基于51单片机的四足机器人课件.doc
《基于四足机器人的导航与路径规划方法研究》

《基于四足机器人的导航与路径规划方法研究》一、引言随着科技的飞速发展,四足机器人作为一种新型的移动平台,在军事、救援、物流等领域得到了广泛的应用。
其灵活的移动能力和良好的环境适应性,使得四足机器人在执行复杂任务时表现出强大的潜力。
然而,为了充分发挥四足机器人的性能,需要研究有效的导航与路径规划方法。
本文将重点研究基于四足机器人的导航与路径规划方法,旨在为四足机器人的应用提供理论支持和实用技术。
二、四足机器人概述四足机器人是一种通过四个腿进行运动的机器人,具有较高的灵活性和环境适应性。
其运动学特性和动力学特性使得四足机器人在复杂地形中能够稳定行走。
此外,四足机器人还可以通过改变腿部的运动状态,实现各种复杂的动作和姿态。
三、导航方法研究1. 传感器融合导航传感器融合导航是四足机器人导航的重要手段。
通过融合激光雷达、摄像头、惯性测量单元等传感器数据,可以实现对环境的感知和定位。
在传感器数据融合过程中,需要采用合适的算法对数据进行处理和优化,以提高导航的准确性和稳定性。
2. 地图构建与更新地图是四足机器人导航的基础。
通过传感器数据和机器视觉技术,可以构建出环境的地图。
在地图构建过程中,需要考虑地图的精度、实时性和更新速度等因素。
同时,为了适应环境的变化,需要研究地图的动态更新方法。
四、路径规划方法研究1. 全局路径规划全局路径规划是指根据起点和终点,在已知环境中规划出一条最优路径。
在全局路径规划中,需要考虑环境的复杂性、障碍物的分布、路径的长度和安全性等因素。
常用的全局路径规划算法包括A算法、Dijkstra算法等。
2. 局部路径规划局部路径规划是指在机器人运动过程中,根据实时感知的环境信息,规划出局部路径。
在局部路径规划中,需要考虑机器人的运动学特性和动力学特性,以及避障和速度规划等因素。
常用的局部路径规划算法包括动态窗口法、人工势场法等。
五、实验与分析为了验证本文提出的导航与路径规划方法的有效性,我们进行了实验。
一种基于单片机的四足步行机器人设计及步态研究.

一种基于单片机的四足步行机器人设计及步态研究周晓东,汤修映,农克俭中国农业大学工学院,北京(100083E-mail:摘要 :本论文通过对四足动物结构及其行走步态的研究, 设计制作了一台四足步行机器人样机, 按照多足步行机器人行走的稳定性原则, 设计出了慢走和对角小跑两种步态的具体过程,并采用单片机作为控制系统,实现了这两种步态,实验证明,所设计的步态具有良好的稳定性。
关键词:四足机器人;步态;慢走;对角小跑中图法分类号:TP2421. 引言步行机器人是一种腿式移动机构, 具有轮式、履带式等移动机器人所不具备的优点, 该类机器人能够在复杂的非结构环境中稳定地行走, 代替人完成许多危险作业, 被广泛地应用于军事运输、矿山开采、核能工业、星球表面探测、消防及营救、建筑业、农业及森林采伐、示教娱乐等众多行业。
因此, 长期以来, 多足步行机器人技术一直是国内外机器人领域研究的热点之一 [1][2]。
而四足机器人具有实现静态步行的最少腿数 [3],也适合于动态步行,以实现高速移动,因此,对四足步行机器人的研究,具有特殊的重要性。
本文以四足爬行动物为模仿对象, 通过对其结构和步态的分析和研究, 设计出了一台四足步行机器人, 采用单片机控制系统,使其能够模仿四足动物的慢走、对角小跑等步态。
2. 四足步行机构总体结构设计与自由度2.1步行机构总体结构分析图 1为所设计的四足步行机器人总体结构示意图, 由图可知, 该机构由四条腿及机体组成,每条腿的结构完全相同,在各主动驱动关节(膝关节、臀关节、髋关节上分别装有直1踝关节 2小腿 3膝关节 4大腿 5臀关节6髋关节 7机体 8控制系统电路板图 1 总体结构示意图Fig.1 The sketch of the overall configuration流电机,整个机体上共装有 12个独立的驱动电机。
而被动关节(踝关节采用球铰链结构, 脚底部粘上胶皮以增大和地面的摩擦力, 同时可对脚与地面之间的撞击起到缓冲作用, 小腿和大腿组成平面连杆机构, 它们均可以绕着自身的关节轴在一定的角度范围内摆动, 而整条腿又可以绕着髋关节转动。
四足机器人系统设计

四足机器人系统设计摘要四足机器人作为仿生机器人的一种,得到了广泛的研究。
行走机构和转弯机构是四足机器人最关键的部分,目前,行走机构的研究大多采用在腿机构的关节处安装伺服电机进行驱动,增加了机器人的重量和控制策略的难度。
并且,机器人本体大多是一个刚性整体,转弯机构研究不足。
为此,项目将四足机器人本体作为一个柔性整体,采用三维建模软件Pro/E4.0设计了四足机器人的机械系统,提出了一种新颖的凸轮控制驱动式行走机构,设计了一种腿机构以及相应的凸轮控制驱动机构,并初步设计了柔性转弯机构。
在此基础上,论文采用主从式控制方式设计了四足机器人的控制系统,重点讨论了以8051单片机为控制器的行走机构和转向机构的控制系统设计。
关键词:四足机器人;行走机构;凸轮驱动;控制系统;三维设计Abstract目前,常见的步行机器人以两足式、四足式、六足式应用较多。
其中,四足步行机器人机构简单且灵活,承载能力强、稳定性好,在抢险救灾、探险、娱乐及军事等许多方面有很好的应用前景,其研制工作一直受到国内外的重视。
本文介绍了国内外在机构设计、步态、控制等方面已经取得的进展,并分析了其中的关键技术。
最后,归纳总结了未来四足步行机器人的几个发展趋势]2[,以期对以后的研究工作具有指导作用。
20世纪60年代,四足步行机器人的研究工作开始起步。
随着计算机技术和机器人控制技术的研究和应用,到了20世纪80年代,现代四足步行机器人的研制工作进入了广泛开展的阶段。
世界上第一台真正意义的四足步行机器人是由Frank和McGhee于1977年制作的。
该机器人具有较好的步态运动稳定性,但其缺点是,该机器人的关节是由逻辑电路组成的状态机控制的,因此机器人的行为受到限制,只能呈现固定的运动形式。
20世纪80、90年代最具代表性的四足步行机器人是日本Shigeo Hirose实验室研制的TITAN系列。
1981~1984年Hirose教授研制成功脚部装有传感和信号处理系统的TITAN-III。
四足机器人

四足步行机器人机械本体结构
弹性驱动式实施方案:步行腿中的并联驱动机构和串联驱动机构均采 用伺服电机弹性驱动器驱动,整个动力全部来自电机。
5
4.四足机器人2
四足机器人单腿结构图
机架组件 5、大腿组件 3 和弹性小腿组件 1。 机架组件与大腿组件之间通过髋关节 4 相连, 大腿组件与弹性小腿之间通过膝关节 2 相连。
单足装配模型示意图
3
2.液压驱动足式机器人腿部
足式机器人腿部的机构简图 足式机器人的运动实质上是由EF,IG,JH之间的滑块机构和AE之 间的转动副,驱动AB杆绕A点转动,BC杆绕B点转动,CD绕C点转 动,AE绕Z轴转动,从而使D点相对地面运动,达到行走目的。
4
3.四足机器人1
步行腿结构示意图
14
1.平面并联五杆机构
15
11
9.四足轮腿式结构机器人
四足轮腿式
12
1.“4+2”多足步行机器人
整体图
腿结构主视图
其腿部件由髖关节、大腿关节、小腿关节和踝关节四部分组成,大、 小腿关节之间由线轮传动。
13
10.“4+2”多足步行机器人
1.髖关节:是由上下层布置的两个大且薄的齿轮和连接该两个大齿轮的薄 壁方框组成,其转动则能够带动大腿和小腿整体转动。 2.大腿关节:大腿关节轴由髖关节墙板支撑,采用齿轮传动,传动路线布 置在髖关节框架的上层,大腿围绕第一关节轴转动。 3.小腿关节:小腿关节在大腿关节的最远端。按腿臂融合的功能要求,小 腿关节不但要保证能带动小腿杆转过大腿杆,而且必须实现独立驱动功能。 4.踝关节:要满足多足步行机器人在三维空间的六个运动自由度,就要求 踝关节必须有三个自由度,基于这一要求踝关节采用球铰链形式实现腿脚 的联接。
智能四足机器人设计

四足机器人设计与总结报告指导老师:麦文学生:陈伟内容摘要本设计中,机器人的行走是根据四足动物的步行原理,将其运动过程分解,再结合实际模型,抽象出四足运动的基本原理,并制作出结构模型,通过对向前行走、原地左转弯、原地右转弯的控制,从而实现直行的行走。
本设计采用采用MCU控制机器人的步态设计,通过CPLD强大的信号处理功能实现PWM从而对每个舵机进行控制,实现机器人的直行行走。
同时预留了大量的端口,为以后实现寻路、显示、语音等功能提供条件。
关键词:四足步行 PWM 步态规划AbstractThis design, the robot is walking quadruped walking under the principle of decomposition of their movement, combined with the actual model, to abstract the basic principles of four-legged movement, and create structural models, by walking forward, the original to turn left, turn right to control in situ, in order to achieve straight walking.The design uses the robot gait control by MCU design, by CPLD realization of a powerful signal processing functions to each servo PWM control, the robot walk straight. At the same time a large number of ports reserved for the future find its way to achieve, display, voice and other features provide the conditions.Key words:QUADRUPED WALKING GAIT PLANNING PW M目录引言 (3)一、方案设计与论证 (4)二、肢体的结构设计 (5)2.1、舵机的结构 (6)2.2、舵机的控制方法 (7)2.3、舵机安装 (8)2.4、构件的级联 (9)2.5、整体结构介绍 (9)三、步行原理及步态、路径规划 (11)3.1、行走原理 (11)3.2、行走步态及动作时序 (12)3.2.1、初始化 (12)3.2.2、向前行走 (13)四、电路设计 (14)4.1、主控板设计 (14)4.1.1、MCU配置 (14)4.1.2、CPLD配置 (16)4.2、PWM脉宽调制(P ULSE W IDTH M ODULATION)信号产生 (16)4.3、程序流程图 (17)4.4、程序 (18)4.4.1单片机程序 (18)4.4.2、CPLD程序 (19)总结 (25)引言自从人类发明机器人以来,各种各样的机器人日渐走入我们的生活。
基于AT89C51单片机设计的简易智能机器人

基于AT89C51单片机设计的简易智能机器人引言随着微电子技术的不断发展,微处理器芯片的集成程度越来越高,单片机已可以在一块芯片上同时集成CPU、存储器、定时器/计数器、并行和串行接口、看门狗、前置放大器、A/D转换器、D/A转换器等多种电路,这就很容易将计算机技术与测量控制技术结合,组成智能化测量控制系统。
这种技术促使机器人技术也有了突飞猛进的发展,目前人们已经完全可以设计并制造出具有某些特殊功能的简易智能机器人。
1 设计思想与总体方案1.1 简易智能机器人的设计思想本机器人能在任意区域内沿引导线行走,自动绕障,在有光源引导的条件下能沿光源行走。
同时,能检测埋在地下的金属片,发出声光指示信息,并能实时存储、显示检测到的断点数目以及各断点至起跑线间的距离,最后能停在指定地点,显示出整个运行过程的时间。
1.2 总体设计方案和框图本设计以A T89C5l单片机作为检测和控制核心。
采用红外光电传感器检测路面黑线及障碍物,使用金属传感器检测路面下金属铁片,应用光电码盘测距,用光敏电阻检测、判断车库位置,利用PWM(脉宽调制)技术动态控制电动机的转动方向和转速。
通过软件编程实现机器人行进、绕障、停止的精确控制以及检测数据的存储、显示。
通过对电路的优化组合,可以最大限度地利用51单片机的全部资源。
P0口用于数码管显示,P1口用于电动机的PWM驱动控制,P2,P3口用于传感器的数据采集与中断控制。
这样做的优点是:充分利用了单片机的内部资源,降低了总体设计的成本。
该方案总体方案见图1。
2 系统的硬件组成及设计原理此系统的硬件部分由单片机单元、传感器单元、电源单元、声光报警单元、键盘输入单元、电机控制单元和显示单元组成,如图2所示。
2.1 单片机单元本系统采用A T89C51单片机作为中央处理器。
其主要任务是扫描键盘输入的信号启动机器人,在机器人行走过程中不断读取传感器采集到的数据,将得到的数据进行处理后,根据不同的情况产生占空比不同的PWM脉冲来控制电机,同时将相关数据送显示单元动态显示,产生声光报警信号。
基于单片机的四足仿生机械狗设计

构稳定性,可改装为钢板等其它材1-4:仿生机械狗四足结构;5:电机;6:控制平台图1机械结构件设计的控制芯片是51单片机,具有很很小。
系统主要以传感器和输入输出部分包括电机、显示屏。
电源容量电池来供电,能够提供足够动电机转动和系统运作,系统机带。
振电路如图2所示。
图2晶振电路1.2复位电路部分设计其复位部分是由外部复位电路实现,接在单片RST引脚上,需要手动按下复位按键。
采用可充的电池来作为电源部分,提供动力。
的如图3所示。
图3复位电路2.2电机控制电路设计这里采用的是直流电机,当单片机输出为1时,继电器得电。
电机工作这里面得电源也是接可充电得电池。
其中三极管是为了增加电机的启动电压。
其输入基金项目:安徽新华学院2016年度省级新训练项目《四足仿生机械狗设计》(AH201612216051)。
63Science&Technology Vision科技视界端接在P1.0引脚,如图4所示。
图4电机电路电源部分本系统采用可充电的大容量电池来供电,能够提供足够的电压以及电流来驱动电机转动和系统运作。
2.3传感器及显示电路设计以单片机为核心,通过温度传感器DS18B20对当前温度的检测送到单片机进行处理与系统设定温度的比较,控制主电路双向晶闸管的导通与关断,接在单片机的P3.7引脚上,如图5所示。
图5传感器电路系统显示电路采用1602液晶屏进行显示,主要对温度数据进行显示,处理后的数据和设定阈值,均通过送单片机P0.0到P0.7口连接的显示电路以显示当前温度,如图6所示3程序设计由于基本功能比较简单,系统应用了AT89C51类型的单片机,因为能耗低,操作简单易学,其基本功能也满足机器人的需求。
本系统主要功能有:电机转动、图6显示器电路图7主程序流程图图8温度传感器子程序流程图2子程序当子程序检测到信号用子程序,首先进行初始化时序,然后发出读温度令,读出数据,最后子程序返回。
如图8所示。
结论通过构建自由度少的械结构来支撑整体框架,需要的驱动力较小,能够稳的进行行走。
基于C51单片机设计的机器人

学生姓名:学号:班级:ቤተ መጻሕፍቲ ባይዱ
答辩地点:J523实验室
答辩内容记录:
答辩成绩
合计
分值
各项分值
评分标准
实际得分
合计得分
备注
25
10
在规定时间内能就所设计的内容进行阐述,言简意明,重点突出,论点正确,条理清晰。
15
在规定时间内能准确、完整、流利地回答教师所提出的问题。
答辩小组成员(签字):
年月日
成绩评定表
2、学生成绩由指导教师根据学生的设计情况给出各项分值及总评成绩。
3、指导教师评语一栏由指导教师就学生在整个设计期间的平时表现、设计完成情况、报告的质量及答辩情况,给出客观、全面的评价。
4、所有学生必须参加综合设计的答辩环节,凡不参加答辩者,其成绩一律按不及格处理。答辩小组成员应由2人及以上教师组成。
Keywords:Embedded systems;AT89C51; Sensor; The ring car
摘
嵌入式系统装置一般都由嵌入式计算机系统和执行装置组成,执行装置也称为被控对象,它可以接受嵌入式计算机系统发出的控制命令,执行所规定的操作或任务。执行装置可以很简单,如小车上的一个小型的电机,当接收到某种信号时启动电机。基于AT89C51芯片的单片机与多种传感器和舵机的组合设计成的擂台小车就是一个嵌入式系统,通过传感器检测到的数据来做出判断,以执行各种命令,实现擂台格斗的功能。传感器是一种将非电量转换为电量信号的检测装置,灵活的运用它,可以赋予小车感知能力。
3.应用C语言的各种知识;
4.学习编程技术和技巧
条件:
每人一套“C51+AVR版两轮教育机器人套件“
任务:
设计擂台机器人,在规定的场地内活动,搜索对手,找到对手,并将对手推出场地。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初始状态:
先迈一对脚迈另一对并
另一对支撑身体前进
图4,行走步态
五、遇到的问题及解决:
1、此设计的pwm信号输出使用定时器来产生每个信号的高电平和低
电平,每次定时时间到,都会会关掉定时器并执行中断函数,在此过
程中会消耗一定的时间,等到给定时器赋值下一次定时时间并开始定
sbit s6=P2^6;
sbit s7=P2^7;
sbit s8=P0^6;
sbit s9=P0^4;
sbit s10=P0^2;
sbit s11=P0^0;
sbit up=P1^0;
sbit right=P1^4;
sbit left=P1^2;
sbit down=P1^6;
uchar s_num,f,b,r,l,back_flag;forward_flag;
成员的工作。
2.评分标准:
评价好较好一般未完成
完成度40302515
演示效果30252015
报告评分30252015
《EDA技术与实践(2)》试卷1卷第1页共28页
2015年第二学期,建议作品内容:
完成一个行走机器人,基本要求
o2-8只脚
o能行走
o可以用单片机,嵌入式,FPGA方案
一、设计目的:
通过设计一个能够走动的机器人来增加对动手能力,和对硬件电路设计的
时时,就会产生一定的时间延时,造成每次高电平时间都会变长一
点,且总的加起来会使20ms周期变长,因此,需要稍微减小高电平的
定时时间,并结合proteus仿真确定最准确值。
2、由于机器人的四个脚都是自己组装的,可能会有存在不平衡和对
称,当对角的两只脚同时向前迈同一个角度时,会使机器人向一个方
向偏转而不沿直线前进,这时要结合实际测试来调整机器人的各个脚
深圳大学期末考试试卷
开/闭卷开卷A/B卷N/A
课程编号
1303270001
1303270002课程名称EDA技术与实践(2)学分2.0
命题人(签字)审题人(签字)2015年10月20日
题号一二三四五六七八九十
基本题
总分
附加题
得分
评卷人
设计考试题目:完成一个集成电路或集成系统设计项目
基本要求:2-3位同学一组,完成一个完整的集成电路设计项目或是一个集成系统设计
2.5ms开始时,把S3、S4置1,接下来和上面S1、S2一样,以此类推,
在六个2.5ms中输出12路pwm信号来控制舵机。原理图如图1.
第一个2.5ms
02.5
通过超声模块来控制机器人前进、后退、向前的左转、向前的右转、向后的左
转、向后的右转几个动作。
《数字系统设计》试卷1卷第2页共28页
控制模块电路,D0,D1,D2,D3分别为超声接受模块的输出,输出为高电
平,要加NPN作为开关。
《EDA技术与实践(2)》试卷1卷第3页共28页
四、设计步骤:
1、设计好硬件电路,焊接51单片机的最小系统和各个硬件电路。
2、设计好软件的流程图,如图2。
3、写产生12路控制舵机的pwm信号的程序并在proteus中测试,如
图3。
4、设计出行走步态,四脚机器人的步态是采用对角的相互前进来实现
六个2.5ms中分别输出两个pwm信号的高电平,例如,在第一个2.5ms中输出第一个和第二个pwm信号的高电平时,首先开始时,把信号S1、S2都置1,然后比较两个高电平时间,先定时时间短的高电平时间,把高电平时间短的那个信号置0,再定时两个高电平时间差,到时把高电平时间长的按个信号置0,然后,定时(2.5-较长那个高电平时间),在第二个
《EDA技术与实践(2)》试卷1卷第7页共28页
设计代码:
#iቤተ መጻሕፍቲ ባይዱclude<reg51.h>
#define uchar unsigned char
#define uint unsigned int
uintpwm[12],p_min1,p_max1,p_min2,p_max2,p_min3,p_max3,p_min4,p_max4,p_min5,p_max5,
能力,增强软件流程设计的能力和对设计流程实现电路功能的能力,在各
个方面提升自己对电子设计的能力。
二、设计仪器和工具:
本设计是设计一个能走动的机器人,使用到的仪器和工具分别有:sg90舵
机12个、四脚机器人支架一副、单片机最小系统一个、电容电阻若干、
波动开关一个、超声遥控模块一对、杜邦线若干、充电宝一个。
项目。
规格说明:
1.题目自定。
1)集成电路设计项目
i.若为IC设计项目需要完成IC设计的版图。
ii.若采用FPGA实现数字集成电路设计,需要进行下板测试。
2)集成系统设计项目,需使用FPGA开发板或嵌入式开发板,完成一个完整的集成
系统作品。
3)作品需要课堂现场演示,最后提交报告,每个小组单独一份报告,但需阐述各个
p_min6,p_max6,p1,p2,p3,p4,p5,p6,p11,p21,p31,p41,p51,p61;//高电平带宽
sbit s0=P2^0;//12路输出信号
sbit s1=P2^1;
sbit s2=P2^2;
sbit s3=P2^3;
sbit s4=P2^4;
sbit s5=P2^5;
的前迈角度来使机器人平衡的沿直线前进,比如,一只脚迈多点,另
一边的脚迈少点。
《EDA技术与实践(2)》试卷1卷第5页共28页
六、心得与体会:
通过这次设计,我更加的熟悉基本的硬件电路和软件的设计,特别是软件的流
程图设计。更加熟悉软硬件电路结合的测试与调试。
六、实验实物图:
《数字系统设计》试卷1卷第6页共28页
的,如图4。
5、写出流程图中各个模块的软件,包括前进函数、后退函数、左转和
右转的函数,并逐个烧到单片机中测试。
6、按流程图把各个函数组合到主函数中,完成所有软件的编写,并烧
到单片机中测试,并不断的调试。
开始
初始化
扫描控制
按键
处理控制
按键
机器人
行走
结束
图2.流程图
《数字系统设计》试卷1卷第4页共28页
三、设计原理:
本次设计的机器人是通过51单片机控制器来控制整个电路的。其中,舵
机的控制是通过产生一个周期为20毫秒的高电平带宽在0.5到2.5ms之间
的pwm信号来控制。12路Pwm信号由单片机的定时器来产生。51单片
机产生12路pwm信号的原理是:以20毫秒为周期,把这20毫秒分割成
8个2.5ms,因为,每个pwm信号的高电平时间最多为2.5ms,然后在前