一种高速数据采集卡的设计与实现.

一种高速数据采集卡的设计与实现.
一种高速数据采集卡的设计与实现.

一种高速数据采集卡的设计与实现

摘要:为了实现对武器系统模拟信号的采集和数据分析,根据PC/104总线的数据采集系统的设计思想,数据采集卡以A/D转换器、CPLD和FIFO相结合来实现信号的连续采集与数据传输的控制。A/D转换器实现信号的采样保持和模数转换,CPLD实现数据采集和存储过程的控制。实验结果表明,该数据采集卡操作简单、实时性强、性能稳定,可实现对被测信号高速连续的数据采集。

关键词:数据采集;复杂可编程逻辑器件;FIFO;时序控制;逻辑控制

O 引言

测试设备是武器系统中最主要的子系统之一,它的工作正常与否将直接影响到整个武器系统的作战性能。在对武器系统进行测试的过程中,需要对一系列的电压、电流等模拟量信号进行快速、实时的数据采集和分析,检查这些模拟量的指标是否符合要求,可以对武器系统是否发生故障做出诊断,保证武器系统的正常工作。根据现代战争对武器系统的作战需求,提高快速机动保障能力,研制出体积小、结构紧凑、便携式的测试设备就成为主要的目标。

本文设计了一种基于PC/104总线的高速数据采集系统,其目的在于替代示波器在武器系统测试中的作用。常规采集方案主要有两种:

(1)由单片机直接控制的采集方案,这是最简单最常用的控制方案。由于每次采样都要有单片机的参与,需占用单片机的时间,影响其数据处理,而且对于多通道、多个A/D转换器的控制,因所需处理的信息更多,则更加不方便。

(2)由DMA控制的采集方案。此方案硬件电路复杂,若与单片机配合使用,需要单片机具有总线挂起功能,否则还需要进行总线切换,影响数据的及时处理。

综合以上两种方案的优缺点,本数据采集卡自动采样硬件电路主要采用可编程逻辑器件CPLD和先进先出FIFO(First In First Out)技术设计而成,可以很好地实现高速数据采集。

1 数据采集卡总体方案设计

数据采集卡是由信号调理电路、带采样保持器的A/D模数转换器、多路模拟开关、FIFO数据缓存、CPLD芯片及时钟电路等部分组成,具有高精度、高可靠性、高抗干扰能力等特点。总体结构设计原理如图1所示。

2 芯片介绍

该数据采集卡采用的芯片主要有:AD9283模/数转换器、AD508A多路选择开关、EPM7128SCL84-6CPLD和CY7C4261 FIFO缓存器。下面对以上所用芯片做一简要介绍。

2.1 AD9283模/数转换器简介

本数据采集卡选用了ANALOG DEVICE公司生产的高速8位模/数转换器AD9283。它采用先进CMOS制作工艺,提供20脚表面贴装封装形式。片内集成高性能采样和保持放大器,输入信号可采用单输入或差分输入;处理输入电压

峰峰值在0~1 V之间的模拟信号;采用单+3 V模拟电源和单+3 V数字电源;片内提供+1.2~+1.3 V的参考电压;最高抽样速率可达100 MSPS;具有高速并行输出接口。

2.2 EPM7128SCL84-6 CPLD芯片简介

本数据采集卡选用一片Altera公司生产的EPM7128SLC84-6CPLD作为核心处理芯片,它具有高阻抗、电可擦除等特点,可用门单元为2 500个,有64个用户可用I/O引脚,工作电压为+5 V,管脚间最大延迟为5 ns,采用PLCC-84封装,通过JTAG接口可实现在线编程。

2.3 CY7C4261 FIFO缓存器简介

本数据采集卡选用的FIFO器件是CYPRESS公司生产的高速、低功耗、先入先出存储器芯片CY7CA261。它的容量为16K×9位,读写周期为10 ns,支持异步和同步读写操作,写数据和读数据分别具有时钟和使能信号,具有“空、满、可编程几乎空、可编程几乎满”四个状态标志位,没有绝对地址的概念,只有读指针和写指针的相对位置,只要标志不为0,就可以进行写操作,只要标志不为0,就可以进行读操作,读写操作可以同时进行。

简易数据采集系统的设计

简易数据采集系统设计 题目:二选一 1. 设计一个单片机控制的数据采集系统,要求A/D 精度12位,采样频率最高100KHz,输 入8路信号,分时复用A/D 芯片,将采集到的波形进行4K 的SRAM 存储,然后通过串行口发送给计算机 2. 设计一波形发生电路,计算机通过串行口向板卡发送波形电路,波形存储到板卡上的 SRAM 中,然后进行计算机控制的D/A 波形产生,板卡上用单片机进行控制 要求: 1. 选择器件,确定具体型号。 2. 画原理图。 3. 根据器件封装画PCB 图。 4. 写出相应的单片机和微机控制程序。 5. 写出详细的原理分析报告。 器件选择: TI 公司生产的8位逐次逼近式模数转换器ADC0809,8051,MAX232 原理图如下: 原理报告原理报告:: 采集多路模拟信号时,一般用多路模拟开关巡回检测的方式,即一种数据采集的方式。利用多路开关(MUX )让多个被测对象共用同一个采集通道,这就是多通道数据采集系统的实质。当采集高速信号时,A/D 转换器前端还需加采样/保持(S/H)电路。 待测量一般不能直接被转换成数字量,通常要进行放大、特性补偿、滤波等

环节的预处理。被测信号往往因为幅值较小,而且可能还含有多余的高频分量等原因,不能直接送给A/D 转换器,需对其进行必要的处理,即信号调理。如对信号进行放大、衰减、滤波等。 通常希望输入到A/D 转换器的信号能接近A/D 转换器的满量程以保证转换精度,因此在直流电流电源输出端与A/D 转换器之间应接入放大器以满足要求。 本题要求中的被测量为0~5V 直流信号,由于输出电压比较大,满足A/D 转换输入的要求,故可省去放大器,而将电源输出直接连接至A/D 转换器输入端。 关于A/D 转换器的选取: 1.转换时间的选择 转换速度是指完成一次A/D 转换所需时间的倒数,是一个很重要的指标。A/D 转换器型号不同,转换速度差别很大。通常,8位逐次比较式ADC 的转换时间为100us 左右。由于本系统的控制时间允许,可选8位逐次比较式A/D 转换器。 2.ADC 位数的选择 A/D 转换器的位数决定着信号采集的精度和分辨率。 要求精度为0.5%。对于该8个通道的输入信号,8位A/D 转换器,其精度为 8 0.39%2 ?= 输入为0~5V 时,分辨率为 8 50.019611 22Fs N V v ==?? Fs v —A/D 转换器的满量程值 N —ADC 的二进制位数 量化误差为 8 50.0098(1)2 (1)2 22Fs N Q V v = = =?×?× ADC0809是8位逐次逼近式模数转换器,包括一个8位的逼近型的ADC 部分,并提供一个8通道的模拟多路开关和联合寻址逻辑,为模拟通道的设计提供了很大的方便。

数据采集系统微机原理课设

微型计算机原理及接口技 术课程设计 学院:专业:班级:学号:姓名:指导教师: 第一部分 课程设计任务书 、设计内容(论文阐述的问题) 设计一个数据采集系统 基本要求:要求具有 8 路模拟输入 输入信号为 0 —— 500mV 采用数码管 8 位,显示十进制结果 输入量与显示误差 <1%

发挥部分: 1、速度上实现高精度采集 2、提高系统精度 3、设计抗干扰性 二、设计完成后提交的文件和图表 1. 计算说明书部分: 数据采集是指将压力、流量、温度、位移等模拟量转换成数字量后,再由计算机进行存储、处理、显示、或打印的过程,相应的系统就称为数据采集系统。 数据采集的任务,就是采集传感器输出的模拟信号并转换成计算机能识别的数字信号,然后送入计算机进行相应的计算和处理,取得所需的数据。同时,将计算机得到的数据进行显示或打印,以便实现对某些物理量的监控。 数据采集性能的好坏,主要取决于他的精度和速度。在保证精度的条件下,应有尽可能高的采样速度。 数据采集系统应具有功能: 1)数据采集 计算机按照选定的采样周期,对输入到系统的模拟信号进行采样,称为数据采集。 (2)模拟信号处理模拟信号是指随时间连续变化的信号,模拟信号处理是指模拟信号经过采样和 A/D 转换输入计算机后,要进行数据的正确性判断、标度变换、线性化等处理。 (3)数字信号处理数字信号处理是指数字信号输入计算机后,需要进行码制的转换处理,如 BCD 码转 换成 ASCII 码,以便显示数字信号。 (4)屏幕显示 就是用各种显示装置如 CRT、 LED 把各种数据以方便于操作者观察的方式显示出来。

(5)数据存储 数据存储是就是将某些重要数据存储在外部存储器上。 在本次设计中,我们采用 8259 作为中断控制器, 8255 作为并行接口, ADC0809 作为模数转换器。 2、图纸部分: 含有总体设计的功能框图、所用各种器件的引脚图、内部逻辑结构框图以及相应器件的真值表,还包括总设计的硬件连接图及软件设计流程图等。 第二部分 一、设计指标设计一个数据采集系统基本要求 :微型计算机最小系统 具有 8 路模拟输入 输入信号为 0 —— 500mV 采用数码管8位,显示十进制结果 输入量与显示误差<1% 中断方式 二、设计方案论证 考虑本数据采集系统要求,该系统的功能框图如下: LEDfi 示 1--- TT----- 模拟量籀人‘;放大器 =A/D转换器二;中断控制器一「8088CPU | 图1系统功能框图

【价格】多通道数据采集 80K 14位 16路同步模拟量输入采集卡)系列)图

PCI8008 同步采集卡硬件使用说明书 阿尔泰科技发展有限公司 产品研发部修订

阿尔泰科技发展有限公司 目录 目录 (1) 第一章概述 (3) 第一节、产品应用 (3) 第二节、AD 模拟量输入功能 (3) 第三节、其他指标 (4) 第四节、板卡外形尺寸 (4) 第五节、产品安装核对表 (4) 第六节、安装指导 (4) 一、软件安装指导 (4) 二、硬件安装指导 (4) 第二章元件布局图及简要说明 (5) 第一节、主要元件布局图 (5) 一、信号输入输出连接器 (5) 二、电位器 (5) 三、跳线器 (5) 四、物理ID 拨码开关 (6) 五、指示灯 (7) 第三章信号输入输出连接器 (8) 第一节、AD 模拟量信号输入连接器定义 (8) 第二节、模拟量输入/输出接口 (8) 第三节、跳线器设置 (9) 第四章各种信号的连接方法 (10) 第一节、AD 模拟量输入的信号连接方法 (10) 一、AD 单端输入连接方式 (10) 二、AD 双端输入连接方式 (10) 第二节、同步触发脉冲信号的连接方法 (11) 一、同步触发脉冲信号输入连接方式 (11) 二、同步触发脉冲信号输出连接方式 (11) 第三节、时钟输入输出信号的连接方法 (11) 第四节、触发信号连接方法 (12) 第五节、多卡同步的实现方法 (12) 第五章数据格式、排放顺序及换算关系 (14) 第一节、AD 模拟量输入数据格式及码值换算 (14) 一、AD 双极性模拟量输入数据格式 (14) 二、AD 单极性模拟量输入数据格式 (14) 第二节、关于AD 数据端口高位空闲部分的定义 (14) 第三节、AD 多通道采集时的数据排放顺序 (15) 第六章各种功能的使用方法 (16) 第一节、AD 触发功能的使用方法 (16) 一、AD 内触发功能 (16) 二、AD 外触发功能 (16) 第二节、AD 内时钟与外时钟功能的使用方法 (19) 一、AD 内时钟功能 (19) 二、AD 外时钟功能 (19)

USB接口的高速数据采集卡的设计与实现

摘要:讨论了基于USB接口的高速数据采集卡的实现。该系统采用TI公司的TUSB3210芯片作为USB通信及主控芯片,完全符合USB1.1协议,是一种新型的数据采集卡。 关键词:USB A/D FIFO 固件 现代工业生产和科学研究对数据采集的要求日益提高,在瞬态信号测量、图像处理等一些高速、高精度的测量中,需要进行高速数据采集。现在通用的高速数据采集卡一般多是PCI 卡或ISA卡,存在以下缺点:安装麻烦;价格昂贵;受计算机插槽数量、地址、中断资源限制,可扩展性差;在一些电磁干扰性强的测试现场,无法专门对其做电磁屏蔽,导致采集的数据失真。 通用串行总线USB是1995年康柏、微软、IBM、DEC等公司为解决传统总线不足而推广的一种新型的通信标准。该总线接口具有安装方便、高带宽、易于扩展等优点,已逐渐成为现代数据传输的发展趋势。基于USB的高速数据采集卡充分利用USB总线的上述优点,有效解决了传统高速数据采集卡的缺陷。 1 USB数据采集卡原理 1.1 USB简介 通用串行总线适用于净USB外围设备连接到主机上,通过PCI总线与PC内部的系统总线连接,实现数据传送。同时USB又是一种通信协议,支持主系统与其外设之间的数据传送。USB器件支持热插拔,可以即插即用。USB1.1支持两种传输速度,既低速1.5Mbps和高速 12Mbps,在USB2.0中其速度提高到480Mbps。USB具有四种传输方式,既控制方式(Control mode)、中断传输方式(Interrupt mode)、批量传输方式(Bulk mode)和等时传输方式(Iochronous mode)。 考虑到USB传输速度较高,如果用只实现USB接口的芯片外加普通控制器(如8051),其处理速度就会很慢而达不到USB传输的要求;如果采用高速微处理器(如DSP),虽然满足了USB传输速率,但成本较高。所以选择了TI公司内置USB接口的微控制器芯片 TUSB3210,开发了具有USB接口的高速数据采集卡。 1.2 系统原理图

1仪器的工作原理及系统构成-高速数据采集卡

1 仪器的工作原理及系统构成 虚拟示波器是由信号调理器,PCI总线的数据采集卡组成的外部采集系统加上软件构成的分析处理系统组成。被测信号送到信号调理电路,进行隔离、放大、滤波整流后送数据采集卡进行A/D转换,最后由控制软件对测试信号进行数据处理,完成波形显示,参数测量、频谱分析等功能。系统结构如图1显示 图1 系统结构图 2 系统的设计及功能实现 2.1硬件部分 硬件部分主要包括传感器、信号调理电路及数据采集卡。 理电路针对不同的测试对象有不同的选择和设计。数据采集是硬件部分的核心, 它的性能直接影响数据采集的速度和精度。另外,LabVIEW可对NI公司的数据 采集卡进行驱动和配置,可充分利用采集卡的性能。基于此,我选择的数据采集 卡是NI公司生产的。下面主要介绍数据采集卡的性能和安装配置。 2.1.1 PCI—6010数据采集卡的简介 PCI—6010采集卡是基于32位PCI总线的多通道的数据采集设备,具有数 字输入/输出、模拟输入/输出和计数器等功能。它通过SH37F—37M电缆与CB —37F—LF 输入输出接口面板连接,该接口面板具有37个螺旋状的接口终端。 同时此数据采集卡具有3个完全独立的DMA控制(模拟输入、定时/计数器0、 定时/计数器1)。本卡还具有刻度校准电路系统。由于运行时,时间和温度漂移 会引起一定的模拟输入、输出误差,为了使此误差最小,可以调整设备的校准刻 度。而它的出厂校准信息存储在EEPROM中,不能修改。而修改此信息必须通 过软件来实现。

该数据采集卡具有8个差动模拟输入通道(即16个对地单信号模拟输入通道),电压范围为±5V, ±1V,±0.2V;2个模拟输出通道,电压范围为±5V。同时它还具有6个数字输入通道,4个数字输出通道。数字输入的VIH(Input high voltag e)的最小值是2.0 V, 最大值是5.25 V,VIL(Input low voltage)的最大值是0. 8 V, 最小值是–0.3 V;数字输出的IOH(Output high current)的最大值是–6 mA ,IOL (Output low current) 的最大值是2 mA。信号通道的最大采样速率是200 kS/s (single channel) ,扫描时最大采样速率是33.3 kS/s (scanning)。 2.1.2 PCI—6010数据采集卡的安装 将NI PCI—6010数据采集卡插到计算机主板的一个插槽中,接好附件。附件包括一个型号为CB—37F—LF的转接板,和一条SH37F—37M电缆。转接板直接与外部信号连接。在完成了NI PCI—6010数据采集卡的硬件连接后,就需要 安装该卡的驱动程序。安装步骤如下: (1)运行程序→National Instrument DAQ→NI-DAQ Setup。在出现对话框中 单击NEXT按钮。 (2)在出现的Seletct DAQ Devices对话框中选中NI PCI—6010,单击NEXT 按钮。 (3)在后续出现的全部对话框中单击NEXT按钮,即可完成NI PCI—6010数 据采集卡的安装。 (4)重新启动计算机。完成数据采集卡的安装。 2.1.3 PCI—6010数据采集卡的配置 在安装好数据采集卡后就要对其进行系统配置。点击图标Measurement & Automation Explorer,在弹出的Devices and Interface 中进行I/O配置。 (1) 这支采集卡在系统的设备的编号:将参数Device值设为1; (2) 设置模拟输入AI的属性:将Polarity 值设为-5V~+5V,将Mode属性设 置为Differentioal(差动); (3) 设置模拟输出AO的属性:在AO窗口中,将属性设为Bipolar(双极性)。 在完成上述设定之后,单击“确定”按钮。在Systerm窗口中有“Test Resources”按钮,可检验设备是否正确配置。通过后再进行简单的通道配置,即可完成数据采集卡的全部设置。

基于TLC549的数据采集系统设计

基于TLC549的数据采集系统设计 Time:2009-09-22 11:14:00 Author: Source:电子元器件应用 杨来侠,万建军 (西安科技大学,陕西西安710054) 0 引言 现代自动控制系统中需要测量和控制的参数往往都是连续变化的模拟信号,如温度,压力,流量,速度等。这些物理量和控制参数往往都是连续变化的电压和电流,因此,必须将其变换成数字量(即需经模,数转换),才能被数字计算机所识别。这些数字量在计算机内经过运算处理,可以得到一个数字形式的控制量,将这些控制量经过数/模转换器,变成模拟电压或电流信号,再送到执行机构去驱动相应的设备动作,即可实现对生产过程的自动控制。 1 TLC549的主要特点和工作原理 l.l TLC549的主要特点 TLC549是采用IinCMOSTM技术并以开关电容逐次逼近原理工作的8位串行A/D7芯片,可与通用微处理器、控制器通过I/O CLOCK、CS、DATA OUT三条口线进行串行接口。TLC549具有4MHz的片内系统时钟和软、硬件控制电路,转换时间最长为17μs,允许的最高转换速率为40000次/s。总失调误差最大为±0.5LSB,典型功耗值为6 mW。TLC549采用差分参考电压高阻输入,抗干扰,可按比例量程校准转换范围,由于其VREF-接地时,(VREF+)-(VREF-)≥1 V,故可用于较小信号的采样,此外,该芯片还单电源3~6v的供电范围。总之,TLC549具有控制口线少,时序简单,转换速度快,功耗低,价格便宜等特 点,适用于低功耗袖珍仪器上的单路A/D采样,也可将多个器件并联使用。TLC549的内部结构框图和管脚名称如图1所示。 1.2 TLC549的极限参数,

单片机课程设计数据采集系统

一、摘要 此系统主要以ADC0808和80C51为核心,进行实时数据采集,数据处理和显示,终端接收及存储。具体包括控制、显示、A/D转化器等。设计中用AD0808进行8路数据的采样,利用51单片机的串行口进行发送和接收数据。利用8个LCD 数码管进行显示数据处理。采用PROTEUS和Keil uvision3为开发工具,软件设计采用模块化编程 关键字:数据采集、ADC0808、双机通讯、IIC 二、前言 随着计算机技术的飞速发展,数据采集系统应用在多个领域中。数据采集时供、农业控制系统中十分重要的环节,在医药、化工、食品等领域中,往往需要随时检测各生产环节的温度、流量、压力等参数。同时,还要对某一检测点任意参数能够进行随机查寻,将其在某一段时间内检测得到的数据经过转换提取出来,以便进行比较,做出决策,调整控制方案,以提高产品的合格率,产生良好的经济效益。 不仅如此,数据采集系统在我国高科技领域中也扮演着十分重要的地位。雷达的实时数据采集,航天飞机成功升空,通讯卫星的实时通报数据,这些高科技给国家人民的生活带来了便利。 因此数据采集是一项十分重要的技术。从严格意义上来讲,数据采集系统是用计算机控制的多路自动检测或巡回检测,并且能够对采集到的数据进行存储、计算、分析,以及从数据中提取可用的信息,供显示,记录、打印或描绘的系统。 数据采集系统通常由数据输入通道、数据处理、数据存储、数据显示、数据输出五个部分组成。输入通道实现对数据的检测并读取;数据转化是将采集到的数据进行适当的转化;以便输出人们易懂的数据;数据存储是对采集过来的数据进行存储;以防下次用到可以方便提取;数据显示便是将处理后的数据进行显示,让操作者可以方便读取采集到的信息,以便进行控制;数据输出就是将数据输送到打印机打印。 由于RS-485在微机远程通信接口中广泛采用,技术已经相当成熟,故采用标准RS-485标准,实现PC与单片机之间的数据传送(由于本次设计在PROTEUS系统中仿真,因此,略去接口RS-485)。 本设计中对多路采集系统做了基本的研究。此次试验主要解决的是怎样进行多路数据采集并如何通过串行口发送数据实现双机通讯的。 三、正文

基于DSP和PCI总线的同步数据采集卡设计

基于!"#和#$%总线的同步数据采集卡设计 王宏,许飞云,贾民平 (东南大学设备监控与故障诊断研究所,江苏南京&’(()*) 摘要:介绍了一种在大型设备状态监测和故障诊断系统中作为核心的同步数据采集卡的设 计方法。该采集卡使用+%公司的+,"-&(.$/0’(1!"#做数字信号处理器,对数据采集过 程进行控制,并进行数字信号处理。应用#$%&(0(实现+,"-&(.$/0’(1!"#到#$%总线间 可靠连接,从而保证了采集数据快速、高效地传输到#$机。采集卡集同步数据采集、信号处 理及高速数据传输于一体。在状态监测和故障诊断系统中应用时,能很好的满足数据采集、处 理和传输的需要。 关键词:!"#;#$%总线;#$%&(0(;同步数据采集 中图分类号:+#-)’233文献标识码:1文章编号:’*3’4/&3*(&((3)(’4(()/4(0 !"#$%&’()*&+,-’&’.#!/0/1+2.$#$0$’&3/-45/#"4’&!)6/&46375.# 516789:;,<=>?@4A B:,C%1,@:4D@:; (E?F?G H I J$?:K?H9L$9:M@K@9:,9:@K9H@:;G:M>G B N K!@G;:9F@F, "9B K J?G F K=:@O?H F@K A,6G:P@:;&’(()*,$J@:G) 18#0-/+0:1M?F@;:9L F A:I J H9:9B F M G K G G I Q B@F@K@9:I G H M@F B F?M G F I9H?@:N G H;?4F I G N??Q B@D R?:K’F I9:M@K@9:R9:@K9H@:;G:M L G B N K M@G;:9F@F2+,"-&(.$/0’(1!"#9L+%I9R D G:A@F B F?M G F M@;@K G N F@;:G N D H9I?F F9H9:K J?I G H M K9I9:K H9N K J?D H9I?F F9L M G K G G I4 Q B@F@K@9:G:M K9D H9I?F F K J?G I Q B@H?M M G K G2#$%&(0(@F G D D N@?M K9D H9O@M?G K H@?M I9::?I K@9:S?K T??:+,"-&(.$/0’(1!"#G:M #$%S B F K9;B G H G:K??K J?G I Q B@H?M M G K G K H G:F L?H H?M K9#$@:J@;J F D??M G:M J@;J?L L@I@?:I A2+J?I G H M I9R S@:?F F A:I J H9:9B F M G K G G I Q B@F@K@9:,F@;:G N D H9I?F F G:M J@;J U F D??M M G K G K H G:F@K@9:@:9:?25J?:B F?M@:I9:M@K@9:R9:@K9H@:;G:M L G B N K M@G;:9F@F F A F4 K?R F,K J?I G H M I G:T?N N R??K K J?:??M F9L G I Q B@F@K@9:,D H9I?F F G:M K H G:F R@F F@9:9L M G K G2 9"*:’-4#:!"#;#$%S B F;#$%&(0(;F A:I J H9:9B F M G K G G I Q B@F@K@9: ;引言 随着现代化工业生产日益系统化、高速化和自动化的发展,现代工业生产已逐渐形成一个具有整体性的生产链,一旦某一设备发生故障,将会引起整个生产过程不能正常运行,从而造成巨大的经济损失,严重时将造成灾难性的设备损坏及人员伤亡。近年来,国内外的设备事故时有发生。因此,人们对设备的可靠性和安全性提出了越来越高的要求,设备的故障监测与诊断技术受到了人们的高度重视,并已发展成为一门综合性的交叉学科,亦取得了显著的经济效益和社会效益[’]。 设备的故障监测与诊断技术多是基于#$机的测试系统,首先要进行数据采集,然后才能对获得的数据进行测试分析。所以数据采集卡是设备的故障监测与诊断的基础。 文中主要阐述了基于!"#的#$%总线同步数据采集卡的硬件设计,使用美国+%公司的+,"-&(.$/0’(1 !"#作为采集卡的处理器,使用高速的#$%总线与#$机连接,实现数据的采集和快速传送。该卡主要用于大型设备监测和故障诊断系统中完成数据采集和预处理功能,实现对被监测系统的实时监测。 <硬件设计 <2<采集卡总体结构 在大型设备的状态监测和故障诊断中,振动信号能最迅速最直接地反映机械设备的运行状态,3(V以上的运行故障都以振动形式表现出来。由于振动信号在工频及其各倍频处的能量分布直接反映了设备运行状态,因此需要在数倍于工频的范围内分析振动频谱,作为振动信号的状态监测系统要求也就比较高[-],表现为:采样频率高、信号处理量大、数据传输量也很大。而使用!"#和#$%总线相结合设计的同步采集卡却能满足这一需求。#$%总线数据采集卡系统的原理框图如图’所示。 由图’可以看出,’*通道模拟信号同步采集模块对由抗混滤波板输入的模拟信号进行缓冲处理输入后续的0片0通道同步采集芯片1!3W*/,该0片1!3W*/芯片由同一个采样脉冲控制采样及1/!转换,实现’*通道信号的同步采集。所有1!3W*/芯片的转换结果均通过板内部的!"#总线供+,"-&(.$/0’(1!"#芯片读取,该同步采集模块可根据测量的转速实现’*通道模拟信号同步整周期采集,采集频率每通道可高达3/X8Y。 此外,该信号同步采集模块具有内触发与外触发采样功能,其外触发采样功能可以保证多块’*通道信号同步采集模块同时使用,实现更多通道(如-&、0W通道等)的同步采样。 +,"-&(.$/0’(1!"#芯片为’*通道信号同步采集板的核心,它一方面控制各种信号的采集及保存,另一方面负责信号的分析与处理,并提取设备故障的特征信号通过其8#%接口供计算机获取用于故障诊断。各相关单元如1/!转换芯片、0Z-&[字数据E1,、’&W[字程序/数 !"#$%&’()%*+%&,-.)/01"/%0&,2’34556,78(9)::;!:

数据采集卡技术原理

核心提示:一、数据采集卡の定义:数据采集卡就是把模拟信号转换成数字信号の设备,其核心就是A/D芯片。二、数据采集简介:在计算机广泛应用の今天,数据采集の重要性是十分显著の。它是计算机与外部物理世界连接の桥梁。各种类型信号采集の难易程度差别很大。实际采集时,噪声也可能带来一些麻烦。数据采集时,有一些基本原理要注意,还有更多の实际の问题要解决。假设现在对一个模拟信号 x(t) 每隔Δ t 时间采样一次。时 一、数据采集卡の定义: 数据采集卡就是把模拟信号转换成数字信号の设备,其核心就是A/D芯片。 二、数据采集简介: 在计算机广泛应用の今天,数据采集の重要性是十分显著の。它是计算机与外部物理世界连接の桥梁。各种类型信号采集の难易程度差别很大。实际采集时,噪声也可能带来一些麻烦。数据采集时,有一些基本原理要注意,还有更多の实际の问题要解决。 假设现在对一个模拟信号 x(t) 每隔Δ t 时间采样一次。时间间隔Δ t 被称为采样间隔或者采样周期。它の倒数1/ Δ t 被称为采样频率,单位是采样数 / 每秒。t=0, Δ t ,2 Δ t ,3 Δ t …… 等等, x(t) の数值就被称为采样值。所有x(0),x( Δ t),x(2 Δ t ) 都是采样值。这样信号x(t) 可以用一组分散の采样值来表示: 下图显示了一个模拟信号和它采样后の采样值。采样间隔是Δ t ,注意,采样点在时域上是分散の。 图 1 模拟信号和采样显示 如果对信号 x(t) 采集 N 个采样点,那么 x(t) 就可以用下面这个数列表示: 这个数列被称为信号 x(t) の数字化显示或者采样显示。注意这个数列中仅仅用下标变量编制索引,而不含有任何关于采样率(或Δ t )の信息。所以如果只知道该信号の采样值,并不能知道它の采样率,缺少了时间尺度,也不可能知道信号 x(t) の频率。 根据采样定理,最低采样频率必须是信号频率の两倍。反过来说,如果给定了采样频率,

高速数据采集卡250MSPS

高速数据采集卡250MSPS 14bit 250MSPS 14bit 8通道高速数据采集卡主要应用于雷达、通信、电子对抗、高能物理、质谱分析、超声等高科技领域。西安慕雷电子在高速数据采集卡研发及系统应用领域拥有十多年经验,2013年底发布了250MSPS 14bit 8通道高速数据采集卡MR-HA-250M,采集记录存储带宽高达3000MB/S。高速数据采集卡MR-HA-250M及记录存储系统的成功发布使得西安慕雷电子在高速数据采集卡及相关记录存储回放领域为国防及科研领域又提供了一套高性能解决方案。 图一高速数据采集卡MR-HA-250M 高速数据采集卡MR-HA-250M模块参数: ●输入接口: 连接器:SSMC; 输入方式:AC或DC耦合; 通道数量:8通道,可同步32通道 ●AFE模块: 高速数据采集卡中的信号调理模块一般采用衰减、滤波及程控增益放大器等对信号进行处理,高速数据采集卡MR-HA-250M采用信号直通AD模式,减少前端调理对高速数据采集卡动态性能影响。 图二高速数据采集卡MR-HA-250M

●ADC模块: 高速数据采集卡的ADC芯片采用Linear Tech LTC2157-14 (250 MSPS) 图三高速数据采集卡MR-HA-250M动态性能 ●时钟管理模块: 高速数据采集卡MR-HA-250M可选择外时钟、内时钟或参考时钟 ●FPGA模块: XILINX或ALTERA的FPGA芯片广泛用于高速数据采集卡中。FPGA模块开放编程是高速数据采集卡的必备能力。高速数据采集卡MR-HA-250M采用XILINX V6系列高性能FPGA。 ●DDR模块: 高速数据采集卡一般都会配有DDR缓存,存储采集过程中的数据。高速数据采集卡MR-HA-250M配置有4GB DDR2。 ●FIFO模式 高速数据采集卡将板载内存虚拟为FIFO,允许采集数据由缓冲后连续不断地通过总线传输到主机内存或硬盘中。该模式特点就是高速、大容量,使得高速数据采集卡记录时间达数小时。记录时间取决于存储介质的容量。 图四高速数据采集卡MR-HA-250M

第10章基于研华数据采集卡的LabVIEW程序设计

第10章基于研华数据采集卡的 L a b V I E W程序设计 本章利用研华公司的PCI-1710HG数据采集卡编写LabVIEW程序,包括:模拟量输入、模拟量输出、开关量输入以及开关量输出等。 10.1 模拟量输入(AI) 10.1.1 基于研华数据采集卡的LabVIEW程序硬件线路 在图10-1中,通过电位器产生一个模拟变化电压(范围是0V~5V),送入板卡模拟量输入0通道(管脚68),同时在电位器电压输出端接一信号指示灯,用来显示电压变化情况。 图10-1 计算机模拟电压输入线路 本设计用到的硬件为:PCI-1710HG数据采集卡、PCL-10168数据线缆、ADAM-3968接线端子(使用模拟量输入AI0通道)、电位器(10K)、指示灯(DC5V)、直流电源(输出:DC5V)等。 10.1.2 基于研华数据采集卡的LabVIEW程序设计任务 利用LabVIEW编写应用程序实现PCI-1710HG数据采集卡模拟量输入。 任务要求: (1)以连续方式读取电压测量值,并以数值或曲线形式显示电压测量变化值;

(2)当测量电压小于或大于设定下限或上限值时,程序画面中相应指示灯变换颜色。

10.1.3 基于研华数据采集卡的LabVIEW程序任务实现 1.建立新VI程序 启动NI LabVIEW程序,选择新建(New)选项中的VI项,建立一个新VI程序。 在进行LabVIEW编程之前,必须首先安装研华设备管理程序Device Manager、32bit DLL驱动 程序以及研华板卡LabVIEW驱动程序。 2.设计程序前面板 在前面板设计区空白处单击鼠标右键,显示控件选板(Controls)。 (1)添加一个实时图形显示控件:控件(Controls)→新式(Modern)→图形(Graph)→波形图形(Waveform Chart),标签改为“实时电压曲线”,将Y轴标尺范围改为0.0-5.0。 (2)添加一个数字显示控件:控件(Controls)→新式(Modern)→数值(Numeric)→数值显示控件(Numeric Indicator),标签改为“当前电压值:”。 (3)添加两个指示灯控件:控件(Controls)→新式(Modern)→布尔(Boolean)→圆形指示灯(Round LED),将标签分别改为“上限指示灯:”、“下限指示灯:”。 (4)添加一个停止按钮控件:控件(Controls)→新式(Modern)→布尔(Boolean)→停止按钮(Stop Button)。 设计的程序前面板如图10-2所示。 图10-2 程序前面板 3.框图程序设计——添加函数 进入框图程序设计界面,在设计区空白 处单击鼠标右键,显示函数选板(Functions)。 在函数选板(Functions)下添加需要的函数。 (1)添加选择设备函数:用户库→ Advantech DA&C(研华公司的LabVIEW函数库)→ EASYIO → SelectPOP →,如图10-3所示。 图10-3 SelectPop函数库

数据采集卡技术原理

核心提示:一、数据采集卡①定义: 数据采集卡就是把模拟信号转换成数字信 号①设备,其核心就是A/D芯片。二、数据采集简 介:在计算机广泛应用①今天, 数据采集①重要性是十分显著①。它是计算机与外部物理世界连接①桥梁。各种类型信号采集①难易程度差别很大。实际采集时,噪声也可能带来一些麻烦。数据采集时,有一些基本原理要注意,还有更多①实际①问题要解决。假设现在对一个模拟信号x(t)每 隔△ t时间采样一次。时 一、数据采集卡①定义: 数据采集卡就是把模拟信号转换成数字信号①设备,其核心就是A/D芯片。 二、数据采集简介: 在计算机广泛应用①今天,数据采集①重要性是十分显著①。它是计算机与外部物理世界连接①桥梁。各种类型信号采集①难易程度差别很大。实际采集时,噪声也可能带来 一些麻烦。数据采集时,有一些基本原理要注意,还有更多①实际①问题要解决。 假设现在对一个模拟信号x(t)每隔△ t时间采样一次。时间间隔△ t被称为采样间隔或者采样周期。它①倒数1/ △ t被称为采样频率,单位是采样数/每秒。t=0, △ t ,2 △ t ,3 A t……等等,x(t)①数值就被称为采样值。所有x(0),x( △ t),x(2 △ t )都是采样值。这样信号x(t) 可以用一组分散①采样值来表示: 下图显示了一个模拟信号和它采样后①采样值。采样间隔是A t ,注意,采样点在时域上是分散

①。 如果对信号x(t)采集N个采样点,那么x(t)就可以用下面这个数列表示: 这个数列被称为信号x(t)①数字化显示或者采样显示。注意这个数列中仅仅用下标变 量编制索引,而不含有任何关于采样率(或△ t)o信息。所以如果只知道该信号①采样 值,并不能知道它①采样率,缺少了时间尺度,也不可能知道信号x(t)①频率。 根据采样定理,最低采样频率必须是信号频率①两倍。反过来说,如果给定了采样频率,那么能够正确显示信号而不发生畸变①最大频率叫做恩奎斯特频率,它是采样频率①一半。 如果信号中包含频率高于奈奎斯特频率①成分,信号将在直流和恩奎斯特频率之间畸变。图2显示了一个信号分别用合适①采样率和过低①采样率进行采样①结果。 采样率过低①结果是还原①信号①频率看上去与原始信号不同。这种信号畸变叫做混叠(alias )。出现①混频偏差(alias frequency )是输入信号①频率和最靠近①采样率

单路数据采集系统设计

1 引言 1.1 数据采集系统的意义 数据采集系统是结合基于计算机的测量软硬件产品来实现灵活的、用户自定义的测量系统。数据采集是指从传感器和其它待测设备等模拟和数字被测单元中自动采集信息的过程。本设计采用A/D转换器和51单片机组成数据采集系统,该设计具有结构简单、操作方便、高性价比、具有显示、记录存储功能,能够适应油田野外恶劣环境,具有性能稳定、可靠性高、响应速度快操作简单、费用低廉、回放过程的信号可以直观的观察。它与有线数传相比主要有布线成本低、安装简便、便于移动等性能。 经调查,目前数据采集器的市场需求量大,以数据采集器为核心构成的小系统应用广泛,因此开发高性能的数据采集器具有良好的市场前景。随着计算机技术的飞速发展和普及,数据采集系统在多个领域有着广泛的应用。数据采集是工、农业控制系统中至关重要的一环,在医药、化工、食品、等领域的生产过程中,往往需要随时检测各生产环节的温度、湿度、流量及压力等参数。同时,还要对某一检测点任意参数能够进行随机查寻,将其在某一时间段内检测得到的数据经过转换提取出来,以便进行比较,做出决策,调整控制方案,提高产品的合格率,产生良好的经济效益。随着工、农业的发展,多路数据采集势必将得到越来越多的应用,为适应这一趋势,作这方面的研究就显得十分重要。在科学研究中,运用数据采集系统可获得大量的动态信息,也是获取科学数据和生成知识的重要手段之一。单片机构成的数据采集处理系统适用于各种现场自动化监测及控制,能够适应油田野外恶劣环境,具有性能稳定、可靠性高、响应速度快操作简单、费用低廉、等优点。1.2 数据采集系统的主要功能 数据采集是指从传感器和其它待测设备等模拟和数字被测单元中自动采集信息的过程。数据采集系统是结合基于计算机的测量软硬件产品来实现灵活的、用户自定义的测量系统。比如条码机、扫描仪等都是数据采集工具。 数据处理系统是指运用计算机处理信息而构成的系统。其主要功能是将输入的数据信息进行加工、整理,计算各种分析指标,变为易于被人们所接受的信息形式,并将处理后的信息进行有序贮存,随时通过外部设备输给信息使用者。

教你设计pci总线的高速数据采集卡(基于pci9054)

教你设计PCI总线的高速数据采集卡(基于PCI9054) 2007-03-13 21:02 眼下有不少场合需要用到PCI总线的数据采集卡,下面我就来谈一下设计PCI数采卡的原理及要点。 首先我要以我的实际经验,纠正存在于很多人心里的几个误区: 1.设计PCI采集卡要通读PCI协议。 相信有很多初学者都在这个地方被吓住了,几百页的英文要通读并理解谈何容易!其实PCI协议处理的这部分功能已经被PCI接口芯片完成了,如PLX公司的9054、9056和9052等等,它封装了PCI协议的细节,我们只需要控制这颗接口芯片local端的几个控制线就可以完成PCI总线的数据传输。PCI协议也有它的用处,我们只需要在某些需要注意的地方查阅一下相关章节即可,比如PRSNT1#和PRSNT2#引脚至少要有一个下拉,才能识别到卡,这就是PCI协议中的规定。 2. PCI卡布线很复杂,一不小心就可能不成功。 其实对于32位33MHz的PCI总线来说,布线相对比较简单,只要稍加注意就不会出问题。比如:PCI总线的时钟线要做成2500(+/-100)mil,这个是要注意的一点,一般PCI卡上的蛇行弯曲走线就是这条线,因为走直线距离一般都达不到此长度。其他要求,比如地址和数据线要在1500mil以内,其实你超过一些也没什么问题,不要超太多就好了。 3. PCI卡的驱动程序编写很难。 其实无论是软件还是硬件设计,都有一些相对成熟的资料可以参考。对驱动程序来说也是这样,对实际项目的开发没有几个是从头到尾自己在编代码,都可以在网上找到一些成熟的代码,然后自己修改一下即可,况且PCI卡的驱动程序又相对比较成熟,可参考的资料也较多。所以你要从网上找代码,向PCI接口芯片的供应商要代码,等收集到足够多的代码,再配以适当的教材(比如对于windows2000/XP系统下的WDM驱动程序,可以参考武安河老师的教材就足够),就可以进行你自己的驱动设计了。 下面我再针对具体应用谈谈PCI采集卡的设计: 一般数采卡的情况是将A/D转换后的数据通过PCI总线上传到PCI机,然后利用

多通道数据采集文献综述

多通道数据采集系统的设计与实现 引言 进来,我在网上浏览了200余篇有关数据采集系统的文献。下载了其中100多篇,详细研读了其中50余篇。我了解到在当今社会各个领域,包括科研和实验研究,数据采集系统有着不可代替的作用,数据采集和处理进行得越及时,工作效率就越高,取得的经济效益就越大.数据采集系统性能的好坏主要取决于它的精度和速度,在保证精度的条件下,还要尽可能地提高采样速度,以满足实时采集、实时处理和实时控制的要求。 数据采集系统涉及多学科,所研究的对象是物理或生物等各种非电或电信号,如温度、压力、流量、位移等模拟量,根据各种非电或电信号的特征,利用相应的归一化技术,将其转换为可真实反映事物特征的电信号后,经A/D转换器转换为计算机可识别的有限长二进制数字编码,即数字量,并进行存储、处理、显示或打印。以此二进制数字编码作为研究自然科学和实现工业实时控制的重要依据,实现对宏观和微观自然科学的量化认识。 Microsoft V isual C++是Microsoft公司推出的开发Win32环境程序,面向对象的可视化集成编程系统。它不但具有程序框架自动生成、灵活方便的类管理、代码编写和界面设计集成交互操作、可开发多种程序等优点,而且通过简单的设置就可使其生成的程序框架支持数据库接口、OLE2,WinSock网络、3D控制界面。 本课题研究的是利用PC机上的声卡作为数据采集卡构建数据采集系统。利用VC编程实现多通道数据采集并对数据采集进行控制和处理。 正文 1.研究背景及发展近况 国外数据采集技术较上世纪有了很大的发展,从最近国外公司展示的新产品可以看出,主要的发展方向可以概括为使用方便、功能多样和体积减小三个方面。国内数据采集技术起步比较晚,国内的数据采集系统与国外数据采集系统相比,在技术上仍然存在一定的差距,主要表现在: (1) 由于整个国内的微电子技术还与世界水平有一定差距,模数转换芯片的速度还不能达到世界先进水平,同时高速PCB设计方面的人才比较稀少,所以国内较少研制出速度非常高同时性能又非常好的数据采集系统。 (2) 数据采集系统的内存不大,数据采集系统本身的信号处理功能不强,在现场只能做一些简单的数据分析,大多数的处理要离线到计算机上去做。 (3) 系统的软件水平以及人机界面方面的水平还不是很高,设备操作起来有很多不人性化的地方。 虽然国内与国外在数据采集技术上存在差距,但是总体来看这个差距在不断缩小,在不久的将来中国的数据采集系统肯定会晋升国际一流的水准。随着数字化步伐的不断加深,数据采集技术作为走进数字世界的一把钥匙,必须要紧跟数字化的脚步,只有掌握了尖端的数据采集技术才能在这个飞速变化的世界具有竞争力。

基于研华数据采集卡的LabVIEW程序设计

第10章基于研华数据采集卡的L a b V I E W 程序设计 本章利用研华公司的PCI-1710HG数据采集卡编写LabVIEW程序,包括:模拟量输入、模拟量输出、开关量输入以及开关量输出等。 10.1 模拟量输入(AI) 10.1.1 基于研华数据采集卡的LabVIEW程序硬件线路 在图10-1中,通过电位器产生一个模拟变化电压(X围是0V~5V),送入板卡模拟量输入0通道(管脚68),同时在电位器电压输出端接一信号指示灯,用来显示电压变化情况。 图10-1 计算机模拟电压输入线路 本设计用到的硬件为:PCI-1710HG数据采集卡、PCL-10168数据线缆、ADAM-3968接线端子(使用模拟量输入AI0通道)、电位器(10K)、指示灯(DC5V)、直流电源(输出:DC5V)等。 10.1.2 基于研华数据采集卡的LabVIEW程序设计任务 利用LabVIEW编写应用程序实现PCI-1710HG数据采集卡模拟量输入。 任务要求: (1)以连续方式读取电压测量值,并以数值或曲线形式显示电压测量变化值;

(2)当测量电压小于或大于设定下限或上限值时,程序画面中相应指示灯变换颜色。 209 / 21

10.1.3 基于研华数据采集卡的LabVIEW程序任务实现 1.建立新VI程序 启动NI LabVIEW程序,选择新建(New)选项中的VI项,建立一个新VI程序。 在进行LabVIEW编程之前,必须首先安装研华设备管理程序Device Manager、32bitDLL驱动 程序以及研华板卡LabVIEW驱动程序。 2.设计程序前面板 在前面板设计区空白处单击鼠标右键,显示控件选板(Controls)。 (1)添加一个实时图形显示控件:控件(Controls)→新式(Modern)→图形(Graph)→波形图形(Waveform Chart),标签改为“实时电压曲线”,将Y轴标尺X围改为0.0-5.0。 (2)添加一个数字显示控件:控件(Controls)→新式(Modern)→数值(Numeric)→数值显示控件(Numeric Indicator),标签改为“当前电压值:”。 (3)添加两个指示灯控件:控件(Controls)→新式(Modern)→布尔(Boolean)→圆形指示灯(Round LED),将标签分别改为“上限指示灯:”、“下限指示灯:”。 (4)添加一个停止按钮控件:控件(Controls)→新式(Modern)→布尔(Boolean)→停止按钮(Stop Button)。 设计的程序前面板如图10-2所示。 图10-2 程序前面板 3.框图程序设计——添加函数 进入框图程序设计界面,在设计区空白 处单击鼠标右键,显示函数选板(Functions)。 在函数选板(Functions)下添加需要的函数。 (1)添加选择设备函数:用户库→ Advantech DA&C(研华公司的LabVIEW函数库) →EASYIO→SelectPOP→Sel ectDevicePop.vi,如 图10-3 SelectPop函数库

相关文档
最新文档