选中选取8人,再从这8人中选3人,那么至少有一人是“甲部门”人选的概率是多少?(Ⅱ)若从所有“甲部门”人选中随机选3人,用X表示所选人员中能担任“助理工作”的人数,写出X的分布列,并求出X的数学期望.22.某校参加高一年级期中考试的学生中随机抽出60名学生,将其数学成绩分成六段[40,50)、[50,60)、…、[90,100]后得到如图部分频率分布直方图,观察图形的信息,回答下列问题:(1)求分数在[70,80)内的频率,并补全这个频率分布直方图;(2)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分;(3)若从60名学生中随抽取2人,抽到的学生成绩在[40,60)记0分,在[60,80)记1分,在[80,100]记2分,用ξ表示抽取结束后的总记分,求ξ的分布列和数学期望.23.2013年2月20日,针对房价过高,国务院常务会议确定五条措施(简称“国五条”).为此,记者对某城市的工薪阶层关于“国五条”态度进行了调查,随机抽取了60人,作出了他们的月收入的频率分布直方图(如图),同时得到了他们的月收入情况与“国五条”赞成人数统计表(如表):(Ⅰ)试根据频率分布直方图估计这60人的平均月收入;(Ⅱ)若从月收入(单位:百元)在[15,25),[25,35)的被调查者中各随机选取3人进行追踪调查,记选中的6人中不赞成“国五条”的人数为X ,求随机变量X 的分布列及数学期望.24.在某校高三学生的数学校本课程选课过程中,规定每位同学只能选一个科目.已知某班第一小组与第二小组各有六位同学选择科目甲或科目乙,情况如下表:现从第一小组、第二小组中各任选2人分析选课情况.(1)求选出的4人均选科目乙的概率;(2)设ξ为选出的4个人中选科目甲的人数,求ξ的分布列和数学期望.月收入(百元)赞成人数[15,25)8[25,35)7[35,45)10[45,55)6[55,65)2[65,75)1科目甲科目乙总计第一小组156第二小组246总计391225.某游乐场有A、B两种闯关游戏,甲、乙、丙、丁四人参加,其中甲乙两人各自独立进行游戏A,丙丁两人各自独立进行游戏B.已知甲、乙两人各自闯关成功的概率均为,丙、丁两人各自闯关成功的概率均为.(1)求游戏A被闯关成功的人数多于游戏B被闯关成功的人数的概率;(2)记游戏A、B被闯关总人数为ξ,求ξ的分布列和期望.26.某超市在节日期间进行有奖促销,凡在该超市购物满300元的顾客,将获得一次摸奖机会,规则如下:奖盒中放有除颜色外完全相同的1个红球,1个黄球,1个白球和1个黑球.顾客不放回的每次摸出1个球,若摸到黑球则停止摸奖,否则就要将奖盒中的球全部摸出才停止.规定摸到红球奖励10元,摸到白球或黄球奖励5元,摸到黑球不奖励.(Ⅰ)求1名顾客摸球3次停止摸奖的概率;(Ⅱ)记X为1名顾客摸奖获得的奖金数额,求随机变量X的分布列和数学期望.一.选择题(共15小题)1.D;2.C;3.C;4.C;5.C;6.B;7.C;8.C;9.B;10.C;11.B;12.A;13.A;14.A;15.D;二.填空题(共5小题)16.;17.;18.[-,];19.;20.1或9;三.解答题(共8小题)21.解:(I)用分层抽样的方法,每个人被抽中的概率为=,根据茎叶图,有“甲部门”人选10人,“乙部门”人选10人,所以选中的“甲部门”人选有10×=4人,“乙部门”人选有10×=4人,用事件A表示“至少有一名甲部门人被选中”,则它的对立事件表示“没有一名甲部门人被选中”,则P(A)=1﹣P()=1﹣=1﹣=.因此,至少有一人是“甲部门”人选的概率是;(Ⅱ)依据题意,所选毕业生中能担任“助理工作”的人数X的取值分别为0,1,2,3,P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==.因此,X的分布列如下:所以X的数学期望EX=0×+1×+2×+3×=.22.解:(1)设分数在[70,80)内的频率为x,根据频率分布直方图,有(0.01+0.015×2+0.025+0.005)×10+x=1,可得x=0.3,所以频率分布直方图如图所示(2)平均分为=45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71(3)学生成绩在[40,60)的有0.25×60=15人,在[60,80)的有0.45×60=27人,在[80,100)的有0.3×60=18人,ξ的可能取值是0,1,2,3,4则,,,,所以ξ的分布列为:∴23.解:(Ⅰ)这60人的月平均收入为(20×0.015+30×0.015+40×0.025+0.02×50+60×0.015+70×0.01)×10=43.5(百元)(Ⅱ)根据频率分布直方图可知[15,25)的人数为0.015×10×60=9人,其中不赞成的只有1人;[25,35)的人数为0.015×10×60=9人,其中不赞成的有2人.则X的所有取值可能为0,1,2,3.,,P (X=2)=+,.∴随机变量X 的分布列为∴E (X )==1.24.解:(1)设“从第一小组选出的2人选科目乙”为事件A ,“从第二小组选出的2人选科目乙”为事件B ,由于事件A 、B 相互独立,且P (A )=,P (B )=,所以选出的4人均选科目乙的概率为:P (A •B )=P (A )•P (B )=;(2)ξ可能的取值为0,1,2,3,则P (ξ=0)=,P (ξ=1)=+=,P (ξ=3)==,P (ξ=2)=1﹣P (ξ=0)﹣P (ξ=1)﹣P (ξ=3)=,ξ的分布列为:所以ξ的数学期望为:0×+1×+2×+3×=1.25.解:(1).(2)ξ可取0,1,2,3,4,P (ξ=0)=(1﹣)2(1﹣)2=;P (ξ=1)=()(1﹣)()2+(1﹣)2=;P (ξ=2)=++=;P (ξ=3)==;P (ξ=4)==.∴ξ的分布列为:ξ01234PE ξ=0×+1×+2×+3×+4×=.26.(Ⅰ)解:设“1名顾客摸球3次停止摸奖”为事件A ,则共有基本事件:1+++=16个,则A 事件包含基本事件的个数为=6个,则P (A )==,故1名顾客摸球3次停止摸奖的概率为,(Ⅱ)解:随机变量X 的所有取值为0,5,10,15,20.,,,,.所以,随机变量X 的分布列为:X 0123P (X )X 05101520P。
高三数学考点-离散型随机变量及其分布列

10.6离散型随机变量及其分布列1.离散型随机变量的概念(1)随机变量如果随机试验的结果可以用一个随着试验结果变化而变化的变量来表示,那么这样的变量叫做____________,随机变量常用字母X,Y,ξ,η等表示.(2)离散型随机变量所有取值可以__________的随机变量,称为离散型随机变量.2.离散型随机变量的分布列(1)分布列设离散型随机变量X可能取的不同值为x1,x2,…,x i,…,x n,X取每一个值x i(i=1,2,…,n)的概率P(X =x i)=p i,则称表为随机变量X的______________,简称为X的分布列.有时为了简单起见,也可用P(X=x i)=p i,i=1,2,…,n表示X的分布列.(2)分布列的性质①________________________;②________________________.3.常用的离散型随机变量的分布列(1)两点分布(又称0-1分布、伯努利分布)随机变量X的分布列为(0<p<1)则称X服从两点分布,并称p=P(X=1)为成功概率.(2)二项分布如果随机变量X的可能取值为0,1,2,…,n,且X取值的概率P(X=k)=__________(其中k=0,1,2,…,则称X服从二项分布,记为____________.(3)超几何分布在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则事件{X=k}发生的概率为__________________(k=0,1,2,…,m),其中m=min{M,n},且n≤N,M≤N,n,M,N∈N*.此时称随机变量X的分布列为超几何分布列,称随机变量X服从______________.自查自纠1.(1)随机变量(2)一一列出2.(1)概率分布列(2)①p i≥0,i=1,2,3,…,n②i=1np i=13.(1)1-p(2)C k n p k q n-k C k n p k q n-k X~B(n,p)(3)C k M C n-kN-MC n N超几何分布某射手射击所得环数X的分布列为X45678910P0.020.040.060.090.280.290.22则此射手“射击一次命中环数大于7”的概率为()A.0.28 B.0.88C.0.79 D.0.51解:P(X>7)=P(X=8)+P(X=9)+P(X=10)=0.28+0.29+0.22=0.79.故选C.在15个村庄中有7个村庄交通不方便,现从中任意选10个村庄,用X表示这10个村庄中交通不方便的村庄数,下列概率中等于C47C68C1015的是()A.P(X=2) B.P(X≤2)C.P(X=4) D.P(X≤4)解:X服从超几何分布P(X=k)=C k7C10-k8C1015,故k=4.故选C.随机变量ξ的所有可能的取值为1,2,3,…,10,且P(ξ=k)=ak(k=1,2,…,10),则a的值为() A.1110 B.155C.110 D.55解:因为随机变量ξ的所有可能的取值为1,2,3,…,10,且P(ξ=k)=ak(k=1,2,…,10),所以a+2a+3a+…+10a=1,则55a=1,即a=155.故选B.已知X的分布列为X-101P1216a设Y=2X+1,则Y的数学期望E(Y)的值是________.解:由分布列的性质,a =1-12-16=13,所以E (X )=-1×12+0×16+1×13=-16,因此E (Y )=E (2X +1)=2E (X )+1=23.故填23.从装有3个红球,2个白球的袋中随机取出2个球,设其中有X 个红球,则随机变量X 的概率分布列为________.解:依题意,随机变量X 的可能取值为0,1,2. 则P (X =0)=C 22C 25=0.1,P (X =1)=C 13C 12C 25=0.6,P (X =2)=C 23C 25=0.3,故X 的分布列为X 0 1 2 P0.10.60.3故填X 0 1 2 P0.10.60.3类型一 随机变量的概念与性质(1)设离散型随机变量X 的分布列为X 0 1 2 3 4 P0.20.10.10.3m求:(Ⅰ)2X +1的分布列; (Ⅱ)|X -1|的分布列. 解:由分布列的性质知:0.2+0.1+0.1+0.3+m =1,解得X 0 1 2 3 4 2X +1 1 3 5 7 9 |X -1|1123从而由上表得所求分布列如下. (Ⅰ)2X +1的分布列:2X +1 1 3 5 7 9 P0.20.10.10.30.3(Ⅱ)|X -1|的分布列:|X -1| 0 1 2 3 P0.10.30.30.3(2)随机变量ξ的分布列如下:ξ-1 0 1 Pabc其中a ,b ,c 成等差数列,则P (|ξ|=1)=____________,公差d 的取值范围是____________. 解:因为a ,b ,c 成等差数列,所以2b =a +c .又a +b +c =1,所以b =13,所以P (|ξ|=1)=a +c =23.又a =13-d ,c =13+d ,根据分布列的性质,得0≤13-d ≤23,0≤13+d ≤23,所以-13≤d ≤13.故填23;⎣⎡⎦⎤-13,13. 【点拨】①研究随机变量的取值,关键是准确理解所定义的随机变量的含义.明确随机变量所取的值对应的试验结果是进一步求随机变量取这个值时的概率的基础.②注意离散型随机变量分布列的两个性质:p i ≥0,i =1,2,…,n ;∑i =1np i =1.③随机变量可能取某一区间内任意值,无法一一列出,则称这样的随机变量为连续型随机变量,如“长江水位”“灯管寿命”等;正态分布即是一种重要的连续型随机变量的分布.设随机变量X 等可能取值1,2,3,…,n ,如果P (X <4)=0.3,那么n =________.解:由于随机变量X 等可能取1,2,3,…,n .所以取到每个数的概率均为1n .所以P (X <4)=P (X =1)+P (X =2)+P (X =3)=3n=0.3,因此n =10.故填10.类型二 求离散型随机变量的分布列袋子中有1个白球和2个红球.(1)每次取1个球,不放回,直到取到白球为止,求取球次数X 的分布列;(2)每次取1个球,有放回,直到取到白球为止,但抽取次数不超过5次,求取球次数X 的分布列; (3)每次取1个球,有放回,共取5次,求取到白球次数X 的分布列.解:(1)X =1,2,3.P (X =1)=13;P (X =2)=A 12A 33=13;P (X =3)=A 22A 33=13.所以X 的分布列是X 12 3 P13 13 13(2)X =1,2,3,4,5.P (X =k )=⎝⎛⎭⎫23k -1×13,k =1,2,3,4. P (X =5)=⎝⎛⎭⎫234. 故X 的分布列为X 1 2 3 4 5 P13294278811681(3)因为X ~B ⎝⎛⎭⎫5,13,所以X 的分布列为P (X =k )=C k 5⎝⎛⎭⎫13k⎝⎛⎭⎫235-k,其中k =0,1,2,3,4,5.【点拨】求随机变量的分布列,一要弄清什么是随机变量,建立它与随机事件的关系;二要把随机变量的所有值找出,不要遗漏;三是准确求出随机变量取每个值的概率,确定概率和为1后写出分布列.对于抽样问题,要特别注意放回与不放回的区别.一般地,无放回抽样由排列数公式求随机变量对应的概率,放回抽样由分步计数原理求随机变量对应的概率.(2017·天津)从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为12,13,14.(1)记X 表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X 的分布列和数学期望; (2)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率. 解:(1)随机变量X 的所有可能取值为0,1,2,3.P (X =0)=⎝⎛⎭⎫1-12×⎝⎛⎭⎫1-13×⎝⎛⎭⎫1-14=14, P (X =1)=12×⎝⎛⎭⎫1-13×⎝⎛⎭⎫1-14+⎝⎛⎭⎫1-12×13×⎝⎛⎭⎫1-14+⎝⎛⎭⎫1-12×⎝⎛⎭⎫1-13×14=1124, P (X =2)=⎝⎛⎭⎫1-12×13×14+12×⎝⎛⎭⎫1-13×14+12×13×⎝⎛⎭⎫1-14=14, P (X =3)=12×13×14=124.所以,随机变量X 的分布列为X 0 1 2 3 P14112414124随机变量X 的数学期望E (X )=0×14+1×1124+2×14+3×124=1312.(2)设Y 表示第一辆车遇到红灯的个数,Z 表示第二辆车遇到红灯的个数,则所求事件的概率为 P (Y +Z =1)=P (Y =0,Z =1)+P (Y =1,Z =0) =P (Y =0)P (Z =1)+P (Y =1)P (Z =0)=14×1124+1124×14=1148. 所以,这2辆车共遇到1个红灯的概率为1148.类型三 超几何分布(2015·天津)为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名.从这8名运动员中随机选择4人参加比赛.(1)设A 为事件“选出的4人中恰有2名种子选手,且这2名种子选手来自同一个协会”,求事件A 发生的概率;(2)设X 为选出的4人中种子选手的人数,求随机变量X 的分布列和数学期望.解:(1)由已知,有P (A )=C 22C 23+C 23C 23C 48=635. 故事件A 发生的概率为635.(2)随机变量X 的所有可能取值为1,2,3,4.P (X =k )=C k 5C 4-k 3C 48(k =1,2,3,4). 故随机变量X 的分布列为X 12 3 4 P1143737114故随机变量X 的数学期望E (X )=1×114+2×37+3×37+4×114=52.【点拨】①超几何分布的概率计算公式从古典概型的角度加以理解更易记忆:P (X =k )=C k M C n -kN -MC nN,即恰取了k 件次品的概率=次品中取了k 件×正品中取了n -k 件N 件产品中任取n 件.②当n 较小,N 较大时,超几何分布的概率计算可以近似地用二项分布来代替.也就是说虽然超几何分布是不放回抽样,二项分布是放回抽样,但是当n 较小而产品总数N 很大时,不放回抽样近似于放回抽样.③超几何分布在产品检验中经常用到.(2017·山东)在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用.现有6名男志愿者A 1,A 2,A 3,A 4,A 5,A 6和4名女志愿者B 1,B 2,B 3,B 4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示. (1)求接受甲种心理暗示的志愿者中包含A 1但不包含B 1的概率;(2)用X 表示接受乙种心理暗示的女志愿者人数,求X 的分布列与数学期望E (X ).解:(1)记接受甲种心理暗示的志愿者中包含A 1但不包含B 1的事件为M ,则P (M )=C 48C 510=518.(2)由题意知X 可取的值为:0,1,2,3,4,则P (X =0)=C 56C 510=142,P (X =1)=C 46C 14C 510=521,P (X =2)=C 36C 24C 510=1021,P (X =3)=C 26C 34C 510=521,P (X =4)=C 16C 44C 510=142,X 0 1 2 3 4 P1425211021521142X 的数学期望是E (X ) =0×P (X =0)+1×P (X =1)+2×P (X =2)+3×P (X =3)+4×P (X =4)=0+1×521+2×1021+3×521+4×142=2.1.求离散型随机变量的分布列的步骤(1)明确随机变量的所有可能取值,以及每个值所表示的意义,判断一个变量是否为离散型随机变量,主要看变量的值能否按一定的顺序一一列出.(2)利用概率的有关知识,求出随机变量取每个值的概率.对于古典概率、互斥事件的概率、相互独立事件同时发生的概率、n 次独立重复试验恰有k 次发生的概率等,都要能熟练计算. (3)按规范形式写出分布列,并用分布列的性质∑i =1np i =1验证.2.分布列的结构为两行,第一行为随机变量X 所有可能的取值,第二行是对应于随机变量X 的值的事件发生的概率.在每一列中,上为“事件”,下为事件发生的概率,只不过“事件”是用一个反映其结果的实数表示的.每完成一列,就相当于求一个随机事件发生的概率.3.可用超几何分布解决的题目涉及的背景多数是生活、生产实践中的问题,且往往由明显的两部分组成,如产品中的正品和次品,盒中的白球和黑球,同学中的男生和女生等.注意弄清楚超几何分布与二项分布的区别与联系.1.袋中有大小相同的5个球,分别标有1,2,3,4,5五个号码,在有放回抽取的条件下依次取出两个球,设两个球号码之和为随机变量X ,则X 所有可能取值的个数是( ) A .5 B .9 C .10 D .25解:X 的所有可能取值为2,3,4,5,6,7,8,9,10,共9个.故选B. 2.下列表中可以作为离散型随机变量分布列的是( )解:A 中ξ的取值出现了重复性;B 中P (ξ=0)=-14<0;C 中∑i =13P (ξi )=15+25+35=65>1.故选D.3.(2015·合肥模拟)设某项试验的成功率是失败率的2倍,试验一次要么成功要么失败,用随机变量X 去描述1次试验的成功次数,则P (X =0)等于( )A .0 B.12 C.13 D.23解:X 可能取值为0或1,而P (X =1)=2P (X =0),且P (X =1)+P (X =0)=1.所以P (X =0)=13.故选C.4.(2015·安徽模拟)一只袋内装有m 个白球,n -m 个黑球,所有的球除颜色外完全相同.连续不放回地从袋中取球,直到取出黑球为止,设此时取出了X 个白球,则下列概率等于(n -m )A 2mA 3n 的是( ) A .P (X =3) B .P (X ≥2) C .P (X ≤3) D .P (X =2)解:由超几何分布知该式对应取球3次,第3次才取到黑球的概率,所以P (X =2)=A 1n -m A 2mA 3n =(n -m )A 2m A 3n.故选D.5.设ξξ-1 0 1 P121-2qq 2则q 的值为( ) A .1 B .1±22C .1+22 D .1-22解法一:由分布列的性质,有 ⎩⎪⎨⎪⎧1-2q ≥0,q 2≥0,12+1-2q +q 2=1,解得q =1-22. 解法二:由1-2q ≥0q ≤12,可排除A 、B 、C ,故选D. 6.若P (ξ≤x 2)=1-β,P (ξ≥x 1)=1-α,其中x 1<x 2,则P (x 1≤ξ≤x 2)等于( ) A .(1-α)(1-β) B .1-(α+β) C .1-α(1-β)D .1-β(1-α)解:由分布列性质可有:P (x 1≤ξ≤x 2)=P (ξ≤x 2)+P (ξ≥x 1)-1=(1-β)+(1-α)-1=1-(α+β).故选B. 7.已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球,现从甲、乙两个盒内各任取2个球.设ξ为取出的4个球中红球的个数,则P (ξ=2)=____________. 解:ξ的可能取值为0,1,2,3,所以P (ξ=2)=C 13C 12C 14+C 23C 22C 24C 26=2790=310.故填310. 8.某公司有5万元资金用于投资开发项目,如果成功,一年后可获利12%;如果失败,一年后将丧失全部资金的50%.下表是过去200投资成功 投资失败 192例8例则该公司一年后估计可获收益的期望是____________元.解:由题意知,一年后获利6 000元的概率为0.96,获利-25 000元的概率为0.04,故一年后收益的期望是6 000×0.96+(-25 000)×0.04=4 760(元).故填4 760.9.某高校的一科技小组有5名男生,5名女生,从中选出4人参加全国大学生科技大赛,用X 表示其中参加大赛的男生人数,求X 的分布列. 解:依题意随机变量X 服从超几何分布,所以P (X =k )=C k 5C 4-k 5C 410(k =0,1,2,3,4).所以P (X =0)=C 05C 45C 410=142,P (X =1)=C 15C 35C 410=521,P (X =2)=C 25C 25C 410=1021,P (X =3)=C 35C 15C 410=521,P (X =4)=C 45C 05C 410=142,所以X 的分布列为10.(2017·湖北荆门调考)某市每年中考都要举行实验操作考试和体能测试,初三某班共有30名学生,下表为该班学生的这两项成绩,例如表中实验操作考试和体能测试都为优秀的学生人数为6人.由于部分数据丢失,只知道从这班30人中随机抽取一个,实验操作成绩合格,且体能测试成绩合格或合格以上的概率是15.(1)试确定a 、b 的值;(2)从30人中任意抽取3人,设实验操作考试和体能测试成绩都是良好或优秀的学生人数为ξ,求随机变量ξ的分布列及数学期望Eξ.解:由表格数据可知,实验操作成绩合格、且体能测试成绩合格或合格以上的学生共有(4+a )人,记“实验操作成绩合格、且体能测试成绩合格或合格以上”为事件A ,则P (A )=4+a 30=15,解得a =2,所以b =30-24-a =4.所以a 的值为2,b 的值为4.(2)由于从30位学生中任意抽取3位的结果数为C 330,其中实验操作成绩和体能测试成绩都是良好或优秀的学生人数为15人,从30人中任意抽取3人,其中恰有k 个实验操作考试和体能测试成绩都是良好或优秀的结果数为C k 15C 3-k 15,所以从30人中任意抽取3人,其中恰有k 人实验操作考试和体能测试成绩都是良好或优秀的概率为:P (ξ=k )=C k 15C 3-k15C 330,(k =0,1,2,3),ξ的可能取值为0,1,2,3, 则P (ξ=0)=C 015C 315C 330=13116,P (ξ=1)=C 115C 215C 330=45116,P (ξ=2)=C 215C 115C 330=45116,P (ξ=3)=C 315C 015C 330=13116,所以ξ的分布列为P13116 45116 45116 13116Eξ=0×13116+1×45116+2×45116+3×13116=174116=32.11.(2015·陕西)设某校新、老校区之间开车单程所需时间为T ,T 只与道路畅通状况有关,对其容量为100的样本进行统计,结果如下:T (分钟) 25 30 35 40 频数(次)20304010(1)求T 的分布列与数学期望E (T );(2)刘教授驾车从老校区出发,前往新校区做一个50分钟的讲座,结束后立即返回老校区,求刘教授从离开老校区到返回老校区共用时间不超过120分钟的概率. 解:(1)由统计结果可得T T (分钟) 25 30 35 40 频率0.20.30.40.1以频率估计概率得T 的分布列为T 25 30 35 40 P0.20.30.40.1从而E (T )=25×0.2+30×0.3+35×0.4+40×0.1=32(分钟).(2)设T 1,T 2分别表示往、返所需时间,T 1,T 2的取值相互独立,且与T 的分布列相同.设事件A 表示“刘教授共用时间不超过120分钟”,由于讲座时间为50分钟,所以事件A 对应于“刘教授在途中的时间不超过70分钟”.解法一:P (A )=P (T 1+T 2≤70)=P (T 1=25,T 2≤45)+P (T 1=30,T 2≤40)+P (T 1=35,T 2≤35)+P (T 1=40,T 2≤30)=0.2×1+0.3×1+0.4×0.9+0.1×0.5=0.91.解法二:P (A )=P (T 1+T 2>70)=P (T 1=35,T 2=40)+P (T 1=40,T 2=35)+P (T 1=40,T 2=40)=0.4×0.1+0.1×0.4+0.1×0.1=0.09, 故P (A )=1-P (A )=0.91.已知一个口袋中装有n 个红球(n ≥1且n ∈N *)和2个白球,从中有放回地连续摸三次,每次摸出两个球,若两个球颜色不同则为中奖,否则不中奖.(1)当n =3时,设三次摸球(每次摸球后放回)中奖的次数为ξ,求ξ的分布列; (2)记三次摸球(每次摸球后放回)恰有两次中奖的概率为P ,当n 取多少时,P 最大. 解:(1)当n =3时,每次摸出两个球,中奖的概率P =C 13C 12C 25=35.由题意知ξ的可能值为0,1,2,3, 故有P (ξ=0)=C 03×⎝⎛⎭⎫253=8125;P (ξ=1)=C 13×35×⎝⎛⎭⎫252=36125; P (ξ=2)=C 23×⎝⎛⎭⎫352×25=54125;P (ξ=3)=C 33×⎝⎛⎭⎫353=27125.ξ的分布列为ξ0 1 2 3或P (ξ=i )=C i 3×⎝⎛⎭⎫35i ×⎝⎛⎭⎫253-i ,i =0,1,2,3. (2)设每次摸球中奖的概率为p ,则三次摸球(每次摸球后放回)恰有两次中奖的概率为P (ξ=2)=C 23·p 2·(1-p )=-3p 3+3p 2,0<p <1,由P ′=-9p 2+6p =-3p (3p -2)知,在⎝⎛⎭⎫0,23上P 为增函数,在⎝⎛⎭⎫23,1上P 为减函数,所以当p =23时,P 取得最大值.又p =C 1n ·C 12C 2n +2=4n (n +1)(n +2)=23,即n 2-3n +2=0,解得n =1或n =2. 所以当n 取1或2时,P 最大.。
第七节 离散型随机变量及其分布列

【解析】 由已知得 X 的所有可能取值为 0,1, 且 P(X=1)=2P(X=0), 1 由 P(X=1)+P(X=0)=1,得 P(X=0)= . 3
离散型随机变量分布列的性质 设离散型随机变量X的分布列为
X P 0 0.2 1 0.1 2 0.1 3 0.3 4 m
求随机变量η=|X-1|的分布列.
解
(1)由题意,得 X 取 3,4,5,6, 1 2 C3 5 C · C 10 5 4 5 且 P(X=3)= 3= ,P(X=4)= 3 = , C9 42 C9 21 1 3 C2 · C 5 C 1 4 5 4 P(X=5)= 3 = ,P(X=6)= 3= , C9 14 C9 21
1 .利用分布列中各概率之和为 1 可求参数的值, 此时要注意检验,以保证每个概率值均为非负数. 2.若 X是随机变量,则η=|X- 1|等仍然是随机变
量,求它的分布列可先求出相应随机变量的值,再根
据对应的概率写出分布列.
设离散型随机变量X的分布列为
X P 0 0.2 1 0.1 2 0.1 3 0.3 4 m
是二项式[(1-p)+p]n的展开式中的第k+1项.
随机变量X服从二项分布
特点: (1)每次试验只有两种结果,要么发生,要么不发 生; (2)任何一次试验中,A事件发生的概率相同,即 相互独立,互不影响试验的结果。
5. 二项分布与两点分布、超几何分布有什么区别和联系?
1.两点分布是特殊的二项分布 (1 p)
(1)由统计数据得到离散型随机变量分布列; (2)由古典概型求出离散型随机变量分布列; (3)由互斥事件、独立事件的概率求出离散型随机变 量分布列. (4)由三种分布(两点分布、超几何分布、二项分布) 求出离散型随机变量分布列。
高考数学总复习考点知识专题讲解11 离散型随机变量及其分布列

高考数学总复习考点知识专题讲解 专题11离散型随机变量及其分布列知识点一 随机变量的概念、表示及特征1.概念:一般地,对于随机试验样本空间Ω中的每个样本点ω都有唯一的实数X (ω)与之对应,我们称X 为随机变量.2.表示:用大写英文字母表示随机变量,如X ,Y ,Z ;用小写英文字母表示随机变量的取值,如x ,y ,z .3.特征:随机试验中,每个样本点都有唯一的一个实数与之对应,随机变量有如下特征:(1)取值依赖于样本点. (2)所有可能取值是明确的. 知识点二 离散型随机变量可能取值为有限个或可以一一列举的随机变量,我们称之为离散型随机变量. 判断离散型随机变量的方法 (1)明确随机试验的所有可能结果; (2)将随机试验的结果数量化;(3)确定试验结果所对应的实数是否可以一一列出,如能一一列出,则该随机变量是离散型随机变量,否则不是.【例1】((2023•丰台区期末)下面给出的四个随机变量中是离散型随机变量的为() ①高速公路上某收费站在半小时内经过的车辆数1X ;②一个沿直线2y x 进行随机运动的质点离坐标原点的距离X;③某同学射击3次,命中的次数3X;④某电子元件的寿2命X;4A.①②B.③④C.①③D.②④【例2】(2023•从化区期中)袋中有大小相同的5个球,分别标有1,2,3,4,5五个号码,现在在有放回抽取的条件下依次取出两个球,设两个球的号码之和为随机变量X,则X所有可能取值的个数是()A.25B.10C.9D.5知识点三离散型随机变量的分布列及其性质1.定义:一般地,设离散型随机变量X的可能取值为x1,x2,…,x n,我们称X取每一个值x i的概率P(X=x i)=p i,i=1,2,3,…,n为X的概率分布列,简称分布列.2.分布列的性质(1)p i≥0,i=1,2,…,n.(2)p1+p2+…+p n=1.分布列的性质及其应用(1)利用分布列中各概率之和为1可求参数的值,此时要注意检验,以保证每个概率值均为非负数.(2)求随机变量在某个范围内的概率时,根据分布列,将所求范围内各随机变量对应的概率相加即可,其依据是互斥事件的概率加法公式.【例3】(2023•辽宁期末)随机变量X的分布列如下表所示,则(2)(…)P XA .0.1B .0.2C .0.3D .0.4【例4】(2022•朝阳区开学)设随机变量X 的分布列为()(1P X k k k λ===,2,3,4),则λ的值为() A .10B .110C .10-D .110-【例5】(2023•珠海期末)已知某离散型随机变量ξ的分布列为:则(q =)A .13和1-B .13C .12D .1-【例6】(2022•多选•天津模拟)设随机变量ξ的分布列为()(15kP ak k ξ===,2,3,4,5),则()A .115a =B .141()255P ξ<<= C .112()10215P ξ<<=D .23()510P ξ=…【例7】(2023•湖北模拟)设随机变量ξ的分布列如表:则下列正确的是()A .当{}n a 为等差数列时,5615a a += B .数列{}n a 的通项公式可以为109(1)n a n n =+C .当数列{}n a 满足1(1,2,9)2n na n ==时,10912a =D .当数列{}n a 满足2()(1k P k k a k ξ==…,2,10)时,1110(1)n a n n =+知识点四 两点分布如果P (A )=p ,则P (A )=1-p ,那么X 的分布列为我们称X 服从两点分布或0-1【例8】(多选)若离散型随机变量X 的分布列如下表所示,则下列说法错误的是()A .常数c 的值为23或13B .常数c 的值为23C .1(0)3P X ==D .2(0)3P X ==【例9】(2023•阜南县期末)从6名男生和4名女生中随机选出3名同学参加一项竞技测试.(1)求选出的3名同学中至少有1名女生的概率;(2)设ξ表示选出的3名同学中男生的人数,求ξ的分布列.【例10】(2023•崂山区期末)某电视台“挑战主持人”节目的挑战者闯第一关需要回答三个问题,其中前两个问题回答正确各得10分,回答不正确得0分,第三个问题回答正确得20分,回答不正确得10-分.如果一位挑战者回答前两个问题正确的概率都是2 3,回答第三个问题正确的概率为12,且各题回答正确与否相互之间没有影响.若这位挑战者回答这三个问题的总分不低于10分就算闯关成功.(1)求至少回答对一个问题的概率.(2)求这位挑战者回答这三个问题的总得分X的分布列.(3)求这位挑战者闯关成功的概率.同步训练1.(2022•多选•临朐县开学)下列X是离散型随机变量的是()A.某座大桥一天经过的某品牌轿车的辆数XB .一天内的温度为XC .某网页一天内被点击的次数XD .射击运动员对目标进行射击,击中目标得1分,未击中目标得0分,用X 表示该运动员在一次射击中的得分2.(2023•上蔡县校级月考)设随机变量ξ的概率分布列如下表:则(|2|1)(P ξ-==) A .712B .12C .512D .163.(2023•周至县期末)设随机变量X 的分布列为()(1,2,3,4,5,6)2kcP X k k ===,其中c 为常数,则(2)P X …的值为() A .34B .1621C .6364D .64634.(2023•多选•宝安区期中)已知随机变量ξ的分布如下:则实数a 的值为()A .12-B .12C .14D .14-5.(2023•和平区校级期末)设随机变量与的分布列如下:则下列正确的是()A .当{}n a 为等差数列时,5615a a +=B .当数列{}n a 满足1(12n na n ==,2,⋯,9)时,10912a = C .数列{}n a 的通项公式可以为109(1)n a n n =+D .当数列{}n a 满足2()(1k P k k a k ξ==…,2,⋯,10)时,1110(1)n a n n =+6.(2023•郫都区模拟)甲袋中有2个黑球,4个白球,乙袋中有3个黑球,3个白球,从两袋中各取一球.(Ⅰ)求“两球颜色相同”的概率;(Ⅱ)设ξ表示所取白球的个数,求ξ的概率分布列.。
专题06 离散型随机变量及其分布列、数字特征(解析版)

06离散型随机变量及其分布列、数字特征知识点1随机变量(1)定义:一般地,对于随机试验样本空间Ω中的每个样本点ω,都有唯一的实数X(ω)与之对应,我们称X为随机变量.随机变量的取值X(ω)随着随机试验结果ω的变化而变化.(2)离散型随机变量:可能取值为有限个或可以一一列举的随机变量称之为离散型随机变量.(2)表示:随机变量通常用大写英文字母表示,例如X,Y,Z;随机变量的取值用小写英文字母表示,例如x,y,z.知识点2离散型随机变量的分布列的定义(1)定义:一般地,设离散型随机变量X的可能取值为x1,x2,…,x i,…,x n,我们称X取每一个值x i 的概率P(X=x i)=p i,i=1,2,…,n为X的概率分布列,简称分布列.(2)表示方法:①表格;②概率分布图.知识点3离散型随机变量的分布列的性质(1)p i ≥0,i =1,2,…,n ;(2)p 1+p 2+…+p n =1.知识点4离散型随机变量的均值与方差一般地,若离散型随机变量X 的分布列如下表所示,X x 1x 2…x n Pp 1p 2…p n(1)均值:称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n =i ii 1nx P =∑为随机变量X 的均值或数学期望,数学期望简称期望.(2)方差:称D (X )=(x 1-E (X ))2p 1+(x 2-E (X ))2p 2+…+(x n -E (X ))2p n =i 1n=∑(x i -E (X ))2p i 为随机变量X的方差,有时也记为Var (X ),并称D (X )为随机变量X 的标准差,记为σ(X ).(3)均值的意义:均值是随机变量可能取值关于取值概率的加权平均数,它综合了随机变量的取值和取值的概率,反映了随机变量取值的平均水平.(4)方差和标准差的意义:随机变量的方差和标准差都可以度量随机变量取值与其均值E (X )的偏离程度,反映了随机变量取值的离散程度.方差或标准差越小,随机变量的取值越集中;方差或标准差越大,随机变量的取值越分散.知识点5均值与方差的性质若Y =aX +b ,其中X 是随机变量,a ,b 是常数,随机变量X 的均值是E (X ),方差是D (X ).则E (Y )=E (aX +b )=aE (X )+b ;D (Y )=D (aX +b )=a 2D (X ).(a ,b 为常数).知识点6分布列性质的两个作用(1)利用分布列中各事件概率之和为1可求参数的值.(2)随机变量ξ所取的值分别对应的事件是两两互斥的,利用这一点可以求相关事件的概率.知识点7均值与方差的四个常用性质(1)E (k )=k ,D (k )=0,其中k 为常数.(2)E (X 1+X 2)=E (X 1)+E (X 2).(3)D (X )=E (X 2)-(E (X ))2.(4)若X1,X 2相互独立,则E (X 1X 2)=E (X 1)·E (X 2).考点1离散型随机变量分布列的性质(1)求a的值;(2)求;(3)求X.【答案】(1)由分布列的性质,得++++P(X=1)=a+2a+3a+4a+5a=1,所以a=115.(2)=++P(X=1)=3×115+4×115+5×115=45.(3)X=++=115+215+315=25.【总结】离散型随机变量分布列性质的应用(1)利用“总概率之和为1”可以求相关参数的取值范围或值;(2)利用“离散型随机变量在一范围内的概率等于它取这个范围内各个值的概率之和”求某些特定事件的概率;(3)可以根据性质判断所得分布列结果是否正确.【变式1-1】设随机变量X的分布列为P(X=k)=Ck(k+1),k=1,2,3,C为常数,则P(X<3)=__________.【答案】89【解析】随机变量X的分布列为P(X=k)=Ck(k+1),k=1,2,3,∴C2+C6+C12=1,即6C+2C+C12=1,解得C=43,∴P(X<3)=P(X=1)+P(X=2)=43=89.【变式1-2】设离散型随机变量X的分布列为X01234P0.20.10.10.3m(1)求随机变量Y=2X+1的分布列;(2)求随机变量η=|X-1|的分布列;(3)求随机变量ξ=X2的分布列.【解析】(1)由分布列的性质知,0.2+0.1+0.1+0.3+m=1,得m=0.3.首先列表为:X012342X+113579从而Y=2X+1的分布列为:Y13579P0.20.10.10.30.3(2)列表为:X01234|X-1|10123∴P(η=0)=P(X=1)=0.1,P(η=1)=P(X=0)+P(X=2)=0.2+0.1=0.3,P(η=2)=P(X=3)=0.3,P(η=3)=P(X=4)=0.3.故η=|X-1|的分布列为:η0123P0.10.30.30.3(3)首先列表为:X01234X2014916从而ξ=X2的分布列为:ξ014916P0.20.10.10.30.3【变式1-3】设随机变量X的分布列如下:X12345P 112161316p则p为()A.1 6B.13C.14D.112【答案】C【解析】由分布列的性质知,112+16+13+16+p=1,∴p=1-34=14.【变式1-4】设X是一个离散型随机变量,其分布列为X-101P 121-q q-q2则q等于()A.1 B.22或-22C.1+22D.2 2【答案】D【解析】1-q+q-q2=1,1-q≤12,q-q2≤12,解得q=22.【变式1-5】(多选)设随机变量ξ的分布列为ak(k=1,2,3,4,5),则()A.a=115B.ξ=15C.ξ=215D.P(ξ=1)=310【答案】AB【解析】对于选项A,∵随机变量ξ的分布列为ak(k=1,2,3,4,5),∴P(ξ=1)=a+2a+3a+4a+5a=15a=1,解得a=115,故A正确;对于B,易知ξ3×115=15,故B正确;对于C,易知ξ=115+2×115=15,故C错误;对于D,易知P(ξ=1)=5×115=13,故D错误.【变式1-6】设X是一个离散型随机变量,其分布列为X01P9a2-a3-8a则常数a的值为()A.13B.23C.13或23D.-13或-23【答案】A【解析】≤9a 2-a ≤1,≤3-8a ≤1,a 2-a +3-8a =1,解得a =13.【变式1-7】离散型随机变量X 的概率分布列为P (X =n )=an (n +1)(n =1,2,3,4),其中a 是常数,则P X 的值为()A.23B.34C.45D.56【答案】D【解析】因为P (X =n )=a n (n +1)(n =1,2,3,4),所以a 2+a 6+a 12+a 20=1,所以a =54,所以X P (X =1)+P (X =2)=54×12+54×16=56.【变式1-8】若随机变量X 的分布列如下表,则mn 的最大值是()X 024Pm0.5n A.116B.18C.14D.12【答案】A【解析】由分布列的性质,得m +n =12,m ≥0,n ≥0,所以mn =116,当且仅当m =n =14时,等号成立.【变式1-9】随机变量X 的分布列如下:X -101Pabc其中a ,b ,c 成等差数列,则P (|X |=1)=______,公差d 的取值范围是______.【答案】23-13,13【解析】因为a ,b ,c 成等差数列,所以2b =a +c .又a +b +c =1,所以b =13,所以P (|X |=1)=a +c =23.又a =13-d ,c =13+d ,根据分布列的性质,得0≤13-d ≤23,0≤13+d ≤23,所以-13≤d ≤13.考点2求离散型随机变量的分布列【例2】双败淘汰制是一种竞赛形式,与普通的单败淘汰制输掉一场即被淘汰不同,参赛者只有在输掉两场比赛后才丧失争夺冠军的可能.在双败淘汰制的比赛中,参赛者的数量一般是2的次方数,以保证每一轮都有偶数名参赛者.第一轮通过抽签,两人一组进行对阵,胜者进入胜者组,败者进入负者组.之后的每一轮直到最后一轮之前,胜者组的选手两人一组相互对阵,胜者进入下一轮,败者则降到负者组参加本轮负者组的第二阶段对阵;负者组的第一阶段,由之前负者组的选手(不包括本轮胜者组落败的选手)两人一组相互对阵,败者被淘汰(已经败两场),胜者进入第二阶段,分别对阵在本轮由胜者组中降组下来的选手,胜者进入下一轮,败者被淘汰.最后一轮,由胜者组最终获胜的选手(此前从未败过,记为A)对阵负者组最终获胜的选手(败过一场,记为B),若A胜则A获得冠军,若B胜则双方再次对阵,胜者获得冠军.某围棋赛事采用双败淘汰制,共有甲、乙、丙等8名选手参赛.第一轮对阵双方由随机抽签产生,之后每一场对阵根据赛事规程自动产生对阵双方,每场对阵没有平局.(1)设“在第一轮对阵中,甲、乙、丙都不互为对手”为事件M,求M的概率;(2)已知甲对阵其余7名选手获胜的概率均为23,解决以下问题:①求甲恰在对阵三场后被淘汰的概率;②若甲在第一轮获胜,设甲在该项赛事的总对阵场次为随机变量ξ,求ξ的分布列.【分析】(1)先求出8人平均分成四组的方法数,再求出甲,乙,丙都不分在同一组的方法数,从而可求得答案;(2)①甲恰在对阵三场后淘汰,有两种情况:“胜,败,败”和“败,胜,败”,然后利用互斥事件的概率公式求解即可;②由题意可得ξ∈{3,4,5,6,7},然后求出各自对应的概率,从而可得ξ的分布列.【解析】(1)8人平均分成四组,共有C28C26C24C22A44种方法,其中甲,乙,丙都不分在同一组的方法数为A35,所以P(A)=A35C28C26C24C22A44=4 7.(2)①甲恰在对阵三场后淘汰,这三场的结果依次是“胜,败,败”或“败,胜,败”,故所求的概率为23×13×13+13×23×13=427.②若甲在第一轮获胜,ξ∈{3,4,5,6,7}.当ξ=3时,表示甲在接下来的两场对阵都败,即P(ξ=3)=13×13=19.当ξ=4时,有两种情况:(ⅰ)甲在接下来的3场比赛都胜,其概率为23×23×23=827;(ⅱ)甲4场对阵后被淘汰,表示甲在接下来的3场对阵1胜1败,且第4场败,概率为C12·23×13×13=427,所以P (ξ=4)=827+427=49.当ξ=5时,有两种情况:(ⅰ)甲在接下来的2场对阵都胜,第4场败,概率为23×23×13=427;(ⅱ)甲在接下来的2场对阵1胜1败,第4场胜,第5场败,概率为C12·23×13×23×13=881;所以P (ξ=5)=427+881=2081.当ξ=6时,有两种情况:(ⅰ)甲第2场胜,在接下来的3场对阵为“败,胜,胜”,其概率为23×132=881;(ⅱ)甲第2场败,在接下来的4场对阵为“胜,胜,胜,败”,其概率为133×13=8243;所以P (ξ=6)=881+8243=32243.当ξ=7时,甲在接下来的5场对阵为“败,胜,胜,胜,胜”,即P (ξ=7)=134=16243.所以ξ的分布列为:ξ34567P194920813224316243【总结】离散型随机变量分布列的求解步骤【变式2-1】为创建国家级文明城市,某城市号召出租车司机在高考期间至少进行一次“爱心送考”,该城市某出租车公司共200名司机,他们进行“爱心送考”的次数统计如图所示.(1)求该出租车公司的司机进行“爱心送考”的人均次数;(2)从这200名司机中任选两人,设这两人进行送考次数之差的绝对值为随机变量X ,求X 的分布列.【解析】(1)由统计图得200名司机中送考1次的有20人,送考2次的有100人,送考3次的有80人,∴该出租车公司的司机进行“爱心送考”的人均次数为20×1+100×2+80×3200=2.3.(2)从该公司任选两名司机,记“这两人中一人送考1次,另一人送考2次”为事件A ,“这两人中一人送考2次,另一人送考3次”为事件B ,“这两人中一人送考1次,另一人送考3次”为事件C ,“这两人送考次数相同”为事件D .由题意知X 的所有可能取值为0,1,2,则P (X =0)=P (D )=C 220+C 2100+C 280C 2200=83199,P (X =1)=P (A )+P (B )=C 120C 1100C 2200+C 1100C 180C 2200=100199.P (X =2)=P (C )=C 120C 180C 2200=16199.∴X 的分布列为:X 012P8319910019916199【变式2-2】(多选)设离散型随机变量X 的分布列为X 01234Pq0.40.10.20.2若离散型随机变量Y 满足Y =2X +1,则下列结果正确的有()A .q =0.1B .E (X )=2,D (X )=1.4C .E (X )=2,D (X )=1.8D .E (Y )=5,D (Y )=7.2【答案】ACD【解析】因为q +0.4+0.1+0.2+0.2=1,所以q =0.1,故A 正确;由已知可得E (X )=0×0.1+1×0.4+2×0.1+3×0.2+4×0.2=2,D (X )=(0-2)2×0.1+(1-2)2×0.4+(2-2)2×0.1+(3-2)2×0.2+(4-2)2×0.2=1.8,故C 正确;因为Y =2X +1,所以E (Y )=2E (X )+1=5,D (Y )=4D (X )=7.2,故D 正确.考点3求离散型随机变量的均值与方差【例3】为迎接2022年北京冬奥会,推广滑雪运动,某滑雪场开展滑雪促销活动.该滑雪场的收费标准是:滑雪时间不超过1小时免费,超过1小时的部分每小时收费标准为40元(不足1小时的部分按1小时计算).有甲、乙两人相互独立地来该滑雪场运动,设甲、乙不超过1小时离开的概率分别为14,16;1小时以上且不超过2小时离开的概率分别为12,23;两人滑雪时间都不会超过3小时.(1)求甲、乙两人所付滑雪费用相同的概率;(2)设甲、乙两人所付的滑雪费用之和为随机变量ξ(单位:元),求ξ的分布列与数学期望E (ξ),方差D (ξ).【解析】(1)两人所付费用相同,相同的费用可能为0,40,80元,两人都付0元的概率为P 1=14×16=124,两人都付40元的概率为P 2=12×23=13,两人都付80元的概率为P 3-14--16-=124.则两人所付费用相同的概率为P =P 1+P 2+P 3=124+13+124=512.(2)ξ可能取值为0,40,80,120,160,则P (ξ=0)=14×16=124,P (ξ=40)=14×23+12×16=14,P (ξ=80)=14×16+12×23+14×16=512,P (ξ=120)=12×16+14×23=14,P (ξ=160)=14×16=124.所以,随机变量ξ的分布列为ξ04080120160P1241451214124∴E (ξ)=0×124+40×14+80×512+120×14+160×124=80,D (ξ)=(0-80)2×124+(40-80)2×14+(80-80)2×512+(120-80)2×14+(160-80)2×124=40003.【总结】求离散型随机变量ξ的均值与方差的步骤(1)理解ξ的意义,写出ξ全部的可能取值;(2)求ξ取每个值的概率;(3)写出ξ的分布列;(4)由均值的定义求E (ξ),由方差的定义求D (ξ).【变式3-1】据有关权威发布某种传染病的传播途径是通过呼吸传播,若病人(患了某种传染病的人)和正常人(没患某种传染病的人)都不戴口罩而且交流时距离小于一米90%的机率被传染,若病人不戴口罩正常人戴口罩且交流时距离小于一米时60%的机率被传染,若病人戴口罩而正常人不戴口罩且交流距离小于一米时30%的机率被传染上,若病人和正常人都带口罩且交流距离大于一米时不会被传染.为此对某地经常出入某场所的人员通过抽样调查的方式对戴口罩情况做了记录如下表:男士女士戴口罩不戴口罩戴口罩不戴口罩甲地40203010乙地10304515假设某人是否戴口罩互相独立(1)求去甲地的男士带口罩的概率,用上表估计所有去甲地的人戴口罩的概率.(2)若从所有男士中选1人,从所有女士中选2人,用上表的频率估计概率,求戴口罩人数X 的分布列和期望.(3)上表中男士不戴口罩记为“ξ=0”,戴口罩记为“ξ=1”,确定男士戴口罩的方差为Dξ,和女士不戴口罩记为“η=0”,戴口罩记为“η=1”确定女士戴口罩的方差为Dη.比较Dξ和Dη的大小,并说明理由.【解析】(1)设“去甲地的男士带口罩”为事件M ,则P (M )=4040+20=23,设“去甲地的人戴口罩”为事件N ,则P (N )=40+3040+20+30+10=710,(2)设“男士带口罩”为事件A ,则P (A )=40+1040+20+10+30=12,设“女士带口罩”为事件B ,则P (B )=30+4530+10+45+15=34,所有男士中选1人,从所有女士中选2人,戴口罩人数X =0,1,2,3,P (X =0)=12×14×14=132,P (X =1)=12×14×14+12×34×14+12×14×34=732,P (X =2)=12×34×14+12×14×34+12×34×34=1532,P (X =3)=12×34×34=932分布列为:X123P1327321532932E (X )=0×132+1×732+2×1532+3×932=2(3)E (ξ)=0×12+1×12=12,D (ξ)=(0-12)2×12+(1-12)2×12=14,E (η)=0×14+1×34=34,D (η)=(0-34)2×14+(1-34)2×34=316.100名男士中有50人戴口罩,50人不戴口罩,100名女士中有75人戴口罩,25人不戴口罩,从数据分布可看出来女士戴口罩的集中程度要好于男士,所以其方差偏小.【变式3-2】已知X 的分布列为X -101P121316设Y =2X +3,则E (Y )的值为()A .73B .4C .-1D .1【答案】A【解析】∵E (X )=-12+16=-13,∴E (Y )=E (2X +3)=2E (X )+3=-23+3=73.【变式3-3】已知离散型随机变量X 的分布列为X 012P0.51-2qq 2则常数q =________.【答案】1-22【解析】由分布列的性质得0.5+1-2q +q 2=1,解得q =1-22或q =1+22(舍去).【变式3-4】设随机变量X 的分布列为P (X =k )=a k,k =1,2,3,则a 的值为__________.【答案】2713【解析】因为随机变量X 的分布列为P (X =k )=a k,k =1,2,3,所以根据分布列的性质有a ·13+a 2+a 3=1,所以a +19+=a ×1327=1,所以a =2713.【变式3-5】已知随机变量X 的分布列如下:X -101P121316若Y =2X +3,则E (Y )的值为________.【答案】73【解析】E (X )=-12+16=-13,则E (Y )=E (2X +3)=2E (X )+3=-23+3=73.【变式3-6】若随机变量X 满足P (X =c )=1,其中c 为常数,则D (X )的值为________.【答案】0【解析】因为P (X =c )=1,所以E (X )=c ×1=c ,所以D (X )=(c -c )2×1=0.【变式3-7】(2022·昆明模拟)从1,2,3,4,5这组数据中,随机取出三个不同的数,用X 表示取出的数字的最小数,则随机变量X 的均值E (X )等于()A.32B.53C.74D.95【答案】A【解析】由题意知,X 的可能取值为1,2,3,而随机取3个数的取法有C 35种,当X =1时,取法有C 24种,即P (X =1)=C 24C 35=35;当X =2时,取法有C 23种,即P (X =2)=C 23C 35=310;当X =3时,取法有C22种,即P (X =3)=C 22C 35=110;∴E (X )=1×35+2×310+3×110=32.【变式3-8】已知随机变量X ,Y 满足Y =2X +1,且随机变量X 的分布列如下:X 012P1613a则随机变量Y 的方差D (Y )等于()A.59B.209C.43D.299【答案】B【解析】由分布列的性质,得a =1-16-13=12,所以E (X )=0×16+1×13+2×12=43,所以D (X )×16+×13+×12=59,又Y =2X +1,所以D (Y )=4D (X )=209.【变式3-9】已知m ,n 为正常数,离散型随机变量X 的分布列如表:X -101Pm14n若随机变量X 的均值E (X )=712,则mn =________,P (X ≤0)=________.【答案】11813【解析】+n +14=1,-m =712,=112,=23,所以mn =118,P (X ≤0)=m +14=13.【变式3-10】(2022·邯郸模拟)小张经常在某网上购物平台消费,该平台实行会员积分制度,每个月根据会员当月购买实物商品和虚拟商品(充话费等)的金额分别进行积分,详细积分规则以及小张每个月在该平台消费不同金额的概率如下面的表1和表2所示,并假设购买实物商品和购买虚拟商品相互独立.表1购买实物商品(元)(0,100)[100,500)[500,1000)积分246概率141214表2购买虚拟商品(元)(0,20)[20,50)[50,100)[100,200)积分1234概率13141416(1)求小张一个月购买实物商品和虚拟商品均不低于100元的概率;(2)求小张一个月积分不低于8分的概率;(3)若某个月小张购买了实物商品和虚拟商品,消费均低于100元,求他这个月的积分X 的分布列与均值.【解析】(1)小张一个月购买实物商品不低于100元的概率为12+14=34,购买虚拟商品不低于100元的概率为16,因此所求概率为34×16=18.(2)根据条件,积分不低于8分有两种情况:①购买实物商品积分为6分,购买虚拟商品的积分为2,3,4分;②购买实物商品积分为4分,购买虚拟商品的积分为4分,故小张一个月积分不低于8分的概率为14×+12×16=14.(3)由条件可知X 的可能取值为3,4,5.P (X =3)=1313+14+14=25,P (X =4)=P (X =5)=1413+14+14=310,即X 的分布列如下:X 345P25310310E (X )=3×25+4×310+5×310=3910.考点4均值与方差在决策中的作用【例4】2021年3月5日李克强总理在政府作报告中特别指出:扎实做好碳达峰,碳中和各项工作,制定2030年前碳排放达峰行动方案,优化产业结构和能源结构.某环保机器制造商为响应号召,对一次购买2台机器的客户推出了两种超过机器保修期后5年内的延保维修方案:方案一:交纳延保金5000元,在延保的5年内可免费维修2次,超过2次每次收取维修费1000元;方案二:交纳延保金6230元,在延保的5年内可免费维修4次,超过4次每次收取维修费t 元;制造商为制定收取标准,为此搜集并整理了200台这种机器超过保修期后5年内维修的次数,统计得到下表:维修次数0123机器台数20408060以这200台机器维修次数的频率代替1台机器维修次数发生的概率,记X 表示2台机器超过保修期后5年内共需维修的次数.(1)求X 的分布列;(2)以所需延保金与维修费用之和的均值为决策依据,为使选择方案二对客户更合算,应把t 定在什么范围?【分析】(1)由题设描述确定2台机器超过保修期后5年内共需维修的次数的可能值,并确定对应的基本事件,进而求各可能值的概率,写出分布列.(2)根据(1)所得分布列,由各方案的费用与维修次数的关系写出费用的分布列,并求期望,通过期望值的大小关系求参数的范围.【解析】(1)由题意得,X =0,1,2,3,4,5,6,P (X =0)=110×110=1100,P (X =1)=110×15×2=125,P (X =2)=110×25×2+15×15=325,P (X =3)=110×310×2+15×25×2=1150,P (X =4)=310×15×2+25×25=725,P (X =5)=310×25×2=625,P (X =6)=310×310=9100,∴X 的分布列为X 0123456P110012532511507256259100(2)选择方案一:所需费用为Y 1元,则X ≤2时,Y 1=5000,X =3时,Y 1=6000;X =4时,Y 1=7000;X =5时,Y 5=8000,X =6时,Y 1=9000,∴Y 1的分布列为Y 150006000700080009000P1710011507256259100E (Y 1)=5000×17100+6000×1150+7000×725+8000×625+9000×9100=6860,选择方案二:所需费用为Y 2元,则X ≤4时,Y 2=6230;X =5时,Y 2=6230+t ;X =6时,Y 2=6230+2t ,则Y 2的分布列为Y 262306230+t 6230+2t P671006259100E (Y 2)=6230×67100+(6230+t )×625+(6230+2t )×9100=6230+21t50,要使选择方案二对客户更合算,则E (Y 2)<E (Y 1),∴6230+21t50<6860,解得t <1500,即t 的取值范围为[0,1500).【总结】利用均值、方差进行决策的2个方略(1)当均值不同时,两个随机变量取值的水平可见分歧,可对问题作出判断.(2)若两随机变量均值相同或相差不大,则可通过分析两变量的方差来研究随机变量的离散程度或者稳定程度,进而进行决策.【变式4-1】直播带货是扶贫助农的一种新模式,这种模式是利用主流媒体的公信力,聚合销售主播的力量助力打通农产品产销链条,切实助力贫困地区农民脱贫增收.某贫困地区有统计数据显示,2020年该地利用网络直播形式销售农产品的销售主播年龄等级分布如图1所示,一周内使用直播销售的频率分布扇形图如图2所示.若将销售主播按照年龄分为“年轻人”(20岁~39岁)和“非年轻人”(19岁及以下或者40岁及以上)两类,将一周内使用的次数为6次或6次以上的称为“经常使用直播销售用户”,使用次数为5次或不足5次的称为“不常使用直播销售用户”,则“经常使用直播销售用户”中有56是“年轻人”.(1)现对该地相关居民进行“经常使用网络直播销售与年龄关系”的调查,采用随机抽样的方法,抽取一个容量为200的样本,请你根据图表中的数据,完成2×2列联表,并根据列联表判断是否有85%的把握认为经常使用网络直播销售与年龄有关?使用直播销售情况与年龄列联表年轻人非年轻人合计经常使用直播销售用户不常使用直播销售用户合计(2)某投资公司在2021年年初准备将1000万元投资到“销售该地区农产品”的项目上,现有两种销售方案供选择:方案一:线下销售.根据市场调研,利用传统的线下销售,到年底可能获利30%,可能亏损15%,也可能不赔不赚,且这三种情况发生的概率分别为710,15,110;方案二:线上直播销售.根据市场调研,利用线上直播销售,到年底可能获利50%,可能亏损30%,也可能不赔不赚,且这三种情况发生的概率分别为35,310,110.针对以上两种销售方案,请你从期望和方差的角度为投资公司选择一个合理的方案,并说明理由.参考数据:独立性检验临界值表α0.150.100.0500.0250.010x α2.0722.7063.8415.0246.635其中,χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),n =a +b +c +d .【解析】(1)由图1知,“年轻人”占比为45.5%+34.5%=80%,即有200×80%=160(人),“非年轻人”有200-160=40(人),由图2知,“经常使用直播销售用户”占比为30.1%+19.2%+10.7%=60%,即有200×60%=120(人),“不常使用直播销售用户”有200-120=80(人).“经常使用直播销售用户的年轻人”有120×56=100(人),“经常使用直播销售用户的非年轻人”有120-100=20(人).∴补全的列联表如下:年轻人非年轻人合计经常使用直播销售用户10020120不常使用直播销售用户602080合计16040200于是a =100,b =20,c =60,d =20.∴χ2=200×(100×20-60×20)2120×80×160×40=2512≈2.083>2.072,即有85%的把握认为经常使用网络直播销售与年龄有关.(2)若按方案一,设获利X 1万元,则X 1可取的值为300,-150,0,X 1的分布列为:X 1300-1500p71015110E (X 1)=300×710+(-150)×15+0×110=180(万元),D(X1)=(300-180)2×710+(-150-180)2×15+(0-180)2×110=1202×710+3302×15+1802×110=35100若按方案二,设获利X2万元,则X2可取的值为500,-300,0,X2的分布列为:X2500-3000p 35310110E(X2)=500×35+(-300)×310+0×110=210(万元),D(X2)=(500-210)2×35+(-300-210)2×310+(0-210)2×110=2902×35+5102×310+2102×110=132900∵E(X1)<E(X2),D(X1)<D(X2),由方案二的均值要比方案一的均值大,从获利角度来看方案二更大,故选方案二.由方案二的方差要比方案一的方差大得多,从稳定性方面看方案一线下销售更稳妥,故选方案一.【变式4-2】某班体育课组织篮球投篮考核,考核分为定点投篮与三步上篮两个项目.每个学生在每个项目投篮5次,以规范动作投中3次为考核合格,定点投篮考核合格得4分,否则得0分;三步上篮考核合格得6分,否则得0分.现将该班学生分为两组,一组先进行定点投篮考核,一组先进行三步上篮考核,若先考核的项目不合格,则无需进行下一个项目,直接判定为考核不合格;若先考核的项目合格,则进入下一个项目进行考核,无论第二个项目考核是否合格都结束考核.已知小明定点投篮考核合格的概率为0.8,三步上篮考核合格的概率为0.7,且每个项目考核合格的概率与考核次序无关.(1)若小明先进行定点投篮考核,记X为小明的累计得分,求X的分布列;(2)为使累计得分的均值最大,小明应选择先进行哪个项目的考核?并说明理由.【解析】(1)由已知可得,X的所有可能取值为0,4,10,则P(X=0)=1-0.8=0.2,P(X=4)=0.8×(1-0.7)=0.24,P(X=10)=0.8×0.7=0.56,所以X的分布列为X0410P0.20.240.56(2)小明应选择先进行定点投篮考核,理由如下:由(1)可知小明先进行定点投篮考核,累计得分的均值为E(X)=0×0.2+4×0.24+10×0.56=6.56,若小明先进行三步上篮考核,记Y为小明的累计得分,则Y的所有可能取值为0,6,10,P(Y=0)=1-0.7=0.3,P (Y =6)=0.7×(1-0.8)=0.14,P (Y =10)=0.7×0.8=0.56,则Y 的均值为E (Y )=0×0.3+6×0.14+10×0.56=6.44,因为E (X )>E (Y ),所以为使累计得分的均值最大,小明应选择先进行定点投篮考核.【变式4-3】为加快某种病毒的检测效率,某检测机构采取“k 合1检测法”,即将k 个人的拭子样本合并检测,若为阴性,则可以确定所有样本都是阴性的;若为阳性,则还需要对本组的每个人再做检测.现有100人,已知其中2人感染病毒.(1)①若采用“10合1检测法”,且两名患者在同一组,求总检测次数;②已知10人分成一组,分10组,两名感染患者在同一组的概率为111,定义随机变量X 为总检测次数,求检测次数X 的分布列和均值E (X );(2)若采用“5合1检测法”,检测次数Y 的均值为E (Y ),试比较E (X )和E (Y )的大小(直接写出结果).【解析】(1)①对每组进行检测,需要10次;再对结果为阳性的一组每个人进行检测,需要10次,所以总检测次数为20.②由题意,X 可以取20,30,P (X =20)=111,P (X =30)=1-111=1011,则X 的分布列为X 2030P1111011所以E (X )=20×111+30×1011=32011.(2)由题意,Y 可以取25,30,两名感染者在同一组的概率为P 1=C 120C 22C 398C 5100=499,不在同一组的概率为P 1=9599,则E (Y )=25×499+30×9599=295099>E (X ).【变式4-4】(2022·莆田质检)某工厂生产一种精密仪器,由第一、第二和第三工序加工而成,三道工序的加工结果相互独立,每道工序的加工结果只有A ,B 两个等级.三道工序的加工结果直接决定该仪器的产品等级:三道工序的加工结果均为A 级时,产品为一等品;第三工序的加工结果为A 级,且第一、第二工序至少有一道工序加工结果为B 级时,产品为二等品;其余均为三等品.每一道工序加工结果为A 级的概率如表一所示,一件产品的利润(单位:万元)如表二所示:表一工序第一工序第二工序第三工序概率0.50.750.8表二等级一等品二等品三等品利润2385(1)用η表示一件产品的利润,求η的分布列和均值;(2)因第一工序加工结果为A 级的概率较低,工厂计划通过增加检测成本对第一工序进行改良,假如改良过程中,每件产品检测成本增加x (0≤x ≤4)万元(即每件产品利润相应减少x 万元)时,第一工序加工结果为A 级的概率增加19x .问该改良方案对一件产品利润的均值是否会产生影响?并说明理由.【解析】(1)由题意可知,η的所有可能取值为23,8,5,产品为一等品的概率为0.5×0.75×0.8=0.3,产品为二等品的概率为(1-0.5×0.75)×0.8=0.5,产品为三等品的概率为1-0.3-0.5=0.2,所以η的分布列为η2385P0.30.50.2E (η)=23×0.3+8×0.5+5×0.2=11.9.(2)改良方案对一件产品的利润的均值不会产生影响,理由如下:在改良过程中,每件产品检测成本增加x (0≤x ≤4)万元,第一工序加工结果为A 级的概率增加19x ,设改良后一件产品的利润为ξ,则ξ的所有可能取值为23-x,8-x,5-x ,+19x 0.75×0.8=0.3+x15,二等品的概率为10.75×0.8=0.5-x15,三等品的概率为10.2,所以E (ξ)-x )-x )+0.2×(5-x )=6.9-0.3x +2315x -115x 2+4-0.5x -815x +1152+1-0.2x =11.9,因为E (ξ)=E (η),所以改良方案对一件产品的利润的均值不会产生影响.1.(多选)设离散型随机变量X 的分布列如下表:X 12345Pm0.10.2n0.3若离散型随机变量Y =-3X +1,且E (X )=3,则()A .m =0.1B .n =0.1C .E (Y )=-8D .D (Y )=-7.8【答案】BC【解析】由E (X )=1×m +2×0.1+3×0.2+4×n +5×0.3=3得m +4n =0.7,又由m +0.1+0.2+n +0.3=1得m +n =0.4,从而得m =0.3,n =0.1,故A 选项错误,B 选项正确;E (Y )=-3E (X )+1=-8,故C 选项正确;因为D (X )=0.3×(1-3)2+0.1×(2-3)2+0.1×(4-3)2+0.3×(5-3)2=2.6,所以D (Y )=(-3)2D (X )=23.4,故D 选项错误.2.已知随机变量ξ的分布列如下表,D (ξ)表示ξ的方差,则D (2ξ+1)=___________.ξ012pa1-2a14【答案】2【解析】由题意可得:a +1-2a +14=1,解得a =14,ξ012p141214所以E (ξ)=0×14+1×12+2×14=1,D (ξ)=14(0-1)2+12×(1-1)2+14×(2-1)2=12,D (2ξ+1)=22D (ξ)=2.3.京西某地到北京西站有阜石和莲石两条路,且到达西站所用时间互不影响.下表是该地区经这两条路抵达西站所用时长的频率分布表:时间(分钟)10~2020~3030~4040~5050~60莲石路(L 1)的频率0.10.20.30.20.2阜石路(L 2)0.10.40.40.1的频率若甲、乙两人分别有40分钟和50分钟的时间赶往西站(将频率视为概率)(1)甲、乙两人应如何选择各自的路径?(2)按照(1)的方案,用X表示甲、乙两人按时抵达西站的人数,求X的分布列和数学期望.【解析】(1)A i表示事件“甲选择路径L i时,40分钟内赶到火车站”,B1表示事件“乙选择路径L i时,50分钟内赶到火车站”,i=1,2,用频率估计相应的概率,则有P(A1)=0.1+0.2+0.3=0.6,P(A2)=0.1+0.4=0.5,P(A1)>P(A2),所以甲应选择路径L1;P(B1)=0.1+0.2+0.3+0.2=0.8,P(B2)=0.1+0.4+0.4=0.9,P(B1)<P(B2),所以乙应选择路径L2;(2)用A,B分别表示针对(1)的选择方案,甲,乙在各自的时间内到达火车站,由(1)知P(A)=0.6,P(B)=0.9,且A,B相互独立,X的取值是0,1,2,P(X=0)=P(A-B-)=0.1×0.4=0.04,P(X=1)=P(A-B+A B-)=0.4×0.9+0.6×0.1=0.42,P(X=2)=P(AB)=0.9×0.6=0.54,所以X的分布列为:X012P0.040.420.54E(X)=0×0.04+1×0.42+2×0.54=1.5.4.品酒师需定期接受酒味鉴别功能测试,通常采用的测试方法如下:拿出n(n∈N*且n≥4)瓶外观相同但品质不同的酒让品酒师品尝,要求其按品质优劣为它们排序;经过一段时间,等其记忆淡忘之后,再让其品尝这n瓶酒,并重新按品质优劣为它们排序.这称为一轮测试,根据一轮测试中的两次排序的偏离程度的高低为其评分.现分别以a1,a2,a3,…,a n表示第一次排序时被排在1,2,3,…,n的n种酒在第二次排序时的序号,并令X=|1-a1|+|2-a2|+|3-a3|+...+|n-a n|,则X是对两次排序的偏离程度的一种描述.下面取n=4研究,假设在品酒师仅凭随机猜测来排序的条件下,a1,a2,a3,a4等可能地为1,2,3,4的各种排列,且各轮测试相互独立.(1)直接写出X的可能取值,并求X的分布列和数学期望;(2)若某品酒师在相继进行的三轮测试中,都有X≤2,则认为该品酒师有较好的酒味鉴别功能.求出现这种现象的概率,并据此解释该测试方法的合理性.【解析】(1)X的可能取值为0,2,4,6,8P(X=0)=1A44=124,。
高中数学--离散型随机变量及其分布列..

【思路点拨】
(1)总取法为 C3 10,关键是求出三个小球
上的数字各不相同有多少取法;(2)先确定 X 的求值,再确定 X 取每个值的概率;(3)由计分范围确定 X 的范围,利用的结 论求概率.
【尝试解答】 (1)法一:“一次取出的 3 个小球上的数
1 1 1 C3 C 5 2C2C2 2 字互不相同”的事件记为 A,则 P(A)= = . C3 3 10
ξ P
1 5 31
2 10 31
3 10 31
4 5 31
5 1 31
5 10 10 5 1 80 从而 E(ξ)=1× +2× +3× +4× +5× = . 31 31 31 31 31 31
∴共有 8C2 3对相交棱.
2 8×3 4 8C3 ∴P(ξ=0)= 2 = = . C12 66 11 4 【答案】 11
• 1.离散型随机变量 • (1)随机变量:将随机现象中试验(或观 数 测)的每一个可能的结果都对应于一个 , 这种对应称为一个随机变量,通常用大写 X Y 的英文字母如 、 来表示. • (2)离散型随机变量 一一列出 • 所有取值可以 的随机变乓球, 其中9个新的,3个旧的,从盒中任取3个球 来用,用完后装回盒中,此时盒中旧球个 数X是一个随机变量,其分布列为P(X),则 P(X1 =4)的值为( ) 27
A. 220 B. 55 27 C. 220
1 C2 27 3C9 故 P(X=4)= 3 = . C12 220
•
袋中装着标有数字1,2,3,4,5 的小球各2个,从袋中任取3个小球,按3个 小球上最大数字的9倍计分,每个小球被取 出的可能性都相等,用X表示取出的3个小 球上的最大数字,求: • (1)取出的3个小球上的数字互不相同的概 率; • (2)随相变量X的分布列; • (3)计分介于20分到40分之间的概率.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
理科数学复习专题 统计与概率 离散型随机变量及其分布列
知识点一
1、离散型随机变量:随着实验结果变化而变化的变量称为随机变量,常用字母,X,Y ,x h g g g 表示,所有取值可以一一列出的随机变量,称为离散型随机变量。
2、离散型随机变量的分布列及其性质:
(1)定义:一般的,若离散型随机变量X 可能取的不同值为12,,,,,,i n x x x x g g g g g g X 取每一个值(1,2,,)i x i n =g g g 的概率为()i i P X x p ==,则表
称为离散型随机变量离散型随机变量X ,简称X 的分布列。
(2)分布列的性质:①0,1,2,,i p i
n ?g g g ;②11n
i i p ==å
(3)常见离散型随机变量的分布列:
①两点分布:若随机变量X 的分布列为,
则称X 服从两点分布,并称(1)p P x ==为成功概率
②超几何分布:一般的,在含有M 件次品的N 件产品中,任取n 件,其中恰有X
件次品,则()(0,1,2,,k n k M N M
n
N
C C P X k k m C --===g g g g 其中m i n {,m M n =,且*
,,,,)n N M N n M
N N #?,称分布列为超几何分布列。
如果随机变量X 的分布列
题型一 由统计数据求离散型随机变量的分布列
【例1】已知一随机变量的分布列如下,且E (ξ)=6.3,则a 值为( )
A. 5 【变式1】 某公司有5万元资金用于投资开发项目,如果成功,一年后可获利12%;一旦失败,一年后将丧失全部资金的50%.下表是过去200例类似项目开发的实施结果:
则该公司一年后估计可获收益的期望是________.
题型二 由古典概型求离散型随机变量的分布列(超几何分布)
【例2】在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖.某顾客从此10张奖券中任抽2张,求:
(1)
该顾客中奖的概率;
(2)该顾客获得的奖品总价值X 元的概率分布列.
【变式2】某饮料公司招聘了一名员工,现对其进行一项测试,以便确定工资级别.公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A 饮料,另外4杯为B饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A饮料.若4杯都选对,则月工资定为3 500元;若4杯选对3杯,则月工资定为2 800元;否则月工资定为2 100元.令X表示此人选对A饮料的杯数.假设此人对A和B两种饮料没有鉴别能力.
(1)求X的分布列;(2)求此员工月工资的期望.
知识点二
1.条件概率及其性质
对于两个事件A和B,在已知事件B发生的条件下,事件A发生的概率叫做条件概率,用
符号P(A|B)来表示,其公式为P(A|B)=P(AB)
P(B)
(P(B)>0).
在古典概型中,若用n(B)表示事件B中基本事件的个数,则P(A|B)=n(AB) n(B)
.
2.相互独立事件
(1)对于事件A、B,若事件A的发生与事件B的发生互不影响,称A、B是相互独立事件.
(2)若A与B相互独立,则P(AB)=P(A)P(B).
(3)若A与B相互独立,则A与B,A与B,A与B也都相互独立.
(4)若P(AB)=P(A)P(B),则A与B相互独立.
3.二项分布
(1)独立重复试验是指在相同条件下可重复进行的,各次之间相互独立的一种试验,在这种试验中每一次试验只有__两__种结果,即要么发生,要么不发生,且任何一次试验中发生的概率都是一样的.
(2)在n次独立重复试验中,用X表示事件A发生的次数,设每次试验中事件A发生的概率为p,则P(X=k)=C k n p k(1-p)n-k(k=0,1,2,…,n),此时称随机变量X服从二项分布,记为X~B(n,p),并称p为成功概率.
题型三 条件概率
例1 (1)从1,2,3,4,5中任取2个不同的数,事件A 为“取到的2个数之和为偶数”,事件B 为“取到的2个数均为偶数”,则P (B |A )= ________.
(2)如图所示,EFGH 是以O 为圆心,半径为1的圆的内接正方形,将一粒豆子随机地扔到该圆内,用A 表示事件“豆子落在正方形EFGH 内”,B 表示事件“豆子落在扇形OHE (阴影部分)内”,则P (B |A )=________.
练:某地空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是________.
题型四 由独立事件同时发生的概率求离散型随机变量的分布列(二项分布)
例1 在一场娱乐晚会上,有5位民间歌手(1至5号)登台演唱,由现场数百名观众投票选出最受欢迎歌手.各位观众须彼此独立地在选票上选3名歌手,其中观众甲是1号歌手的歌迷,他必选1号,不选2号,另在3至5号中随机选2名.观众乙和丙对5位歌手的演唱没有偏爱,因此在1至5号中随机选3名歌手.
(1)求观众甲选中3号歌手且观众乙未选中3号歌手的概率;
(2)X 表示3号歌手得到观众甲、乙、丙的票数之和,“求X ≥2”的事件概率.
例2在一次数学考试中,第21题和第22题为选做题.规定每位考生必须且只须在其中选做一题.设4名学生选做每一道题的概率均为12.
(1)求其中甲、乙两名学生选做同一道题的概率;
(2)设这4名考生中选做第22题的学生个数为ξ,求ξ的概率分布.
练习:
一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为1
2,且各次击鼓出现音乐相互独立.
(1)设每盘游戏获得的分数为X ,求X 的概率分布.
(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?
【误区解密】
抽取问题如何区分超几何分布和二项分布?
例:某学校10个学生的考试成绩如下:(≥98分为优秀) (1)10人中选3人,求至多1人优秀的概率
(2)用10人的数据估计全级,从全级的学生中任选3人,用X 表示优秀人数的个数,求X 的分布列
练:18、某市在“国际禁毒日”期间,连续若干天发布了“珍爱生命,远离毒品”的电视公益广告,期望让更多的市民知道毒品的危害性.禁毒志愿者为了了解这则广告的宣
传效果,随机抽取了100名年龄阶段在[)10,20,[)20,30,[)30,40,[)40,50,[)50,60的市民进行问卷调查,由此得到样本频率分布直方图如图所示.
(Ⅰ)求随机抽取的市民中年龄在[)30,40的人数; (Ⅱ)从不小于40岁的人中按年龄段分层抽样的方法随机抽取5从,求[)50,60年龄段抽取的人数;
(Ⅲ)从(Ⅱ)中方式得到的5人中再抽到2人作为本次活动的获奖者,记X 为年龄在[)
50,60年龄段的人数,求X 的分布列及数学期望.
2、一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取50个作为样本,称出它们的重量(单位:克),重量分组区间为(5,15],(15,25](25,35],(35,45],由此得到样本的重量频率分布直方图,如图.
(Ⅰ)求a 的值;
(Ⅱ)根据样本数据,试估计盒子中小球重量的平均值;
(Ⅲ)从盒子中随机抽取3个小球,其中重量在(5,15]内的小球个数为ξ,求ξ的分布列和数学期望及方差.。