第5讲 空间关系

合集下载

第5讲-空间数据组织与空间数据库-加密

第5讲-空间数据组织与空间数据库-加密
南京师范大学地理信息科学江苏省重点实验室 盛业华教授
四、面向对象式(Object Oriented) 面向对象式 )
除了将数据对象实体化以外,并将相同性质或相关联的 对象(Object)的数据及处理方法(Method)封装在类 (Class)中,而这些对象和类应符合O-O的原则,如: – – – – 封装(Encapsulation) 聚合(Classes) 继承(Inheritance) 多态性(Polymorphism) 20
4
南京师范大学地理信息科学江苏省重点实验室 盛业华教授
一、数据分层式(Data Layer) 数据分层式
将同区域的数据分成不同的类型或层级储存,例如依不同 地类、专题、年代等,各储存类别称作“图层” ; 传统纸质地图通常依不同的专题,如人口分布图、地质图、 地形图等,来表现不同的人文活动或是地表现象,这些图 称作专题图 (Thematic Map) ; 目前大多GIS数字图则以数据项目分层,称作数据层(Data Layer),但也常被称作图层或专题图层。 5
数据组织

x-axis
现 实 世 界
空 间 数 据
数 据 模 型
数 据 结 构
空 间 数 据 库 3
南京师范大学地理信息科学江苏省重点实验室
盛业华教授
5.1 空间数据的组织方式 间数据的组织方式
数据分层式(Data Layer) 空间分区式(Data Tiling) 实体式(Entity Based) (Entity 面向对象式(Object Oriented) 依照不同应用目的及数据类型,将资料以适合 的组织方式储存,并依某种连接方式架构成一 个适合于存取及管理的结构体。
拓扑文件
ID Link
属性文件

空间关系知识点总结

空间关系知识点总结

空间关系知识点总结一、空间概念空间是指周围的环境由物质实体所构成的三维空间。

在这个空间中,物体可以相对移动,相对位置也会发生变化。

在空间中,我们可以观察到物体的位置、形状和大小等属性。

空间关系是指事物在空间中的相对位置关系。

空间关系有三种形式,即相对位置、方位和距离。

1.相对位置:相对位置是指两个物体在空间中的相对位置关系。

当我们描述一个事物所处的位置时,一定要以另一事物为基准来描述,这就是相对位置。

例如,A在B的左边,B在A的右边,这是相对位置的描述。

2.方位:方位是指事物在空间中的朝向关系。

方位由四个基本方向组成,即东、西、南、北。

在地理空间中还有东北、东南、西北、西南等方位。

方位是空间中非常重要的关系,能够帮助我们更准确地描述事物在空间中的位置。

3.距离:距离是指两个事物在空间中的间隔距离。

在空间中,物体可以通过距离来描述物体的相对远近。

距离是空间关系中很重要的一个方面,它可以通过度量直线距离、曲线距离来描述物体之间的相对远近。

二、空间语言描述空间关系可以通过语言来进行描述。

语言描述可以帮助我们更加准确地了解物体在空间中的位置、方位以及距离。

在语言描述中,要注意以下几点:1.使用准确的定位词语:在描述空间关系时,要使用准确的定位词语,如“上、下、左、右、前、后”等。

这些词语可以帮助我们更加准确地描述事物在空间中的位置。

2.使用准确的方向词语:在描述方位时,要使用准确的方向词语,如“东、西、南、北”等。

这些词语可以帮助我们更加准确地描述事物在空间中的朝向关系。

3.使用准确的距离词语:在描述距离时,要使用准确的距离词语,如“远、近、远离、靠近”等。

这些词语可以帮助我们更加准确地描述事物在空间中的相对远近关系。

三、空间关系的认知发展儿童对空间关系的认知发展是一个渐进的过程。

在儿童的认知过程中,从最初的“具体视觉参照”到“图形概念”再到“抽象概念”,儿童对空间关系的认知逐渐升级。

1.具体视觉参照:儿童最开始的认知是基于具体的物体进行的。

高考调研版文科专用8.5第5讲 直线、平面垂直的判定及性质

高考调研版文科专用8.5第5讲 直线、平面垂直的判定及性质
第27页
在等腰直角三角形 PDE 中, PE=PD=AD=2, ∴PM=12DE= 2, 而直角梯形 BCDE 的面积 S=12(BE+CD)·BC=12×(2+4)×2=6, ∴四棱锥 P-BCDE 的体积 V=13PM·S=13× 2×6=2 2.
第28页
②证明:取 BC 的中点 N,连接 PN,MN, 则 BC⊥MN, ∵PB=PC, ∴BC⊥PN, ∵MN∩PN=N,MN,PN⊂平面 PMN, ∴BC⊥平面 PMN, ∵PM⊂平面 PMN, ∴BC⊥PM,
第18页
思考题 1 (1)在如图所示的多面体中,EF⊥平面 AEB,AE⊥EB,AD∥ EF,EF∥BC,BC=2AD=4,EF=3,AE=BE=2,点 G 是 BC 的中点.求证: BD⊥EG.
第19页
【证明】 ∵EF⊥平面 AEB,AE⊂平面 AEB,∴EF⊥AE, 又 AE⊥EB,EB∩EF=E,EB,EF⊂平面 BCFE,
A.直线 A1D 与直线 D1B 垂直,直线 MN∥平面 ABCD B.直线 A1D 与直线 D1B 平行,直线 MN⊥平面 BDD1B1 C.直线 A1D 与直线 D1B 相交,直线 MN∥平面 ABCD D.直线 A1D 与直线 D1B 异面,直线 MN⊥平面 BDD1B1
第9页
解析 连接 AD1,则易知点 M 在 AD1上,且 AD1⊥A1D.因为 AB⊥平面 AA1D1D, A1D⊂平面 AA1D1D,所以 AB⊥A1D,AD1∩AB=A,AD1,AB⊂平面 ABD1,所 以 A1D⊥平面 ABD1,所以 A1D 与 BD1 异面且垂直.在△ABD1 中,由中位线定理 可得 MN∥AB,又 MN⊄平面 ABCD,AB⊂平面 ABCD,所以 MN∥平面 ABCD. 易知直线 AB 与平面 BB1D1D 成 45°角,所以 MN 与平面 BB1D1D 不垂直.所以 选项 A 正确.故选 A.

2022届高考数学一轮复习第8章立体几何第5讲空间角与距离空间向量及应用作业试题2含解析新人教版

2022届高考数学一轮复习第8章立体几何第5讲空间角与距离空间向量及应用作业试题2含解析新人教版

第五讲空间角与距离、空间向量及应用1.[2020湖北部分重点中学高三测试]如图8-5-1,E,F分别是三棱锥P-ABC的棱AP,BC的中点,PC=10,AB=6,EF=7,则异面直线AB与PC所成的角为( )图8-5-1A.30°B.60°C.120°D.150°2.[2020湖南长沙市长郡中学模拟]图8-5-2中的三个正方体ABCD-A1B1C1D1中,E,F,G均为所在棱的中点,过E,F,G 作正方体的截面.下列各选项中,关于直线BD1与平面EFG的位置关系描述正确的是( )图8-5-2∥平面EFG的有且只有①,BD1⊥平面EFG的有且只有②③1∥平面EFG的有且只有②,BD1⊥平面EFG的有且只有①1∥平面EFG的有且只有①,BD1⊥平面EFG的有且只有②1∥平面EFG的有且只有②,BD1⊥平面EFG的有且只有③13.[多选题]如图8-5-3,正方体ABCD-A1B1C1D1的棱长为1,则以下说法正确的是( )图8-5-31D1所成的角等于π4B.点C到平面ABC1D1的距离为√221C和BC1所成的角为π41D1-BB1C1的外接球的半径为√324.[2019吉林长春质量监测][双空题]已知正方体ABCD-A1B1C1D1的棱长为2,M,N,E,F分别是A1B1,AD,B1C1,C1D1的中点,则过EF且与MN平行的平面截正方体所得截面的面积为,CE 和该截面所成角的正弦值为.5.[2021广州市阶段模拟]如图8-5-4,在四棱锥E-ABCD中,底面ABCD为菱形,BE⊥平面ABCD,G为AC与BD的交点.(1)证明:平面AEC⊥平面BED.(2)若∠BAD=60°,AE⊥EC,求直线EG与平面EDC所成角的正弦值.图8-5-46.[2021晋南高中联考]如图8-5-5,在四棱锥P-ABCD中,平面PAD⊥底面ABCD,其中底面ABCD为等腰梯形,AD∥BC,PA=AB=BC=CD,PA⊥PD,∠PAD=60°,Q为PD的中点.(1)证明:CQ∥平面PAB.(2)求二面角P-AQ-C的余弦值.图8-5-57.[2021湖南六校联考]如图8-5-6,四棱锥S-ABCD的底面是正方形,SD⊥平面ABCD,SD=2a,AD=√2a,点E是SD 上的点,且DE=λa(0<λ≤2).(1)求证:对任意的λ∈(0,2],都有AC⊥BE.(2)设二面角C-AE-D的大小为θ,直线BE与平面ABCD所成的角为φ,若sin φ=cos θ,求λ的值.图8-5-68.[2020福建五校联考]图8-5-7是一个半圆柱与多面体ABB1A1C构成的几何体,平面ABC与半圆柱的下底面共面,⏜上的动点(不与B1,A1重合).且AC⊥BC,P为B1A1(1)证明:PA1⊥平面PBB1.,求二面角P-A1B1-C的余弦值.(2)若四边形ABB1A1为正方形,且AC=BC,∠PB1A1=π4图8-5-79.[2020全国卷Ⅱ,12分]如图8-5-8,已知三棱柱ABC-A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点,过B1C1和P的平面交AB于E,交AC于F.(1)证明:AA1∥MN,且平面A1AMN⊥平面EB1C1F.(2)设O为△A1B1C1的中心.若AO∥平面EB1C1F,且AO=AB,求直线B1E与平面A1AMN所成角的正弦值.图8-5-810.[2021黑龙江省六校联考]如图8-5-9,正方形ABCD和ABEF所在的平面互相垂直,且边长都是1,M,N,G分别为线段AC,BF,AB上的动点,且CM=BN,AF∥平面MNG,记BG=a(0<a<1).(1)证明:MG⊥平面ABEF.(2)当MN的长度最小时,求二面角A-MN-B的余弦值.图8-5-911.[2021蓉城名校联考]如图8-5-10(1),AD是△BCD中BC边上的高,且AB=2AD=2AC,将△BCD沿AD翻折,使得平面ACD⊥平面ABD,如图8-5-10(2)所示.(1)求证:AB⊥CD.时,求直线AE与平面BCE (2)在图8-5-10(2)中,E是BD上一点,连接AE,CE,当AE与底面ABC所成角的正切值为12所成角的正弦值.图8-5-1012.[2020洛阳市联考]如图8-5-11,底面ABCD是边长为3的正方形,平面ADEF⊥平面ABCD,AF∥DE,AD⊥DE,AF=2√6,DE=3√6.(1)求证:平面ACE⊥平面BED.(2)求直线CA与平面BEF所成角的正弦值.的值;若不存在,请说明理由. (3)在线段AF上是否存在点M,使得二面角M-BE-D的大小为60°?若存在,求出AMAF图8-5-1113.如图8-5-12,三棱锥P-ABC中,PA⊥平面ABC,AB⊥BC,平面α经过棱PC的中点E,与棱PB,AC分别交于点F,D,且BC∥平面α,PA∥平面α.(1)证明:AB⊥平面α.(2)若AB=BC=PA=2,点M在直线EF上,求平面MAC与平面PBC所成锐二面角的余弦值的最大值.图8-5-1214.[2021安徽江淮十校第一次联考]如图8-5-13(1),已知圆O的直径AB的长为2,上半圆弧上有一点C,∠COB=60°,点P是弧AC上的动点,点D是下半圆弧的中点.现以AB为折痕,使下半圆所在的平面垂直于上半圆所在的平面,连接PO,PD,PC,CD,如图8-5-13(2)所示.(1)当AB∥平面PCD时,求PC的长;(2)当三棱锥P-COD体积最大时,求二面角D-PC-O的余弦值.图8-5-13答案第四讲直线、平面垂直的判定及性质1.B 如图D 8-5-8,取AC的中点D,连接DE,DF,因为D,E,F分别为AC,PA,BC的中点,所以DF∥AB,DF=12AB,DE∥PC,DE=12PC,所以∠EDF或其补角为异面直线PC与AB所成的角.因为PC=10,AB=6,所以在△DEF中,DE=5,DF=3,EF=7,由余弦定理得cos∠EDF=DE2+DF2-EF22DE×DF =25+9−492×5×3=-12,所以∠EDF=120°,所以异面直线PC与AB所成的角为60°.故选B.图D 8-5-82.A 对于题图①,连接BD,因为E,F,G均为所在棱的中点,所以BD∥GE,DD1∥EF,又BD⊄平面EFG,DD1⊄平面EFG,从而可得BD∥平面EFG,DD1∥平面EFG,又BD∩DD1=D,所以平面BDD1∥平面EFG,所以BD1∥平面EFG.对于题图②,连接DB,DA 1,设正方体的棱长为1,因为E,F,G 均为所在棱的中点,所以BD 1⃗⃗⃗⃗⃗⃗⃗⃗ ·GE ⃗⃗⃗⃗⃗ =(DD 1⃗⃗⃗⃗⃗⃗⃗⃗ -DB ⃗⃗⃗⃗⃗⃗ )·(12DA 1⃗⃗⃗⃗⃗⃗⃗⃗ )=12(DD 1⃗⃗⃗⃗⃗⃗⃗⃗ ·DA 1⃗⃗⃗⃗⃗⃗⃗⃗ -DB ⃗⃗⃗⃗⃗⃗ ·DA 1⃗⃗⃗⃗⃗⃗⃗⃗ )=12(1×√2×cos 45°-√2×√2×cos 60°)=0, 即BD 1⊥EG.连接DC 1,则BD 1⃗⃗⃗⃗⃗⃗⃗⃗ ·EF ⃗⃗⃗⃗⃗ =(DD 1⃗⃗⃗⃗⃗⃗⃗⃗ -DB ⃗⃗⃗⃗⃗⃗ )·(12DC 1⃗⃗⃗⃗⃗⃗⃗ )=12(DD 1⃗⃗⃗⃗⃗⃗⃗⃗ ·DC 1⃗⃗⃗⃗⃗⃗⃗ -DB ⃗⃗⃗⃗⃗⃗ ·DC 1⃗⃗⃗⃗⃗⃗⃗ )=12(1×√2×cos 45°-√2×√2×cos 60°)=0,即BD 1⊥EF. 又EG ∩EF=E,所以BD 1⊥平面EFG.对于题图③,设正方体的棱长为1,连接DB,DG,因为E,F,G 均为所在棱的中点,所以BD 1⃗⃗⃗⃗⃗⃗⃗⃗ ·EG ⃗⃗⃗⃗⃗ =(DD 1⃗⃗⃗⃗⃗⃗⃗⃗ -DB ⃗⃗⃗⃗⃗⃗ )·(DG ⃗⃗⃗⃗⃗ -DE ⃗⃗⃗⃗⃗ )=(DD 1⃗⃗⃗⃗⃗⃗⃗⃗ -DB ⃗⃗⃗⃗⃗⃗ )·(DC ⃗⃗⃗⃗⃗ +12DD 1⃗⃗⃗⃗⃗⃗⃗⃗ -12DA ⃗⃗⃗⃗⃗ )=12DD 1⃗⃗⃗⃗⃗⃗⃗⃗ 2-DB ⃗⃗⃗⃗⃗⃗ ·DC ⃗⃗⃗⃗⃗ +12DB ⃗⃗⃗⃗⃗⃗ ·DA ⃗⃗⃗⃗⃗ =12-√2×1×√22+12×√2×1×√22=0, 即BD 1⊥EG.连接AF,则BD 1⃗⃗⃗⃗⃗⃗⃗⃗ ·EF ⃗⃗⃗⃗⃗ =(DD 1⃗⃗⃗⃗⃗⃗⃗⃗ -DB ⃗⃗⃗⃗⃗⃗ )·(AF ⃗⃗⃗⃗⃗ -AE ⃗⃗⃗⃗⃗ )=(DD 1⃗⃗⃗⃗⃗⃗⃗⃗ -DB ⃗⃗⃗⃗⃗⃗ )·(DD 1⃗⃗⃗⃗⃗⃗⃗⃗ +12DC ⃗⃗⃗⃗⃗ +12DA ⃗⃗⃗⃗⃗ )=DD 1⃗⃗⃗⃗⃗⃗⃗⃗ 2-12DB ⃗⃗⃗⃗⃗⃗ ·DC ⃗⃗⃗⃗⃗ -12DB ⃗⃗⃗⃗⃗⃗ ·DA ⃗⃗⃗⃗⃗ =1-12×√2×1×√22-12×√2×1×√22=0, 即BD 1⊥EF.又EG ∩EF=E,所以BD 1⊥平面EFG.故选A.3.ABD 正方体ABCD-A 1B 1C 1D 1的棱长为1,对于A,直线BC 与平面ABC 1D 1所成的角为∠CBC 1=π4,故A 正确;对于B,点C 到平面ABC 1D 1的距离为B 1C 长度的一半,即距离为√22,故B 正确;对于C,连接AC,因为BC 1∥AD 1,所以异面直线D 1C 和BC 1所成的角即直线D 1C 和AD 1所成的角,又△ACD 1是等边三角形,所以异面直线D 1C 和BC 1所成的角为π3,故C 错误;对于D,三棱柱AA 1D 1-BB 1C 1的外接球就是正方体ABCD-A 1B 1C 1D 1的外接球,正方体ABCD-A 1B 1C 1D 1的外接球半径r=√12+12+122=√32,故D 正确.故选ABD.√2√1010如图D 8-5-9,正方体ABCD-A 1B 1C 1D 1中,设CD,BC 的中点分别为H,G,连接HE,HG,GE,HF,ME,NH.图D 8-5-9易知ME ∥NH,ME=NH,所以四边形MEHN 是平行四边形,所以MN ∥HE.因为MN ⊄平面EFHG,HE ⊂平面EFHG,所以MN ∥平面EFHG,所以过EF 且与MN 平行的平面为平面EFHG,易知平面EFHG 截正方体所得截面为矩形EFHG,EF=√2,FH=2,所以截面EFHG 的面积为2×√2=2√2.连接AC,交HG 于点I,易知CI ⊥HG,平面EFHG ⊥平面ABCD,平面EFHG ∩平面ABCD=HG,所以CI ⊥平面EFHG,连接EI,因为EI ⊂平面EFHG,所以CI ⊥EI,所以∠CEI 为直线CE 和截面EFHG 所成的角.在Rt △CIE 中,易知CE=√1+22=√5,CI=14AC=2√24=√22,所以sin ∠CEI=CICE=√1010. 5.(1)因为四边形ABCD 为菱形,所以AC ⊥BD.因为BE ⊥平面ABCD,AC ⊂平面ABCD,所以AC ⊥BE.又BE ∩BD=B,所以AC ⊥平面BED.又AC ⊂平面AEC,所以平面AEC ⊥平面BED.(2)解法一 设AB=1,在菱形ABCD 中,由∠BAD=60°,可得AG=GC=√32,BG=GD=12.因为AE ⊥EC,所以在Rt △AEC 中可得EG=AG=√32.由BE ⊥平面ABCD,得△EBG 为直角三角形,则EG 2=BE 2+BG 2,得BE=√22.如图D 8-5-10,过点G 作直线Gz ∥BE,因为BE ⊥平面ABCD, 所以Gz ⊥平面ABCD,又AC ⊥BD,所以建立空间直角坐标系 G-xyz.G(0,0,0),C(0,√32,0),D(-12,0,0),E(12,0,√22),图D 8-5-10所以GE ⃗⃗⃗⃗⃗ =(12,0,√22),DE ⃗⃗⃗⃗⃗ =(1,0,√22),CE ⃗⃗⃗⃗⃗ =(12,-√32,√22). 设平面EDC 的法向量为n=(x,y,z),由{DE ⃗⃗⃗⃗⃗ ·n =0,CE ⃗⃗⃗⃗⃗ ·n =0,得{x +√22z =0,12x -√32y +√22z =0,取x=1,则z=-√2,y=-√33,所以平面EDC 的一个法向量为n=(1,-√33,-√2).设直线EG 与平面EDC 所成的角为θ,则sin θ=|cos<GE⃗⃗⃗⃗⃗ ,n>|=|12+0−1√14+12×√1+13+2|=|-12√32×√103|=√1010. 所以直线EG 与平面EDC 所成角的正弦值为√1010. 解法二 设BG=1,则GD=1,AB=2,AG=√3.设点G 到平面EDC 的距离为h,EG 与平面EDC 所成角的大小为θ.因为AC ⊥平面EBD,EG ⊂平面EBD,所以AC ⊥EG.因为AE ⊥EC,所以△AEC 为等腰直角三角形.因为AC=2AG=2√3,所以AE=EC=√6,EG=AG=√3.因为AB=BD=2,所以Rt △EAB ≌Rt △EDB,所以EA=ED=√6.在△EDC 中,ED=EC=√6,DC=2,则S △EDC =√5.在Rt △EAB 中,BE=√EA 2-AB 2=√(√6)2-22=√2.V E-GDC =13BE ·12S △CBD =16×√2×S △ABD =16×√2×12×2×√3=√66.由V G-EDC =13h ·√5=V E-GDC =√66,得h=√62√5=√3010.所以sin θ=ℎEG =√1010.所以直线EG 与平面EDC 所成角的正弦值为√1010.解法三 如图D 8-5-11,以点B 为坐标原点,建立空间直角坐标系B-xyz.图D 8-5-11不妨设AB=2,在菱形ABCD 中,由∠BAD=60°,可得AG=GC=√3,BG=GD=1.因为AE ⊥EC,所以在Rt △AEC 中可得EG=AG=√3.由BE ⊥平面ABCD,得△EBG 为直角三角形,则EG 2=BE 2+BG 2,得BE=√2.则C(2,0,0),E(0,0,√2),D(1,√3,0),G(12,√32,0), 所以EG ⃗⃗⃗⃗⃗ =(12,√32,-√2),ED ⃗⃗⃗⃗⃗ =(1,√3,-√2),EC ⃗⃗⃗⃗⃗ =(2,0,-√2). 设平面EDC 的法向量为n=(x,y,z), 则{n ·ED ⃗⃗⃗⃗⃗ =0,n ·EC ⃗⃗⃗⃗⃗ =0,得{x +√3y -√2z =0,2x -√2z =0,令x=√3,则z=√6,y=1.所以平面EDC 的一个法向量为n=(√3,1,√6).设EG 与平面EDC 所成的角为θ,则sin θ=|cos<EG⃗⃗⃗⃗⃗ ,n>|=|√32+√32-2√3|√1+2×√3+1+6=√1010. 所以直线EG 与平面EDC 所成角的正弦值为√1010. 6.(1)如图D 8-5-12,取PA 的中点N,连接QN,BN.图D 8-5-12∵Q,N 分别是PD,PA 的中点,∴QN ∥AD,且QN=12AD. ∵PA ⊥PD,∠PAD=60°,∴PA=12AD, 又PA=BC,∴BC=12AD,∴QN=BC,又AD ∥BC,∴QN ∥BC,∴四边形BCQN 为平行四边形,∴BN ∥CQ.又BN ⊂平面PAB,CQ ⊄平面PAB,∴CQ ∥平面PAB.(2)在图D 8-5-12的基础上,取AD 的中点M,连接BM,PM,取AM 的中点O,连接BO,PO,如图D 8-5-13.图D 8-5-13设PA=2,由(1)得PA=AM=PM=2,∴△APM 为等边三角形,∴PO ⊥AM,同理BO ⊥AM.∵平面PAD ⊥平面ABCD,平面PAD ∩平面ABCD=AD,PO ⊂平面PAD,∴PO ⊥平面ABCD.以O 为坐标原点,分别以OB ⃗⃗⃗⃗⃗ ,OD⃗⃗⃗⃗⃗⃗ ,OP ⃗⃗⃗⃗⃗ 的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系O-xyz, 则A(0,-1,0),C(√3,2,0),P(0,0,√3),Q(0,32,√32), ∴AC⃗⃗⃗⃗⃗ =(√3,3,0),AQ ⃗⃗⃗⃗⃗ =(0,52,√32), 设平面ACQ 的法向量为m=(x,y,z),则{m ·AC⃗⃗⃗⃗⃗ =0,m ·AQ ⃗⃗⃗⃗⃗ =0,∴{√3x +3y =0,52y +√32z =0,取y=-√3,得m=(3,-√3,5)是平面ACQ 的一个法向量,又平面PAQ 的一个法向量为n=(1,0,0),∴cos<m,n>=m ·n|m|·|n|=3√3737, 由图得二面角P-AQ-C 的平面角为钝角,∴二面角P-AQ-C 的余弦值为-3√3737. 7.(1)由题意SD ⊥平面ABCD,AD ⊥DC,以D 为原点,DA ⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ ,DS ⃗⃗⃗⃗⃗ 的方向分别作为x,y,z 轴的正方向建立如图D 8-5-14所示的空间直角坐标系,图D 8-5-14则D(0,0,0),A(√2a,0,0),B(√2a,√2a,0),C(0,√2a,0),E(0,0,λa), ∴AC ⃗⃗⃗⃗⃗ =(-√2a,√2a,0),BE ⃗⃗⃗⃗⃗ =(-√2a,-√2a,λa), ∴AC ⃗⃗⃗⃗⃗ ·BE⃗⃗⃗⃗⃗ =2a 2-2a 2+0×λa=0, 即AC ⊥BE.(2)解法一 由(1)得EA ⃗⃗⃗⃗⃗ =(√2a,0,-λa),EC ⃗⃗⃗⃗⃗ =(0,√2a,-λa),BE ⃗⃗⃗⃗⃗ =(-√2a,-√2a,λa). 设平面ACE 的法向量为n=(x,y,z),则由n ⊥EA ⃗⃗⃗⃗⃗ ,n ⊥EC ⃗⃗⃗⃗⃗ 得 {n ·EA ⃗⃗⃗⃗⃗ =0,n ·EC ⃗⃗⃗⃗⃗ =0,得{√2x -λz =0,√2y -λz =0,取z=√2,得n=(λ,λ,√2)为平面ACE 的一个法向量,易知平面ABCD 与平面ADE 的一个法向量分别为DS⃗⃗⃗⃗⃗ =(0,0,2a)与DC ⃗⃗⃗⃗⃗ =(0,√2a,0), ∴sin φ=|DS ⃗⃗⃗⃗⃗ ·BE ⃗⃗⃗⃗⃗ ||DS⃗⃗⃗⃗⃗ |·|BE ⃗⃗⃗⃗⃗ |=√λ2+4,易知二面角C-AE-D 为锐二面角,∴cos θ=|DC⃗⃗⃗⃗⃗ ·n||DC⃗⃗⃗⃗⃗ |·|n|=√2λ2+2,由sin φ=cos θ得√λ2+4=√2λ2+2,解得λ2=2,又λ∈(0,2],∴λ=√2.解法二 如图D 8-5-15,连接BD,由SD ⊥平面ABCD 知,∠DBE=φ.图D 8-5-15由(1)易知CD ⊥平面SAD.过点D 作DF ⊥AE 于点F,连接CF,则∠CFD 是二面角C-AE-D 的平面角,即∠CFD=θ.在Rt △BDE 中,BD=2a,DE=λa,∴BE=√4a 2+λ2a 2,sin φ=DEBE =√λ2+4,在Rt △ADE 中,AD=√2a,DE=λa,∴AE=a √λ2+2,∴DF=AD ·DE AE=√2λa√λ2+2, 在Rt △CDF 中,CF=√DF 2+CD 2=2√λ2+1√λ2+2a,∴cos θ=DFCF =√2λ2+2,由sin φ=cos θ得√λ2+4=√2λ2+2,解得λ2=2,又λ∈(0,2],∴λ=√2.8.(1)在半圆柱中,BB 1⊥平面PA 1B 1,PA 1⊂平面PA 1B 1,所以BB 1⊥PA 1.因为A 1B 1是上底面对应圆的直径,所以PA 1⊥PB 1.因为PB 1∩BB 1=B 1,PB 1⊂平面PBB 1,BB 1⊂平面PBB 1,所以PA 1⊥平面PBB 1.(2)根据题意,以C 为坐标原点建立空间直角坐标系C-xyz,如图D 8-5-16所示.图D 8-5-16设CB=1,则C(0,0,0),A 1(0,1,√2),B 1(1,0,√2), 所以CA 1⃗⃗⃗⃗⃗⃗⃗ =(0,1,√2),CB 1⃗⃗⃗⃗⃗⃗⃗ =(1,0,√2).易知n 1=(0,0,1)为平面PA 1B 1的一个法向量. 设平面CA 1B 1的法向量为n 2=(x,y,z),则{n 2·CA 1⃗⃗⃗⃗⃗⃗⃗ =0,n 2·CB 1⃗⃗⃗⃗⃗⃗⃗ =0,即{y +√2z =0,x +√2z =0,令z=1,则x=-√2,y=-√2,所以n 2=(-√2,-√2,1)为平面CA 1B 1的一个法向量.所以cos<n 1,n 2>=1×√5=√55.由图可知二面角P-A 1B 1-C 为钝角,所以所求二面角的余弦值为-√55.9.(1)因为M,N 分别为BC,B 1C 1的中点,所以MN ∥CC 1.又由已知得AA 1∥CC 1,故AA 1∥MN.因为△A 1B 1C 1是正三角形,所以B 1C 1⊥A 11C 1⊥MN,故B 1C 1⊥平面A 1AMN.所以平面A 1AMN ⊥平面EB 1C 1F.(2)由已知得AM ⊥BC.以M 为坐标原点,MA ⃗⃗⃗⃗⃗⃗ 的方向为x 轴正方向,|MB ⃗⃗⃗⃗⃗⃗ |为单位长度,建立如图D 8-5-17所示的空间直角坐标系M-xyz,则AB=2,AM=√3.图D 8-5-17连接NP,则四边形AONP 为平行四边形,故PM=2√33,E(2√33,13,0).由(1)知平面A 1AMN ⊥平面ABC.作NQ ⊥AM,垂足为Q,则NQ ⊥平面ABC.设Q(a,0,0),则NQ=(2√331(a,1,(2√33故B 1E ⃗⃗⃗⃗⃗⃗⃗ =(2√33-a,-23,-√4−(2√33-a)2),|B 1E ⃗⃗⃗⃗⃗⃗⃗ |=2√103. 又n=(0,-1,0)是平面A 1AMN 的一个法向量,故 sin(π2- n,B 1E ⃗⃗⃗⃗⃗⃗⃗ )=cos n,B 1E ⃗⃗⃗⃗⃗⃗⃗ =n ·B 1E⃗⃗⃗⃗⃗⃗⃗⃗ |n|·|B 1E ⃗⃗⃗⃗⃗⃗⃗⃗ |=√1010.所以直线B 1E 与平面A 1AMN 所成角的正弦值为√1010. 10.(1)因为AF ∥平面MNG,且AF ⊂平面ABEF,平面ABEF ∩平面MNG=NG,所以AF ∥NG,所以CM=BN=√2a,所以AM=√2(1-a),所以AMCM =AGBG =1−a a,所以MG ∥BC,所以MG ⊥AB.又平面ABCD ⊥平面ABEF,且MG ⊂平面ABCD,平面ABCD ∩平面ABEF=AB,所以MG ⊥平面ABEF.(2)由(1)知,MG ⊥NG,MG=1-a,NG=a,所以MN=√a 2+(1−a)2=√2a 2-2a +1=√2(a -12)2+12≥√22,当且仅当a=12时等号成立,即当a=12时,MN 的长度最小.以B 为坐标原点,分别以BA,BE,BC 所在的直线为x 轴、y 轴、z 轴建立如图D 8-5-18所示的空间直角坐标系B-xyz,则A(1,0,0),B(0,0,0),M(12,0,12),N(12,12,0),图D 8-5-18设平面AMN 的法向量为m=(x 1,y 1,z 1),因为AM ⃗⃗⃗⃗⃗⃗ =(-12,0,12),MN⃗⃗⃗⃗⃗⃗⃗ =(0,12,-12), 所以{m ·AM ⃗⃗⃗⃗⃗⃗ =−x12+z12=0,m ·MN⃗⃗⃗⃗⃗⃗⃗ =y 12-z 12=0,取z 1=1,得m=(1,1,1)为平面AMN 的一个法向量.设平面BMN 的法向量为n=(x 2,y 2,z 2),因为BM ⃗⃗⃗⃗⃗⃗ =(12,0,12),MN ⃗⃗⃗⃗⃗⃗⃗ =(0,12,-12), 所以{n ·BM ⃗⃗⃗⃗⃗⃗ =x22+z22=0,n ·MN ⃗⃗⃗⃗⃗⃗⃗ =y 22-z 22=0,取z 2=1,得n=(-1,1,1)为平面BMN 的一个法向量.所以cos<m,n>=m ·n|m||n|=13, 又二面角A-MN-B 为钝二面角,所以二面角A-MN-B 的余弦值为-13.11.(1)由题图(1)知,在题图(2)中,AC ⊥AD,AB ⊥AD.∵平面ACD ⊥平面ABD,平面ACD ∩平面ABD=AD,AB ⊂平面ABD,∴AB ⊥平面ACD,又CD ⊂平面ACD,∴AB ⊥CD.(2)以A 为坐标原点,AC,AB,AD 所在的直线分别为x,y,z 轴建立如图D 8-5-19所示的空间直角坐标系,不妨设AC=1,则A(0,0,0),B(0,2,0),C(1,0,0),D(0,0,1),AD ⃗⃗⃗⃗⃗ =(0,0,1),BC ⃗⃗⃗⃗⃗ =(1,-2,0),DB⃗⃗⃗⃗⃗⃗ =(0,2,-1).图D 8-5-19设E(x,y,z),由DE ⃗⃗⃗⃗⃗ =λDB ⃗⃗⃗⃗⃗⃗ (0<λ<1),得(x,y,z-1)=(0,2λ,-λ), 得E(0,2λ,1-λ),∴AE⃗⃗⃗⃗⃗ =(0,2λ,1-λ),又平面ABC 的一个法向量为AD ⃗⃗⃗⃗⃗ =(0,0,1),AE 与底面ABC 所成角的正切值为12, 所以|tan AD ⃗⃗⃗⃗⃗ ,AE ⃗⃗⃗⃗⃗ |=2,于是|cos AD ⃗⃗⃗⃗⃗ ,AE⃗⃗⃗⃗⃗ |=√5=√55, 即|√(2λ)2+(1−λ)2|=√55,解得λ=12,则E(0,1,12),AE ⃗⃗⃗⃗⃗ =(0,1,12),BE⃗⃗⃗⃗⃗ =(0,-1,12). 设平面BCE 的法向量为n=(x,y,z),则{n ·BC⃗⃗⃗⃗⃗ =0,n ·BE ⃗⃗⃗⃗⃗ =0,即{x -2y =0,-y +12z =0, 令y=1,得x=2,z=2,则n=(2,1,2)是平面BCE 的一个法向量,设直线AE 与平面BCE 所成的角是θ,则sin θ=|cos AE ⃗⃗⃗⃗⃗ ,n |=|AE⃗⃗⃗⃗⃗ ·n||AE ⃗⃗⃗⃗⃗ ||n|=√52×3=4√515, 故直线AE 与平面BCE 所成角的正弦值为4√515.12.(1)因为平面ADEF ⊥平面ABCD,平面ADEF ∩平面ABCD=AD,DE ⊂平面ADEF,DE ⊥AD,所以DE ⊥平面ABCD.因为AC ⊂平面ABCD,所以DE ⊥AC.又四边形ABCD 是正方形,所以AC ⊥BD.因为DE ∩BD=D,DE ⊂平面BED,BD ⊂平面BED,所以AC ⊥平面BED.又AC ⊂平面ACE,所以平面ACE ⊥平面BED.(2)因为DA,DC,DE 两两垂直,所以以D 为坐标原点,建立如图D 8-5-20所示的空间直角坐标系D-xyz. 则A(3,0,0),F(3,0,2√6),E(0,0,3√6),B(3,3,0),C(0,3,0),所以CA⃗⃗⃗⃗⃗ =(3,-3,0),BE ⃗⃗⃗⃗⃗ =(-3,-3,3√6),EF ⃗⃗⃗⃗⃗ =(3,0,-√6).图D 8-5-20设平面BEF 的法向量为n=(x,y,z), 则{n ·BE ⃗⃗⃗⃗⃗ =−3x -3y +3√6z =0,n ·EF ⃗⃗⃗⃗⃗ =3x -√6z =0,取x=√6,得n=(√6,2√6,3)为平面BEF 的一个法向量.所以cos<CA ⃗⃗⃗⃗⃗ ,n>=CA⃗⃗⃗⃗⃗ ·n |CA⃗⃗⃗⃗⃗ ||n|=√63√2×√39=-√1313. 所以直线CA 与平面BEF 所成角的正弦值为√1313.(3)假设在线段AF 上存在符合条件的点M,由(2)可设M(3,0,t),0≤t ≤2√6,则BM ⃗⃗⃗⃗⃗⃗ =(0,-3,t).设平面MBE 的法向量为m=(x 1,y 1,z 1), 则{m ·BM ⃗⃗⃗⃗⃗⃗ =−3y 1+tz 1=0,m ·BE⃗⃗⃗⃗⃗ =−3x 1-3y 1+3√6z 1=0,令y 1=t,得m=(3√6-t,t,3)为平面MBE 的一个法向量.由(1)知CA ⊥平面BED,所以CA ⃗⃗⃗⃗⃗ 是平面BED 的一个法向量,|cos<m,CA ⃗⃗⃗⃗⃗ >|=|m ·CA⃗⃗⃗⃗⃗ ||m||CA⃗⃗⃗⃗⃗ |=√6-3√2×√(3√6-t)2+t 2+9=cos 60°=12,整理得2t 2-6√6t+15=0,解得t=√62,故在线段AF 上存在点M,使得二面角M-BE-D 的大小为60°,此时AMAF =14. 13.(1)因为BC ∥平面α,BC ⊂平面PBC,平面α∩平面PBC=EF,所以BC ∥EF,且F 为棱PB 的中点,因为BC ⊥AB,所以EF ⊥AB.因为PA ∥平面α,PA ⊂平面PAC,平面α∩平面PAC=DE,所以PA ∥DE.因为PA ⊥平面ABC,所以PA ⊥AB, 所以DE ⊥AB.又DE ∩EF=E,DE ⊂平面DEF,EF ⊂平面DEF,所以AB ⊥平面DEF,即AB ⊥平面α.(2)如图D 8-5-21,以点B 为坐标原点,分别以BA,BC 所在直线为x,y 轴,过点B 且与AP 平行的直线为z 轴建立空间直角坐标系,则B(0,0,0),A(2,0,0),C(0,2,0),P(2,0,2),E(1,1,1),F(1,0,1),AC⃗⃗⃗⃗⃗ =(-2,2,0),BC ⃗⃗⃗⃗⃗ =(0,2,0), BP⃗⃗⃗⃗⃗ =(2,0,2).图D 8-5-21设M(1,t,1),平面MAC 的法向量为m=(x 1,y 1,z 1),则AM ⃗⃗⃗⃗⃗⃗ =(-1,t,1),则{m ·AC⃗⃗⃗⃗⃗ =−2x 1+2y 1=0,m ·AM ⃗⃗⃗⃗⃗⃗ =−x 1+ty 1+z 1=0,令x 1=1,则y 1=1,z 1=1-t,所以m=(1,1,1-t)为平面MAC 的一个法向量.设平面PBC 的法向量为n=(x 2,y 2,z 2),则{n ·BC ⃗⃗⃗⃗⃗ =2y 2=0,n ·BP ⃗⃗⃗⃗⃗ =2x 2+2z 2=0,得y 2=0,令x 2=1,则z 2=-1,所以n=(1,0,-1)为平面PBC 的一个法向量.设平面MAC 与平面PBC 所成的锐二面角为θ,则cos θ=|cos<m,n>|=|m ·n||m|×|n|=√12+12+(1-t)2×√2=√t 2-2t+3×√2.当t=0时,cos θ=0; 当t ≠0时, cos θ=√3t 2-2t+1×√2=√3(1t -13)+23×√2,当且仅当1t =13,即t=3时,3(1t -13)2+23取得最小值23,cos θ取得最大值,最大值为√23×√2=√32.所以平面MAC 与平面PBC 所成锐二面角的余弦值的最大值为√32.14.(1)因为AB ∥平面PCD,AB ⊂平面OCP,平面OCP ∩平面PCD=PC,所以AB ∥PC.又∠COB=60°,所以∠OCP=60°.又OC=OP,所以△OCP 为正三角形,所以PC=1.(2)由题意知DO ⊥平面COP,而V P-COD =V D-COP ,S △COP =12·OC ·OP ·sin ∠COP, 所以当OC ⊥OP 时,三棱锥P-COD 的体积最大.解法一 易知OP,OD,OC 两两垂直,以O 为坐标原点,OP⃗⃗⃗⃗⃗ ,OD ⃗⃗⃗⃗⃗⃗ ,OC ⃗⃗⃗⃗⃗ 的方向分别为x 轴、y 轴、z 轴的正方向,建立如图D 8-5-22所示的空间直角坐标系O-xyz,则P(1,0,0),D(0,1,0),C(0,0,1),PC ⃗⃗⃗⃗⃗ =(-1,0,1),DP ⃗⃗⃗⃗⃗ =(1,-1,0).图D 8-5-22设平面DPC 的法向量为n 1=(x,y,z),则{PC⃗⃗⃗⃗⃗ ·n 1=0,DP ⃗⃗⃗⃗⃗ ·n 1=0,即{-x +z =0,x -y =0,取x=1,得平面DPC 的一个法向量为n 1=(1,1,1).易知平面PCO 的一个法向量为n 2=(0,1,0),设二面角D-PC-O 的平面角为α,由题图知,二面角D-PC-O 的平面角为锐角,则cos α=|n 1·n 2||n 1||n 2|=√33, 所以二面角D-PC-O 的余弦值为√33.解法二如图D 8-5-23所示,取PC的中点H,连接OH,DH.图D 8-5-23 因为OC=OP,DC=DP,所以OH,DH都与PC垂直,即∠OHD为所求二面角的平面角.在Rt△OPC中,可得OH=√22,在Rt△OHD中,DH=(√22=√62,所以cos∠OHD=√22√62=√33,所以二面角D-PC-O的余弦值为√33.。

空间的五种关系

空间的五种关系

空间的五种关系空间是人类生活和活动的重要场所,空间的关系影响着人们的生活和行为。

空间的关系可以分为五种:接触关系、包含关系、相邻关系、远离关系和互斥关系。

首先,接触关系是指两个不同的空间界面相互接触的关系,比如门和门框、人和椅子等。

接触关系直接决定了物体之间是否可以互相作用和影响,同时也直接影响了物体的形态和结构。

在人类生活中,接触关系可以带来舒适感和安全感,比如人们在座椅上坐下时会觉得安心舒适。

其次,包含关系是指一个空间内部包含另一个空间的关系,比如一个房子内部包含了多个房间。

包含关系可以让人感受到清晰明了的层次感和秩序感,因为在包含关系中物体有严格的上下级关系和组织结构。

在人们生活中,包含关系也很常见,比如把不同的书籍放在书桌的不同抽屉里,让人在需要时可以方便地取得。

第三,相邻关系是指两个空间之间相邻或者靠近的关系,比如两个房间之间的门或者一个街区内的相邻建筑物。

相邻关系可以通过空间的连续性串联起来,形成连续而又成体系的建筑或者城市空间。

在人类生活中,相邻关系常常显现出社交的和情感的维度,比如相邻的邻居可以更容易地产生互动和交流。

第四,远离关系是指两个空间之间相距较远的关系,比如两个城市之间的距离或者大海和陆地之间的距离。

远离关系可以产生一种自由、开阔和潜力的感觉,同时也激发人们的探索精神和冒险意识。

在人们生活中,远离关系可以带来一种对自己价值和归属的肯定,比如人们可以通过旅行和探险来体验广阔的天地。

最后,互斥关系是指两个或者多个空间相互排斥或者不能在同一空间中共存的关系,比如两个城市之间的对立和竞争,或者同一个空间内部不同功能之间的冲突。

互斥关系可以激发人们的理性思辨和抉择能力,因为不同的空间和功能之间必须寻找平衡点和妥协点。

在人们生活中,互斥关系也可以产生创造性的火花和思维的碰撞,比如企业之间的竞争可以激发创新和进步。

总的来说,空间的关系是人们生活和行为的重要基础,需要我们充分关注和理解。

有限元分析与应用 第5讲、空间问题有限元法

有限元分析与应用 第5讲、空间问题有限元法

(4)
1− 2v 2(1− v) 0
四面体常应变单元
最简单的空间单元一四面体单元如图所示,i , j , k , m为四个结 点,为使单元体积不出现负值,结点的编号按下规定:在右手坐标系 中,当右手螺旋按i—j—k转向时,拇指指向m.
位移函数
单元变形时,各结点都有沿x ,y ,z的三项位移,单元有四个结点,共有12 项结点位移,合起来以列阵表示:
1 (ai + bi x + ci y + d i z ) 6V
()
式中[I]为三阶单位矩阵,而各结点的形函数可按下式计算得到,即
Ni =
(i, j, k , m)
1 xi 1 x [Λ] = j 1 xk 1 xm
yi yj yk ym
zi zj zk zm
空间问题(三维) 空间问题(三维)有限元分析
空间三维应力状态
一般的实际物体都是立体的,弹性体受力作用后,其内部各点将 沿,X,Y,Z三个坐标的方向发生位移,是三维问题.如各点沿X,Y,Z方 向的位移以μ,ν,ω表示,这些位移一般应为各点坐标的函数,即: u = u (x , y , z ) v = v (x , y , z ) ω = ω (x , y , z ) 弹性体一般变形情况下,有三个方向的线应变 ε x,ε y,ε z 和三对剪应变 γ xy = γ yx,γ yz = γ zy,γ zx = γ xz 由弹性力学可知,应变与位移间的几何关系是:
u = α1 + α 2 x + α 3 y + α 4 z v = α5 + α 6 x + α 7 y + α8 z
(5)
ω = α 9 + α10 x + α11 y + α12 z

第5讲(3)Hilbert空间

第5讲(3)Hilbert空间

(2)若 Y 是有限维子空间,则 Hilbert空间;
Y 一定是
18
(3)若 X 可分,则 Y 一定可分。
3
§3 内积与范数的关系 定理4.16 (极化恒等式)在内积空间中,内积 与范数有如下关系: (1)设
证明 (1)当 X 为实内积空间时,有
x+ y − x− y
2
2
X 为实内积空间,则有
=< x + y, x + y > − < x − y, x − y > =< x, x > + < y, x > + < x, y > + < y, y >
p ≥ 1 且 p ≠ 2 时, (l p , ⋅ p )
这就是说平行四边形法则不成立,故 时, l 对范数
p
p≠2
p
⋅ p 来说不能定义内积。
x = (1,1, 0,K), y = (1, −1, 0,K) ∈ l p ,
1 p
p ≥ 1 但 p ≠ 2 时, (l [ a, b ] , ⋅ p ) 不是内积空间。
由(4.3.1)和(4.3.2)得到 (4.3.2)
X 中利用该范数无法定义内
X 中原来的范数。但可以证
22
积,也就是说, X 上不能定义一个内积,使得由它 产生的范数正好是 明,若 X 中的范数满足平行四边形公式,则可
4 < x, y >= x + y − x − y
2
2
2
+i x + iy − i x − iy .
+
< x, y > < y, y >

空间向量与立体几何:第5讲利用空间向量证明平行与垂直问题

空间向量与立体几何:第5讲利用空间向量证明平行与垂直问题

()
A.相交
B.平行
C.在平面内
D.平行或在平面内
→ → → →→ → 解析 ∵AB=λCD+μCE,∴AB,CD,CE共面.则 AB 与平面 CDE 的位置关系是平行或在平面内.
答案 D
6.已知平面α内有一点 M(1,-1,2),平面α的一个法向量为 n=(6,-3,6),则下列点 P 中,在平面α
内的是
()
A.P(2,3,3)
B.P(-2,0,1)
C.P(-4,4,0)
D.P(3,-3,4)
→ 解析 逐一验证法,对于选项 A,MP=(1,4,1),


∴MP·n=6-12+6=0,∴MP⊥n,
∴点 P 在平面α内,同理可验证其他三个点不在平面α内.
答案 A
∵PB⊄面 EFG,∴PB∥平面 EFG.
【变式探究】 如图,平面 PAC⊥平面 ABC,△ABC 是以 AC 为斜边的等腰直角三角形,E,F,O 分别为
PA,PB,AC 的中点,AC=16,PA=PC=10.
【例 2】如图,四棱柱 ABCD-A1B1C1D1 的底面 ABCD 是正方形,O 为底面中心,A1O⊥平面 ABCD,AB =AA1= 2.
号是________.
答案 ①②③
4.若直线 l 的方向向量为 a,平面α的法向量为 n,能使 l∥α的是
()
A.a=(1,0,0),n=(-2,0,0)
B.a=(1,3,5),n=(1,0,1)
C.a=(0,2,1),n=(-1,0,-1)
D.a=(1,-1,3),n=(0,3,1)
→→ → 5.若AB=λCD+μCE,则直线 AB 与平面 CDE 的位置关系是
【规律技巧】 恰当建立坐标系,准确表示各点与相关向量的坐标,是运用向量法证明平行和垂直的关键. 利用已知的线面垂直关系构建空间直角坐标系,准确写出相关点的坐标,从而将几何证明转化为向量
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

B A
meet (2)

B A

B A
Байду номын сангаас
A B
Ao B A B
R9 I
9元组描述框架的特点

与4元组相比:
–9元组增加了A∩B-,A∩B-,A-∩B,A-∩B 和A-∩B- 5个与“补”有关的交集 –9元组所区分的面\面拓扑关系的数目与4元组 一样 –在描述两组线\线目标、线、面目标时,其描 述能力比4元组要强 ,9元组区分出33种不同 的线\线关系
4元组区分的简单面域间的8种空间拓扑关系
序号 1 图例
A B
语义解释 A、B相离(不相交)
4元组值




A B A B o o o o A B A B
2
3 4 5 6 7 8
A
A B A B A
B B A B A
a. 目标不连通
b. 目标为非闭包
四元组模型

四元组模型将空间目标看作是点集,利用 两个点集间边界、内部之间的交,构成如 下式所示的4元组:
R4I(A,B)=
A B o A B
A B o
A B
o o

其中A、A是目标A的边界和内部,B和B 是目标B的边界和内部。
A B A B o o o o A B A B
A B B A A A B
3
A
B
A 的一个边界点与 B 的内部 相接 B 的一个边界点与 A 的内部 相接
4
A B
5
A B
A的内部与B的内部相交
A 的一个边界点与 B 的一个 边界点相接,且 A 的另一 个边界点与B的内部相接 B 的一个边界点与 A 的一个 边界点相接,且 B 的另一 个边界点与A的内部相接





补在区分线\线关系中的特点
当两个简单线状目标具有相离、相接、穿 越(cross)和部分重叠关系时,与“补” 有关的5个交集均为非空 当一个线状目标落入另一个线状目标的内 部(如equal,cover)时,与“补”有关 的某些元素会为非空值,
9元组 表达式

用空间物体A的边界(A)、内部(A)、补(A-) 与空间物体B的边界(B)、内部(B)、补(B-) 两两之间的交集,构成下式所示的空间关系描述 的9元组框架:
A B ( A, B ) Ao B A B
A B o
Ao B o A B o
B
6
A
B
7
A
B

16种简单线状目标间的拓扑空间关系2
8
B A B
A 的一个边界点与 B 的一个边界点相接, 且A的内部与B的内部相交 A的一个边界点与B的内部相接,且B的 一个边界点与A的内部相接 A的一个边界点与B的内部相接,且A的 内部与B的内部相交 B与A的内部重合 A 的一个边界点与 B 的一个边界点相接, A的另一个边界点与B的内部相接,且B 的另一个边界点与A的内部相接, A 的一个边界点与 B 的一个边界点相接, A的另一个边界点与B的内部相接,且A 的内部与B的内部相交 A的边界点与B的内部相接,B的一个边 界点与A的内部相接,且A的内部与B的 内部相交 A 的一个边界点与 B 的一个边界点相接, A的另一个边界点与B的内部相接,且A 的内部与B的内部相交 A 的一个边界点与 B 的一个边界点相接, A的另一个边界点与B的内部相接,B的 另一个边界点与 A 的内部相接,且 A 的 内部与B的内部相交
9元组比4元组能区分更多线\线关系
B A B
A
B
A
A
B
A
B
R4I(A,B)


R9I(A,B)


空间关系的概念

空间关系是数字环境下空间认知、空间分析、空 间推理的前提和基础。空间关系包括
– 由空间物体的几何特性(如空间物体的地理位置与形 状)引起的空间关系,如:距离、方位、邻近、包含、 连通性、相似性等; –由空间对象的几何和非几何属性共同引起的空间关系, 如空间分布现象中的统计相关、空间自相关、空间相 互作用、空间依赖等。 –时间上的先后关系; –成因上的因果关系等。
B
B
A

四元组模型对线目标的内部、边界的定义
边界A
内部A 外部A-1
简单线状目标应满足以下条件:
(a) 有且仅有两个端点,A={pa, pb},且pa≠pb (b) 边界A与内部A不相交,即A∩A=。 (c) 内部A与A不相交,即A∩A=。


B A
A
B B
9
A
10
A A
B B
B A


11
A
12
B B
A
A
13
A B A B o o o o A B A B

–与“补”有关的交集发挥作用
补在区分线\线关系中的作用
A B A B A B meet (2)

B A cross

A
B overlap
A equal
A
A
B
A inside
B
disjoint

overlap

equal

cover-by
空间拓扑关系描述
陈军, 2002,Voronoi动态空间数据 模型
空间拓扑关系描述

交互模型:是运用空间目标的整体,而不是将目 标分解为更细的组成部分,去区分和定义空间关 系,最具代表性的是 Randell 等人提出的空间逻 辑(spatial logic)。
–缺点:需要预先假设目标间的可能的关系,不可能保 证完备性,但对每一种可能的关系,描述结果是唯一 的。
A B B

2
A
B
A



A的一个边界点在B的内部 B的两个边界点在A的内部 B的一个边界点在A的内部
B A
B cover
disjoint

meet (1)


非简单线性目标举例
16种简单线状目标间的拓扑空间关系1
序 号 1 2
A
A B
图例
语义解释 A与B相离(不相交) A 的两边界点分别与 B 的两 边界点相接
4元组值
其它4元组值等 价图例
B

A
B
A
14
B

A
B B


A
B
15
A
16


B
A
A
B

基于边界、内部和外部的9元组

Egenhofer等(1991)提出将空间目标的 补(complements)引入空间关系描述框 架。其理由是,对于一个拓扑空间的点集A, 其边界(A)、内部(A)和补(A-)构 成整个拓扑空间,只有把补纳入拓扑空间 关系描述框架,才可能得到完备的拓扑空 间关系描述。

交叉模型:
–4元组 –9元组模型 –基于Voronoi图的9元组模型(V9I)
交叉模型的内部、边界、外部的定义
全域X 边界A
内部A
补A-
对于二维简单面状目标而言,其边界A为连续曲 线,内部A应是连通的,且A为一个闭包, A∪A∪A-1 = X,X为整个连续空间 。
交叉模型的不包括的情况



简单语意解释
A的两个边界点与B的两个 边界点重合 A的一个边界点在B的一个 边界点上 A的两个边界点在B的内部
空间关系
周 晓 光
Zxg@
测绘与国土信息工程系
内 容

空间拓扑关系的描述
– 四元交模型(4I模型) – 九元交模型(9I模型) – 基于Voronoi图的九元交模型(V9I模型)

空间拓扑关系的表达 空间拓扑关系的计算与查询 时空拓扑关系及其应用 空间方向关系的描述

contains



当两个面状目标之间的拓扑关系由相离(disjoint)、相接(meet) 逐步地转化为部分重叠(partially overlap)时,与“补”有关的5 个交集均为非空
补在区分线\面关系中的作用
B A
相关文档
最新文档