电源的等效变换
第五节-两种电源模型的等效变换(1)

三、两种实际电源模型之间的等效变换
实际电源可用一个理想电压源 US 和一个电阻 R0 串联的电 路模型表示,其输出电压 U 与输出电流 I 之间关系为
U = US R0I
实际电源也可用一个理想电流源 IS 和一个电阻 RS 并联的 电路模型表示,其输出电压 U 与输出电流 I 之间关系为
U = RSIS RSI
如图 3-21 所示: 等效电流源的
电流 IS IS1-IS2 3 A,其等效 内阻为 R R1∥R2 2
(3)求出 R3中的电流
I3
R R3 R
IS 0.5 A
图 3-21 例题 3 -7 的最简等效电路
2012年高考题
本章小结
一、基夫尔霍定律 二、支路电流法 三、叠加定理 四、戴维宁定理 五、两种实际电源模型的等效变换
+
US
+
-
US2 -
b
b
3、两个实际电压源串联,可以用一个 等效的电压源替代,替代的条件是
US = US1 + US2 R0 = R01 + R02
四、等效变换的类型
等效为电流源 1、与恒流源串联的元件不作用,可等效 成该恒流源;
例题:
R IS
IS
+
US-
a
b (a) a b (b)
a
IS b
以各支路电流为未知量,应用基尔霍夫定律列出节点 电流方 程和回路电压方程,解出各支路电流,从而可确定各支路(或各 元件)的电压及功率,这种解决电路问题的方法叫做支路电流法。
对于具有 b 条支路、n 个节点的电路,可列出 (n 1) 个独 立的电流方程和 b (n 1) 个独立的电压方程。
三、叠加定理
等效代换公式

等效代换公式
等效代换公式一般指的是用于将复杂的系统或公式进行简化或者等效转换的公式。
这些公式在各个学科领域都有广泛的应用,特别是在物理学、工程学、数学等领域。
以物理学的电源等效变换为例,公式如下:
假设某一实际电压源的伏安特性为U = U s − I R s U=U_s-IR_sU=Us−IRs,某一实际电流源的伏安特性为I = I s − U R s ′I=I_s-\frac{U}{R_s'}I=Is−Rs′U。
改变电流源伏安特性的样式,得到U = I s R s ′ − I R s ′U=I_sR_s'-
IR_s'U=Is Rs′−IRs′。
联立两式,即可得R s = R s ′ R_s=R_s'Rs=Rs′,U s
= I s R s U_s=I_sR_sUs=IsRs。
即两个等效电压的内阻相同,电压值与电流值满足欧姆定律。
请注意,该公式仅限于对实际电源成立,对于内阻为零的恒压源与内阻为无穷的恒流源来说无法进行等效替换。
以上内容仅供参考,如需更具体的公式,建议咨询数学、物理等学科教师或查阅相关教材、文献。
电源的电路模型及其等效变换知识

串联
uS= uSk ( 注意参考方向)
2. 电流源的串、并联
并联 电压相同的电压源 才能并联,且每个 电源中流过的电流 不确定。
并联: 可等效成一个理想电流源 i S( 注意参考方向).
n
is isk 1
串联: 电流相同的理想电流源才能串联,并且每个电
流源的端电压不能确定。
3. 电压源与其它元件的并联 u=us (对所有的电流i) 整个并联组合可等效为一个电压为us的电压源。
一.网孔电流 假想的沿网孔边界流动的电流。没有物
理意义,它的引入是为了简化计算。
i1 R1
+ uS1
–
a
i2
im1
R2 +
im2
uS2
–
b
i3
网孔电流分别为im1, im2
支路电流可由网孔电流表出,
R3
等于流经该支路的网孔电流的
代数和。
i1= im1 i2= im1- im2 i3= im2
二. 网孔电流法:以网孔电流为未知变量列写电路方 程分析电路的方法。利用KVL和VAR。
a
例
I1
I2
R1
R2
US1
US2
I3 b=3 , n=2 , l=3
R3
变量:I1 , I2 , I3
KCL KVL
a:
-
I1-
b I2+ I3= 0
一个独立方程
b: I1+I2- I3= 0
I1R1- I2R2=US1- US2
I2R2+ I3R3= US2 二个独立方程
I1R1+ I3R3= US1
4. 电流源与其它元件的串联 i=is (对所有的电压u) 整个串联组合可等效为一个电流为is的电流源。
电源的两种模型及其等效变换

电源的两种模型及其等效变换
一个实际的直流电源(如直流发电机、蓄电池等)可以抽象成两种模型:
一种由独立电压源与线性时不变电阻元件串联而成;另一种由独立电流源与线性时不变电导并联而成。
在前一种电源模型中,电阻元件的电阻R称为原电源的内电阻,电压源的电压Us等于原电源的开路电压;在后一种电源模型中,线性时不变电阻元件的电导G称为原电源的内电导,电流源的电流Is等于原电源的短路电流。
由于它们代表同一个实际电源而有相同的外特性,所以它们能够等效互换。
两种模型等效互换的条件为Us和Is在电路计算中,为了计算方便,有时需要把一种电源模型变换成另一种电源模型。
把电压源模型换成电流源模型时,后者的电流源电流Is必须等于Us,内电导必须等于电阻的倒数;反之亦然。
1。
电源的等效变换

电源的等效变换电源的等效变换电源是指向电路提供能量的设备或部件。
在电路中,不同类型的电源都有不同的输出性质和特点。
在某些情况下,需要将电源的输出进行等效变换,以满足特定的电路需求。
电源的等效变换是指在不改变电源本身的特性和性能的前提下,利用一定的变换方式和电路,将电源的输出电压、电流等参数进行转换的过程。
电源的等效变换通常涉及两种变换方法:电压变换和电流变换。
一、电压变换电压变换是指利用变压器、稳压器等电路,将电源的输出电压进行变换的方法。
根据实际需要,可以将电压升高或降低,并且保持电压的稳定性。
1.变压器变压器是一种利用电磁感应原理将电压进行变换的设备。
通过在输入端和输出端分别绕制导线,使得输入电压在磁环中产生交变磁场,从而在输出端生成相应的交变电压。
变压器一般用于交流电路中。
2.稳压器稳压器是一种能够在电压发生变化时保持输出电压稳定的电路。
常见的稳压器有三极管稳压器、集成电路稳压器等。
二、电流变换电流变换是指通过电阻电路、变流器等手段,将电源的输出电流进行变换的方法。
根据实际需要,可以将电流增大或减小,并保持电流的稳定性。
1.电阻电路电阻电路是一种利用电阻器将电流进行阻抗变换的方法。
通过改变电阻器的阻值就可以实现电流的变换。
2.变流器变流器是一种能够将电源的直流电压变换成交流电压的装置。
变流器一般用于交流电路中。
以上就是电源的等效变换的基本概念和基本方法。
在实际电路设计中,电源的等效变换是必不可少的。
通过合理的变换方法和电路设计,可以使得电路满足特定的需求,从而达到更加理想的系统性能。
第4讲(电源等效变换戴维宁定理).ppt

戴维宁电路
E + R b
诺顿电路 a IS R b
a
等效
E 等效条件: E R I S 或I S R
1.9 电压源与电流源及其等效变换
例3.将电路化为最简形式
+
2 3
1V 0.5A 5 0.5A 0.2A
+ 5 0.3A 5 1.5 V
1.9 电压源与电流源及其等效变换
问题:计算复杂电路中某一支电流或电压
有简单办法吗?
1.10 戴维宁定理
2. 开路电压及等效电阻的计算方法
(1)U0 的计算方法 电阻的串联、并联等 电源等效变换,叠加定理 (2)R0 的计算方法 化简法(电压源短路、电流源开路) 分流、分压
1.10 戴维宁定理
例1. 用戴维宁定理求 I3
20 a 5
1.11 电路中电位的计算
二.电子学中电位的习惯画法
20 a
+ 140V -
5
+ 90V -
6
b
+ 140V
20 a 6
b
5
+ 90V
5
90V + 140V +
20 a 6
b
习惯 画法
1.11 电路中电位的计算
例1. +15 V 参考电位在哪里?
R1 a R2 b R3
R1
R b
R
特点3: 恒压源是一个能输出无穷大功率的电源。
1.9 电压源与电流源及其等效变换
实际电压源及其外特性:
+ R0 + a U b 0 R I U E
E
-
I
电源的等效变换

例 用电源等效变换的方法求图中的I
2Ω
+ 6V3Ω
+ -
4V
I
2A 6Ω 4Ω 1Ω
2Ω
3Ω 2A
+ -
4V
I
2A 6Ω 4Ω 1Ω
2Ω
2A 3Ω
+ -
4V
I
2A 6Ω 4Ω 1Ω
2Ω
4A
+ -
4V
I
2Ω
4Ω 1Ω
4A
+ - 8V-
4V
I
2Ω
4Ω 1Ω
2Ω
+ -
4V
I
4Ω 1Ω
+ -
+ Us-
a
5Ω
b
b
Us = Is × 5 =5V
3、两种特殊情况
与恒压源并联的元件在等效变换中不起作 用,将其断开.
a a
+ US -
I
U
RIs
RL
b
+
US
-
b
U = US I = U / RL
与恒流源串联的元件在等效变换中 不起作用,将其短路.
I
a
Is
R -+
U RL b
a Is
b
I=Is U=I RL
2、注意事项
等效互换是对外电路而言的,内部电路并 不等效.
恒压源与恒流源之间不能等效变换.
变换时注意电源的方向,电流源的流向是 从电压源正极出发.
例 :将图示的电压源变成电流源
+
10V
-
2Ω
I
a
I a
Is 2Ω
b
b
1.5电源及电源等效变换法

+ U _ 1
R1 IS
a + U _ 1
R1 IS I R I1 R1 IS
a
I R
(2)由图(a)可得: (b) b I R1 IS-I 2A-4A -4A
U1 10 I R3 A 2A R3 5 理想电压源中的电流 I U1 I R3-I R1 2A-(-4)A 6A
1
2A 3 + 6V – 6 + 12V – (a) 1 2
解:
I 2A 3 2A
–
1 1 2V
6 (b)
由图(d)可得
– 2 I 4A (c) 2
82 I A 1A 2 2 2
2 2V 2 2 + 8V – (d)
+
+
+ 2 2V 2
I
–
I
试用电压源与电流源等效变换的方法计算图示 例3: 电路中1 电阻中的电流。 2
2 3 + a + a 2 + 2V b + 5V (c) + U b a
+ 5V – (a)
U
b
2
3 5A (b)
U
解:
+
2 + 5V – (a) U a 5A b (b) 3 + U b a
+ + 5V – (c)
U
a
b
1.5.4 电源等效变换法
一、电源等效变换法的解题步骤
(通常画在右边) 1、整理电路,将所求支路画到一边; 2、将所求支路以外的部分, 用电压源、电流源相互等效的方法进行化简; 3、化简结果,包含所求支路在内是一个简单电路;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一般用电设备所需的电源,多数是需要它输 出较为稳定的电压,这要求电源的内阻越小越好, 也就是要求实际电源的特性与理想电压源尽量接 近。
2、等效电压源 ◇当n个电压源串联时,可以合并为一个等效电压源, 如图所示,等效电压源的Us等于各个电压源的(电动 势)代数和,即:
Us=Us1+Us2+Us3+…..+ Usn
U
U s1 R R3
6 8 0.4 1 6
11 1 1 6 10
4V
由此可计算出各支路电流:
I1
Us1 U R1
64 1
2A
I2
Us2 U R2
8 4 6
2A
I3
U R3
4 10
0.4A
上述解法称为节点电压法,用于计算只有
两个节点的电路,十分方便。
小结
1、理想电压源的特点: (1)内阻r=0 (2)输出电压是一定值恒等于电动势,对直流电压,
有U=E (3)恒压源中的电流由外电路决定
2、理想电流源的特点:
(1)内阻r=∞
(2)输出电流是一定值,恒等于Is
(3)恒流源两端电压U由外电路决定
R
I3 R3 R IS
0.5 27 4 0.5
3A
例题 如下图所示电路中,既有电压源, 又有电流源,并有多条支路,但只有两个 节点,求解这 一类电路时,可以 先求出两个节点间 的电压,然后再求 各支路电流,并不 需要去解联立方程。
解: 节点A、B间的电压为:
将右图中的电流源转换为电压源。
解:
(1)将电压源转换为电流源
IS
E r
12 3
4A
内阻不变
电流源电流的参考方向与电压源正负极
参考方向一致。
(2)将电流源转换为电压源
E ISr 28 16V 内阻不变
电压源正负极参考方向与电流源电流的参
考方向一致。
注意
电压源与电流源等效变换时,应注意: 1. 电压源正负极参考方向与电流源电流的参
§2.2.2 电压源与电流源的等效变换
电路中的电源既提供电压,也提供电流。
将电源看作是电压源或是电流源,主要是依据 电源内阻的大小。
为了分析电路的方便,在一定条件下电压源 和电流源可以等效变换。
一、电压源
1、电压源的组成及特性
具有较低内阻的电源输出的电压较为恒定, 常用电压源来表征。电压源可分为直流电压源和 交流电压源。
实际电压源可以用恒定
电动势E和内阻r串联起来表
示。
实际电压源以输出电压的形式向负载供电,
输出电压(端电压)的大小为U = E-Ir,在输出 相同电流的条件下,电源内阻r越大,输出电压越 小。若电源内阻r = 0,则端电压U = E,而与输
出电流的大小无关。
我们把内阻为 零的电压源称为
理想电压源,又 称恒压源。
实际电流源简称电流源。电流源以输出电流的形 式向负载供电,电源输出电流IS在内阻上分流为I0, 在负载RL上的分流为IL。
2、等效电流源 ◇当n个电流源并联时,可以合并为一个等效电流源。 等效电流源的电流Is等于各个电流源的电流的代数和, 即:
Is=Is1+Is2+…+Isn
式中,凡参考方向与Is相同的电流取正号,反 之取负号。
这两个电流源的内阻仍为R1、R2,两等效
电流则分别为
IS1 =
E1 R1
= 18 1
= 18A
IS2 = E2 = 9 = 9A
R2 1
(2)将两个电流源合并成一个电流源。
其等效电流和内阻分别为
IS = IS1 +IS2 = 27A R = R1//R2 = 0.5Ω
(3)最后可求得R3上电流为
在上式中,凡方向与Us相同的取正号,反之取 负号。
◇等效电压源的内阻等于各个串联电压源内阻之和, 即:
Rs=Rs1+Rs2+…+Rsn
二、电流源
1、电流源的组成及特性
具有较高内阻的电源输出的电流较为恒定,常用 电流源来表征。
内阻无穷大的电源称为理想电流源,又称恒流源。 实际使用的稳流电源、光电池等可视为电流源。
◇等效内阻的倒数等于各并联电流源内阻的倒数之和, 即:
1/Rs=1/Rs1+1/Rs2+…+1/Rsn
三、电压源与电流源的等效变换
实际电源既可用电压源表示,也可用电流源表示。 在满足一定条件时,电压源与电流源可以等效变 换。
实际电源可用一个理想电压源E和一个电阻r0串 联的电路模型表示,其输出电压U与输出电流I之 间关系为
U = E Ir0 实际电源也可用一个理想电流源Is和一个电阻
rs并联的电路模型表示,其输出电压U与输出电 流I之间关系为
U = Isrs Irs 对外电路来说,实际电压源和实际电流源是相
互等效的,等效变换条件是
r0 =rs , E = ISrS 或 IS = E/r0
例题 试将左图中的电压源转换为电流源,
考方向在变换前后应保持一致。 2. 两种实际电源模型等效变换是指外部等效,
对外部电路各部分的计算是等效的,但对电 源内部的计算是不等效的。 3. 理想电压源与理想电流源不能进行等效变 换。
例题 电路如下图所示,试用电源变换的方
法求R3支路的电流。
(1)将两个电压源分别等效变换成电流源