2009年诺贝尔物理学奖
2009年诺贝尔物理学奖

其他人物
其他人物
威拉德·博伊尔
威拉德·博伊尔(Willard Boyle)威拉德·博伊尔(Willard Boyle),美国科学家。1924年8月19日出生于加 拿大东部新斯科舍省小镇阿默斯特,3岁时随家人搬迁到魁北克城以北350公里的一个小村庄,这里交通不便,出 行基本依靠狗拉的雪橇,因此上高中前博伊尔都是在母亲的指导下自学。博伊尔高中时代在蒙特利尔的一家私立 学校度过,高中毕业后即加入加拿大海军,成为航空母舰战斗机飞行员以参加第二次世界大战,但不久二战就结 束了,博伊尔从没参与过真正的战斗。
获得者
获得者
高锟(Charles K. Kao) 瑞典皇家科学院说,高锟在“有关光在纤维中的传输以用于光学通信方面”取得了突破性成就,他将获得 2009年物理学奖一半的奖金,共500万瑞典克朗(约合70万美元);博伊尔和史密斯发明了半导体成像器件—— 电荷耦合器件(CCD)图像传感器,将分享2009年物理学奖另一半奖金。 高锟高锟 中文名:高锟 英文名:Charles K.Kao 性别:男 出生年代:1933年 出生地:江苏省金山县(今上海市金山区) 现居地:中国香港和美国轮流居住 拥有英国和美国双重国籍的物理学家、香港中文大学前校长、2009年诺贝尔物理学奖得主 。
2009年诺贝尔物理学奖
2009年在瑞典皇家科学院宣布的奖项
01 获得者
03 个人经历
目录
02 所获成就 04 其他人物
基本信息
英美科学家分享2009年诺贝尔物理学奖2009年10月6日,瑞典皇家科学院在斯德哥尔摩宣布,将2009年诺 贝 尔 物 理 学 奖 授 予 英 国 华 裔 科 学 家 高 锟 以 及 美 国 科 学 家 威 拉 德 ·博 伊 尔 和 乔 治 ·史 密 斯 。
2009年诺贝尔奖简介

2009年諾貝爾獎簡介蔡蘊明譯於2009年十月八日(歡迎轉載,但請註明出處)本文譯自諾貝爾化學獎委員會公佈給大眾的新聞稿:/nobel_prizes/chemistry/laureates/2009/info.pdf若需要進一步的資訊,請至以下網頁點選:/nobel_prizes/chemistry/laureates/2009/cheadv09.pdf從原子的層次來看生命的關鍵在二十世紀的開始,生命的化學基礎仍是一片謎團,而今日我們已經知道許多重要的過程如何的運作,而且是精細到原子的層次。
2009年的諾貝爾化學獎正是給予對於核糖體(ribosome) —細胞所擁有的蛋白質合成工廠—的仔細描繪所做的肯定,核糖體將被動的DNA(核酸)訊息轉譯成為實際的形體和功能。
演化的基本理論是由達爾文在1859年所發表的,那是基於一個假設,就是生物的性質是可以遺傳的,而且偶爾會產生一些紊亂的變化,成功的變化會增加該物種的生存機會,也因此被帶入了後面的世代。
當科學家在消化達爾文的理論時,新的問題產生:到底是什麼被遺傳到了後面的世代,是在什麼地方產生了改變,而這些改變如何的表現在一個活的生命體上?2009年的諾貝爾化學獎,乃是針對研究達爾文的理論如何的在原子的層次實際的運作,所給予的一個系列的諾貝爾獎中的第三個。
透過不同的X光繞射光譜技術所得的圖像,顯示了簡單的DNA密碼如何表現於聽力,感覺與味覺,或是肌肉,骨頭和皮膚,同時也包括了思考及語言。
這個諾貝爾獎三部曲始於一個諾貝爾獎中最著名的,也就是對1962年華生(James Watson),克里克(Francis Crick)及威爾金斯(Maurice Wilkins)在原子的層次,解開的的DNA分子之雙螺旋結構,所做的貢獻給予的肯定。
而在這三部曲中的第二個,是在2006年頒給了孔伯格(Roger D. Kornberg),以表彰他所得到的X光繞射結構,解釋了訊息如何的拷貝到信使RNA (messenger RNA) 分子。
1901至今历届诺贝尔物理学奖得主及小故事

目录1901-1950 (1)1951-1980 (4)1981-2000 (7)2001-2010 (8)2011-2020 (10)2021 (12)独享还是共享? (13)人选空缺怎么办? (13)最年轻和最年长的获奖者 (13)史上获两次诺贝尔物理学奖的人 (14)获得诺贝尔物理学奖的华人科学家 (14)作为根据诺贝尔遗嘱设立的五大奖项之一,物理学奖被授予“在物理学领域作出最重要发现或发明的人”,与其他诺贝尔奖相比,物理学奖的荐举和甄选过程更长、更缜密。
诺贝尔物理学奖规则规定,获奖者的贡献必须“已经受时间的考验”。
这意味着诺贝尔委员会往往会在科学发现的数十年以后才会为此颁发奖项。
自1901年设立至今,诺贝尔物理学奖已走过百年历程,记录了物理学发展史上的无数个里程碑,已成为人类文明不可分割的一部分。
1901-19501、1901年:威尔姆·康拉德·伦琴(德国)发现X射线2、1902年:亨德瑞克·安图恩·洛伦兹(荷兰)、塞曼(荷兰)关于磁场对辐射现象影响的研究3、1903年:安东尼·亨利·贝克勒尔(法国)发现天然放射性;皮埃尔·居里(法国)、玛丽·居里(波兰裔法国人)发现并研究放射性元素钋和镭4、1904年:瑞利(英国)气体密度的研究和发现氩5、1905年:伦纳德(德国)关于阴极射线的研究6、1906年:约瑟夫·汤姆生(英国)对气体放电理论和实验研究作出重要贡献并发现电子7、1907年:迈克尔逊(美国)发明光学干涉仪并使用其进行光谱学和基本度量学研究8、1908年:李普曼(法国)发明彩色照相干涉法(即李普曼干涉定律)9、1909年:伽利尔摩·马克尼(意大利)、布劳恩(德国)发明和改进无线电报;理查森(英国)从事热离子现象的研究,特别是发现理查森定律10、1910年:范德华(荷兰)关于气态和液态方程的研究11、1911年:维恩(德国)发现热辐射定律12、1912年:达伦(瑞典)发明可用于同燃点航标、浮标气体蓄电池联合使用的自动调节装置13、1913年:卡末林-昂内斯(荷兰)关于低温下物体性质的研究和制成液态氦14、1914年:马克斯·凡·劳厄(德国)发现晶体中的X射线衍射现象15、1915年:威廉·亨利·布拉格、威廉·劳伦斯·布拉格(英国)用X射线对晶体结构的研究16、1916年:未颁奖17、1917年:查尔斯·格洛弗·巴克拉(英国)发现元素的次级X辐射特性18、1918年:马克斯·卡尔·欧内斯特·路德维希·普朗克(德国)对确立量子论作出巨大贡献19、1919年:斯塔克(德国)发现极隧射线的多普勒效应以及电场作用下光谱线的分裂现象20、1920年:纪尧姆(瑞士)发现镍钢合金的反常现象及其在精密物理学中的重要性21、1921年:阿尔伯特·爱因斯坦(德国)他对数学物理学的成就,特别是光电效应定律的发现22、1922年:尼尔斯·亨利克·大卫·玻尔(丹麦)关于原子结构以及原子辐射的研究23、1923年:罗伯特·安德鲁·密立根(美国)关于基本电荷的研究以及验证光电效应24、1924年:西格巴恩(瑞典)发现X射线中的光谱线25、1925年:弗兰克·赫兹(德国)发现原子和电子的碰撞规律26、1926年:佩兰(法国)研究物质不连续结构和发现沉积平衡27、1927年:康普顿(美国)发现康普顿效应;威尔逊(英国)发明了云雾室,能显示出电子穿过空气的径迹28、1928年:理查森(英国)研究热离子现象,并提出理查森定律29、1929年:路易·维克多·德布罗意(法国)发现电子的波动性30、1930年:拉曼(印度)研究光散射并发现拉曼效应31、1931年:未颁奖32、1932年:维尔纳·海森伯(德国)在量子力学方面的贡献33、1933年:埃尔温·薛定谔(奥地利)创立波动力学理论;保罗·阿德里·莫里斯·狄拉克(英国)提出狄拉克方程和空穴理论34、1934年:未颁奖35、1935年:詹姆斯·查德威克(英国)发现中子36、1936年:赫斯(奥地利)发现宇宙射线;安德森(美国)发现正电子37、1937年:戴维森(美国)、乔治·佩杰特·汤姆生(英国)发现晶体对电子的衍射现象38、1938年:恩利克·费米(意大利)发现由中子照射产生的新放射性元素并用慢中子实现核反应39、1939年:欧内斯特·奥兰多·劳伦斯(美国)发明回旋加速器,并获得人工放射性元素40、1940—1942年:未颁奖41、1943年:斯特恩(美国)开发分子束方法和测量质子磁矩42、1944年:拉比(美国)发明核磁共振法43、1945年:沃尔夫冈·E·泡利(奥地利)发现泡利不相容原理44、1946年:布里奇曼(美国)发明获得强高压的装置,并在高压物理学领域作出发现45、1947年:阿普尔顿(英国)高层大气物理性质的研究,发现阿普顿层(电离层)46、1948年:布莱克特(英国)改进威尔逊云雾室方法和由此在核物理和宇宙射线领域的发现47、1949年:汤川秀树(日本)提出核子的介子理论并预言∏介子的存在48、1950年:塞索·法兰克·鲍威尔(英国)发展研究核过程的照相方法,并发现π介子1951-198049、1951年:科克罗夫特(英国)、沃尔顿(爱尔兰)用人工加速粒子轰击原子产生原子核嬗变50、1952年:布洛赫、珀塞尔(美国)从事物质核磁共振现象的研究并创立原子核磁力测量法51、1953年:泽尔尼克(荷兰)发明相衬显微镜52、1954年:马克斯·玻恩(英国)在量子力学和波函数的统计解释及研究方面作出贡献;博特(德国)发明了符合计数法,用以研究原子核反应和γ射线53、1955年:拉姆(美国)发明了微波技术,进而研究氢原子的精细结构;库什(美国)用射频束技术精确地测定出电子磁矩,创新了核理论54、1956年:布拉顿、巴丁(犹太人)、肖克利(美国)发明晶体管及对晶体管效应的研究55、1957年:李政道、杨振宁(美籍华人)发现弱相互作用下宇称不守衡,从而导致有关基本粒子的重大发现56、1958年:切伦科夫、塔姆、弗兰克(苏联)发现并解释切伦科夫效应57、1959年:塞格雷、欧文·张伯伦(OwenChamberlain)(美国)发现反质子58、1960年:格拉塞(美国)发现气泡室,取代了威尔逊的云雾室59、1961年:霍夫斯塔特(美国)关于电子对原子核散射的先驱性研究,并由此发现原子核的结构;穆斯堡尔(德国)从事γ射线的共振吸收现象研究并发现了穆斯堡尔效应60、1962年:达维多维奇·朗道(苏联)关于凝聚态物质,特别是液氦的开创性理论61、1963年:维格纳(美国)发现基本粒子的对称性及支配质子与中子相互作用的原理;梅耶夫人(美国人.犹太人)、延森(德国)发现原子核的壳层结构62、1964年:汤斯(美国)在量子电子学领域的基础研究成果,为微波激射器、激光器的发明奠定理论基础;巴索夫、普罗霍罗夫(苏联)发明微波激射器63、1965年:朝永振一郎(日本)、施温格、费因曼(美国)在量子电动力学方面取得对粒子物理学产生深远影响的研究成果64、1966年:卡斯特勒(法国)发明并发展用于研究原子内光、磁共振的双共振方法65、1967年:贝蒂(美国)核反应理论方面的贡献,特别是关于恒星能源的发现66、1968年:阿尔瓦雷斯(美国)发展氢气泡室技术和数据分析,发现大量共振态67、1969年:盖尔曼(美国)对基本粒子的分类及其相互作用的发现68、1970年:阿尔文(瑞典)磁流体动力学的基础研究和发现,及其在等离子物理富有成果的应用;内尔(法国)关于反磁铁性和铁磁性的基础研究和发现69、1971年:加博尔(英国)发明并发展全息照相法70、1972年:巴丁、库柏、施里弗(美国)创立BCS超导微观理论71、1973年:江崎玲于奈(日本)发现半导体隧道效应;贾埃弗(美国)发现超导体隧道效应;约瑟夫森(英国)提出并发现通过隧道势垒的超电流的性质,即约瑟夫森效应72、1974年:马丁·赖尔(英国)发明应用合成孔径射电天文望远镜进行射电天体物理学的开创性研究;赫威斯(英国)发现脉冲星73、1975年:阿格·N·玻尔、莫特尔森(丹麦)、雷恩沃特(美国)发现原子核中集体运动和粒子运动之间的联系,并且根据这种联系提出核结构理论74、1976年:丁肇中、里希特(美国)各自独立发现新的J/ψ基本粒子75、1977年:安德森、范弗莱克(美国)、莫特(英国)对磁性和无序体系电子结构的基础性研究76、1978年:卡皮察(苏联)低温物理领域的基本发明和发现;彭齐亚斯、R·W·威尔逊(美国)发现宇宙微波背景辐射77、1979年:谢尔登·李·格拉肖、史蒂文·温伯格(美国)、阿布杜斯·萨拉姆(巴基斯坦)关于基本粒子间弱相互作用和电磁作用的统一理论的贡献,并预言弱中性流的存在78、1980年:克罗宁、菲奇(美国)发现电荷共轭宇称不守恒1981-200079、1981年:西格巴恩(瑞典)开发高分辨率测量仪器以及对光电子和轻元素的定量分析;布洛姆伯根(美国)非线性光学和激光光谱学的开创性工作;肖洛(美国)发明高分辨率的激光光谱仪80、1982年:K·G·威尔逊(美国)提出重整群理论,阐明相变临界现象81、1983年:萨拉马尼安·强德拉塞卡(美国)提出强德拉塞卡极限,对恒星结构和演化具有重要意义的物理过程进行的理论研究;福勒(美国)对宇宙中化学元素形成具有重要意义的核反应所进行的理论和实验的研究82、1984年:卡洛·鲁比亚(意大利)证实传递弱相互作用的中间矢量玻色子[[W+]],W-和Zc的存在;范德梅尔(荷兰)发明粒子束的随机冷却法,使质子-反质子束对撞产生W 和Z粒子的实验成为可能83、1985年:冯·克里津(德国)发现量子霍耳效应并开发了测定物理常数的技术84、1986年:鲁斯卡(德国)设计第一台透射电子显微镜;比尼格(德国)、罗雷尔(瑞士)设计第一台扫描隧道电子显微镜85、1987年:柏德诺兹(德国)、缪勒(瑞士)发现氧化物高温超导材料86、1988年:莱德曼、施瓦茨、斯坦伯格(美国)产生第一个实验室创造的中微子束,并发现中微子,从而证明了轻子的对偶结构87、1989年:拉姆齐(美国)发明分离振荡场方法及其在原子钟中的应用;德默尔特(美国)、保尔(德国)发展原子精确光谱学和开发离子陷阱技术88、1990年:弗里德曼、肯德尔(美国)、理查·爱德华·泰勒(加拿大)通过实验首次证明夸克的存在89、1991年:皮埃尔·吉勒德-热纳(法国)把研究简单系统中有序现象的方法推广到比较复杂的物质形式,特别是推广到液晶和聚合物的研究中90、1992年:夏帕克(法国)发明并发展用于高能物理学的多丝正比室91、1993年:赫尔斯、J·H·泰勒(美国)发现脉冲双星,由此间接证实了爱因斯坦所预言的引力波的存在92、1994年:布罗克豪斯(加拿大)、沙尔(美国)在凝聚态物质研究中发展了中子衍射技术93、1995年:佩尔(美国)发现τ轻子;莱因斯(美国)发现中微子94、1996年:D·M·李、奥谢罗夫、R·C·理查森(美国)发现了可以在低温度状态下无摩擦流动的氦同位素95、1997年:朱棣文、W·D·菲利普斯(美国)、科昂·塔努吉(法国)发明用激光冷却和捕获原子的方法96、1998年:劳克林、霍斯特·路德维希·施特默、崔琦(美国)发现并研究电子的分数量子霍尔效应97、1999年:H·霍夫特、韦尔特曼(荷兰)阐明弱电相互作用的量子结构98、2000年:阿尔费罗夫(俄国)、克罗默(德国)提出异层结构理论,并开发了异层结构的快速晶体管、激光二极管;杰克·基尔比(美国)发明集成电路2001-201099、2001年:克特勒(德国)、康奈尔、卡尔·E·维曼(美国)在“碱金属原子稀薄气体的玻色-爱因斯坦凝聚态”以及“凝聚态物质性质早期基本性质研究”方面取得成就100、2002年:雷蒙德·戴维斯、里卡尔多·贾科尼(美国)、小柴昌俊(日本)“表彰他们在天体物理学领域做出的先驱性贡献,其中包括在“探测宇宙中微子”和“发现宇宙X射线源”方面的成就。
历年诺贝尔物理学奖

历年诺贝尔物理学奖1、1901年:威尔姆·康拉德·伦琴(德国)发现X射线2、1902年:亨德瑞克·安图恩·洛伦兹(荷兰)、塞曼(荷兰)关于磁场对辐射现象影响的研究3、1903年:安东尼·亨利·贝克勒尔(法国)发现天然放射性;皮埃尔·居里(法国)、玛丽·居里(波兰裔法国人)发现并研究放射性元素钋和镭4、1904年:瑞利(英国)气体密度的研究和发现氩5、1905年:伦纳德(德国)关于阴极射线的研究6、1906年:约瑟夫·汤姆生(英国)对气体放电理论和实验研究作出重要贡献并发现电子7、1907年:迈克尔逊(美国)发明光学干涉仪并使用其进行光谱学和基本度量学研究8、1908年:李普曼(法国)发明彩色照相干涉法(即李普曼干涉定律)9、1909年:伽利尔摩·马克尼(意大利)、布劳恩(德国)发明和改进无线电报;理查森(英国)从事热离子现象的研究,特别是发现理查森定律10、1910年:范德华(荷兰)关于气态和液态方程的研究11、1911年:维恩(德国)发现热辐射定律12、1912年:达伦(瑞典)发明可用于同燃点航标、浮标气体蓄电池联合使用的自动调节装置13、1913年:卡末林-昂内斯(荷兰)关于低温下物体性质的研究和制成液态氦14、1914年:马克斯·凡·劳厄(德国)发现晶体中的X射线衍射现象15、1915年:威廉·亨利·布拉格、威廉·劳伦斯·布拉格(英国)用X射线对晶体结构的研究16、1916年:未颁奖17、1917年:查尔斯·格洛弗·巴克拉(英国)发现元素的次级X辐射特性18、1918年:马克斯·卡尔·欧内斯特·路德维希·普朗克(德国)对确立量子论作出巨大贡献19、1919年:斯塔克(德国)发现极隧射线的多普勒效应以及电场作用下光谱线的分裂现象20、1920年:纪尧姆(瑞士)发现镍钢合金的反常现象及其在精密物理学中的重要性21、1921年:阿尔伯特·爱因斯坦(德国)他对数学物理学的成就,特别是光电效应定律的发现22、1922年:尼尔斯·亨利克·大卫·玻尔(丹麦)关于原子结构以及原子辐射的研究23、1923年:罗伯特·安德鲁·密立根(美国)关于基本电荷的研究以及验证光电效应24、1924年:西格巴恩(瑞典)发现X射线中的光谱线25、1925年:弗兰克·赫兹(德国)发现原子和电子的碰撞规律26、1926年:佩兰(法国)研究物质不连续结构和发现沉积平衡27、1927年:康普顿(美国)发现康普顿效应;威尔逊(英国)发明了云雾室,能显示出电子穿过空气的径迹28、1928年:理查森(英国)研究热离子现象,并提出理查森定律29、1929年:路易·维克多·德布罗意(法国)发现电子的波动性30、1930年:拉曼(印度)研究光散射并发现拉曼效应31、1931年:未颁奖32、1932年:维尔纳·海森伯(德国)在量子力学方面的贡献33、1933年:埃尔温·薛定谔(奥地利)创立波动力学理论;保罗·阿德里·莫里斯·狄拉克(英国)提出狄拉克方程和空穴理论34、1934年:未颁奖35、1935年:詹姆斯·查德威克(英国)发现中子36、1936年:赫斯(奥地利)发现宇宙射线;安德森(美国)发现正电子37、1937年:戴维森(美国)、乔治·佩杰特·汤姆生(英国)发现晶体对电子的衍射现象38、1938年:恩利克·费米(意大利)发现由中子照射产生的新放射性元素并用慢中子实现核反应39、1939年:欧内斯特·奥兰多·劳伦斯(美国)发明回旋加速器,并获得人工放射性元素40、1940—1942年:未颁奖41、1943年:斯特恩(美国)开发分子束方法和测量质子磁矩42、1944年:拉比(美国)发明核磁共振法43、1945年:沃尔夫冈·E·泡利(奥地利)发现泡利不相容原理44、1946年:布里奇曼(美国)发明获得强高压的装置,并在高压物理学领域作出发现45、1947年:阿普尔顿(英国)高层大气物理性质的研究,发现阿普顿层(电离层)46、1948年:布莱克特(英国)改进威尔逊云雾室方法和由此在核物理和宇宙射线领域的发现47、1949年:汤川秀树(日本)提出核子的介子理论并预言∏介子的存在48、1950年:塞索·法兰克·鲍威尔(英国)发展研究核过程的照相方法,并发现π介子49、1951年:科克罗夫特(英国)、沃尔顿(爱尔兰)用人工加速粒子轰击原子产生原子核嬗变50、1952年:布洛赫、珀塞尔(美国)从事物质核磁共振现象的研究并创立原子核磁力测量法51、1953年:泽尔尼克(荷兰)发明相衬显微镜52、1954年:马克斯·玻恩(英国)在量子力学和波函数的统计解释及研究方面作出贡献;博特(德国)发明了符合计数法,用以研究原子核反应和γ射线53、1955年:拉姆(美国)发明了微波技术,进而研究氢原子的精细结构;库什(美国)用射频束技术精确地测定出电子磁矩,创新了核理论54、1956年:布拉顿、巴丁(犹太人)、肖克利(美国)发明晶体管及对晶体管效应的研究55、1957年:李政道、杨振宁(美籍华人)发现弱相互作用下宇称不守衡,从而导致有关基本粒子的重大发现56、1958年:切伦科夫、塔姆、弗兰克(苏联)发现并解释切伦科夫效应57、1959年:塞格雷、欧文·张伯伦(OwenChamberlain)(美国)发现反质子58、1960年:格拉塞(美国)发现气泡室,取代了威尔逊的云雾室59、1961年:霍夫斯塔特(美国)关于电子对原子核散射的先驱性研究,并由此发现原子核的结构;穆斯堡尔(德国)从事γ射线的共振吸收现象研究并发现了穆斯堡尔效应60、1962年:达维多维奇·朗道(苏联)关于凝聚态物质,特别是液氦的开创性理论61、1963年:维格纳(美国)发现基本粒子的对称性及支配质子与中子相互作用的原理;梅耶夫人(美国人.犹太人)、延森(德国)发现原子核的壳层结构62、1964年:汤斯(美国)在量子电子学领域的基础研究成果,为微波激射器、激光器的发明奠定理论基础;巴索夫、普罗霍罗夫(苏联)发明微波激射器63、1965年:朝永振一郎(日本)、施温格、费因曼(美国)在量子电动力学方面取得对粒子物理学产生深远影响的研究成果64、1966年:卡斯特勒(法国)发明并发展用于研究原子内光、磁共振的双共振方法65、1967年:贝蒂(美国)核反应理论方面的贡献,特别是关于恒星能源的发现66、1968年:阿尔瓦雷斯(美国)发展氢气泡室技术和数据分析,发现大量共振态67、1969年:盖尔曼(美国)对基本粒子的分类及其相互作用的发现68、1970年:阿尔文(瑞典)磁流体动力学的基础研究和发现,及其在等离子物理富有成果的应用;内尔(法国)关于反磁铁性和铁磁性的基础研究和发现69、1971年:加博尔(英国)发明并发展全息照相法70、1972年:巴丁、库柏、施里弗(美国)创立BCS超导微观理论71、1973年:江崎玲于奈(日本)发现半导体隧道效应;贾埃弗(美国)发现超导体隧道效应;约瑟夫森(英国)提出并发现通过隧道势垒的超电流的性质,即约瑟夫森效应72、1974年:马丁·赖尔(英国)发明应用合成孔径射电天文望远镜进行射电天体物理学的开创性研究;赫威斯(英国)发现脉冲星73、1975年:阿格·N·玻尔、莫特尔森(丹麦)、雷恩沃特(美国)发现原子核中集体运动和粒子运动之间的联系,并且根据这种联系提出核结构理论74、1976年:丁肇中、里希特(美国)各自独立发现新的J/ψ基本粒子75、1977年:安德森、范弗莱克(美国)、莫特(英国)对磁性和无序体系电子结构的基础性研究76、1978年:卡皮察(苏联)低温物理领域的基本发明和发现;彭齐亚斯、R·W·威尔逊(美国)发现宇宙微波背景辐射77、1979年:谢尔登·李·格拉肖、史蒂文·温伯格(美国)、阿布杜斯·萨拉姆(巴基斯坦)关于基本粒子间弱相互作用和电磁作用的统一理论的贡献,并预言弱中性流的存在78、1980年:克罗宁、菲奇(美国)发现电荷共轭宇称不守恒79、1981年:西格巴恩(瑞典)开发高分辨率测量仪器以及对光电子和轻元素的定量分析;布洛姆伯根(美国)非线性光学和激光光谱学的开创性工作;肖洛(美国)发明高分辨率的激光光谱仪80、1982年:K·G·威尔逊(美国)提出重整群理论,阐明相变临界现象81、1983年:萨拉马尼安·强德拉塞卡(美国)提出强德拉塞卡极限,对恒星结构和演化具有重要意义的物理过程进行的理论研究;福勒(美国)对宇宙中化学元素形成具有重要意义的核反应所进行的理论和实验的研究82、1984年:卡洛·鲁比亚(意大利)证实传递弱相互作用的中间矢量玻色子[[W+]],W-和Zc的存在;范德梅尔(荷兰)发明粒子束的随机冷却法,使质子-反质子束对撞产生W和Z粒子的实验成为可能83、1985年:冯·克里津(德国)发现量子霍耳效应并开发了测定物理常数的技术84、1986年:鲁斯卡(德国)设计第一台透射电子显微镜;比尼格(德国)、罗雷尔(瑞士)设计第一台扫描隧道电子显微镜85、1987年:柏德诺兹(德国)、缪勒(瑞士)发现氧化物高温超导材料86、1988年:莱德曼、施瓦茨、斯坦伯格(美国)产生第一个实验室创造的中微子束,并发现中微子,从而证明了轻子的对偶结构87、1989年:拉姆齐(美国)发明分离振荡场方法及其在原子钟中的应用;德默尔特(美国)、保尔(德国)发展原子精确光谱学和开发离子陷阱技术88、1990年:弗里德曼、肯德尔(美国)、理查·爱德华·泰勒(加拿大)通过实验首次证明夸克的存在89、1991年:皮埃尔·吉勒德-热纳(法国)把研究简单系统中有序现象的方法推广到比较复杂的物质形式,特别是推广到液晶和聚合物的研究中90、1992年:夏帕克(法国)发明并发展用于高能物理学的多丝正比室91、1993年:赫尔斯、J·H·泰勒(美国)发现脉冲双星,由此间接证实了爱因斯坦所预言的引力波的存在92、1994年:布罗克豪斯(加拿大)、沙尔(美国)在凝聚态物质研究中发展了中子衍射技术93、1995年:佩尔(美国)发现τ轻子;莱因斯(美国)发现中微子94、1996年:D·M·李、奥谢罗夫、R·C·理查森(美国)发现了可以在低温度状态下无摩擦流动的氦同位素95、1997年:朱棣文、W·D·菲利普斯(美国)、科昂·塔努吉(法国)发明用激光冷却和捕获原子的方法96、1998年:劳克林、霍斯特·路德维希·施特默、崔琦(美国)发现并研究电子的分数量子霍尔效应97、1999年:H·霍夫特、韦尔特曼(荷兰)阐明弱电相互作用的量子结构98、2000年:阿尔费罗夫(俄国)、克罗默(德国)提出异层结构理论,并开发了异层结构的快速晶体管、激光二极管;杰克·基尔比(美国)发明集成电路99、2001年:克特勒(德国)、康奈尔、卡尔·E·维曼(美国)在“碱金属原子稀薄气体的玻色-爱因斯坦凝聚态”以及“凝聚态物质性质早期基本性质研究”方面取得成就100、2002年:雷蒙德·戴维斯、里卡尔多·贾科尼(美国)、小柴昌俊(日本)“表彰他们在天体物理学领域做出的先驱性贡献,其中包括在“探测宇宙中微子”和“发现宇宙X射线源”方面的成就。
2009年诺贝尔物理学奖

2009年诺贝尔物理学奖2009年诺贝尔物理学奖揭晓,美英三科学家获奖。
三位科学家为原香港中文大学校长高锟(Charles K. Kao)、美国科学家Willard S. Boyle和George E. Smith。
高锟的获奖理由为——“在光学通信领域光在光纤中传输方面所取得的开创性成就”。
两位美国科学家的获奖理由为——“发明了一种成像半导体电路,即CCD(电荷耦合器件)传感器”。
高锟,1933年出生于中国上海,现拥有英国和美国双重国籍。
1965年从英国伦敦帝国理工学院获得电机工程博士学位。
曾任英国标准电信实验室工程学主任。
Willard Sterling Boyle,1924年出生于加拿大Amherst,拥有加拿大和美国国籍。
1950年从加拿大麦吉尔大学获得物理学博士学位。
George Elwood Smith,1930年出生于美国白原市(White Plains),美国国籍。
1959年从芝加哥大学获得物理学博士学位。
1966年,高锟所做出的一项发现导致了纤维光学的突破。
他仔细地计算出如何通过光学玻璃纤维实现远距离光传输。
应用纯玻璃纤维,光信号传输可达到100公里,而在1960年代,当时的光纤传输光只能达到20米。
高锟的研究热情鼓舞了其他一些研究人员,共同来分享他关于未来纤维光学的见解。
仅仅于四年之后,1970年,第一个超纯光纤就被成功制造出来。
现今,由光纤构成的系统“滋养”着我们的通信社会。
这些低损耗的玻璃纤维推动了全球宽带通信,比如因特网。
光在这些细玻璃线中流动,携带着几乎所有的四面八方的电话和数据通信。
文本、音乐、图像和视频可在瞬间进行全球传输。
如果我们拆开缠绕全球的玻璃纤维,我们将得到一条长十亿公里的细线,这已足够环绕地球25000多次,并且它还在以数千公里/小时的速度在增长。
通信的很大一部分是由数字图像组成的,这就涉及到了今年诺贝尔物理学奖的第二部分。
1969年,Willard S. Boyle 和George E. Smith发明了首个成功的成像技术,利用的是数字传感器——电荷耦合器件(CCD)。
2009诺贝尔奖高锟

2009年10月06日下午 09:312009年10月6日瑞典皇家科学院6日宣布,将2009年诺贝尔物理学奖授予英国华裔科学家高锟以及另外两位美国科学家。
瑞典皇家科学院说,高锟在“有关光在纤维中的传输以用于光学通信方面”取得了突破性成就,他将获得今年物理学奖一半的奖金,共500万瑞典克朗(约合70万美元)。
个人简介美籍华裔物理学家。
1933年11月4日出生于中国上海金山。
前香港中文大学校长。
美国国家工程院院士、英国皇家工程科学院院士,英国皇家艺术学会会员,瑞典皇家工程科学院外籍院士, 台湾中央研究院院士,中国科学院外籍院士。
1957年获伦敦大学理学士学位,1965年获博士学位。
1957~1960年任标准电话和电缆公司工程师,1960~1970年任标准电信实验室主任研究工程师。
1970~1974年在香港中文大学电机系工作,以后在国际电话和电报公司电光产品部任副经理。
高锟在电磁波导、陶瓷科学(包括光纤制造)方面获28项专利。
1964年,他提出在电话网络中以光代替电流,以玻璃纤维代替导线。
1966年,在标准电话实验室与何克汉共同提出光纤可以用作通信媒介。
高锟曾获巴伦坦奖章、利布曼奖、光电子学奖等,被称为“光纤之父”。
高锟于2009年10月6日因在光纤上的成就被授予诺贝尔物理学奖。
个人简介1959年9月19日结婚学历英国伦敦大学理学学士(1957)英国伦敦大学哲学博士(1965)个人自述我不是一个很固执的人有人说“科学家都应该是很固执的”。
高锟说,我不是,假使科学家太固执的话,不能够想象不同的将来,因为脑子里面想的东西是幻想,所以假使一个人很固执的话,他那个人可能是很容易想不通的。
他说,但是假使我能够把事情看清楚了之后,我有一个意见的话,那个时候我可能拿得很紧,抓住这个意见,要求人家相信我。
这个好象是推销员,就是说,卖东西给人家的,你一定要说服他,说这个是对的,这是你应该要买的东西。
做不正常的事是小孩子的自由高锟说,自己的兴趣是很受人家的影响。
2009诺贝尔物理学奖

2009诺贝尔物理学奖
Kenneth Chang;丁立福(编译)
【期刊名称】《大学英语》
【年(卷),期】2009(000)012
【摘要】瑞典皇家科学院授奖予纤维光学及数码摄影领域的突破性成果,掌控光传输技术成为本年度诺贝尔物理学奖的主题。
【总页数】4页(P22-25)
【作者】Kenneth Chang;丁立福(编译)
【作者单位】淮南师范学院;不详
【正文语种】中文
【中图分类】TN25
【相关文献】
1.影像科学的革命——2009年诺贝尔物理学奖简介 [J], 王晋疆;王庆有
2.高锟:2009年诺贝尔物理学奖得主 [J], 张敏杰
3.光在光导纤维中的传输问题——与2009年诺贝尔物理学奖相关试题 [J], 张永兴
4.高锟获得2009年诺贝尔物理学奖 [J],
5.2009年诺贝尔物理学奖得主高锟——由妻子代为发表的获奖演说《亘古砂石递捷音》 [J], 无
因版权原因,仅展示原文概要,查看原文内容请购买。
近五年诺贝尔物理学奖简介

2008年至2012年诺贝尔物理学奖获得者及其主要贡献简介获奖年度:2012年获奖者:沙吉·哈罗彻(Serge Haroche)大卫·温兰德(David J.Wineland)获奖者简介:沙吉·哈罗彻1944年生于摩洛哥的卡萨布兰卡,现为法国籍。
他1971年在巴黎第六大学获得博士学位,曾任职于法国国家科研中心和法国综合理工大学,现为法兰西学院和巴黎高等师范学院教授。
大卫·温兰德1944年生于美国密尔沃基,1970年在哈佛大学获得博士学位,现任职于美国国家标准与技术研究所和科罗拉多大学博尔德分校。
获奖原因瑞典皇家科学院授予这二人奖项的原因是他们在“突破性的试验方法使得测量和操纵单个量子系统成为可能”。
塞尔日·阿罗什和大卫·维因兰德独立地发明并拓展出能够在保持个体粒子的量子力学属性的情况下对其进行测量和操控的方法,而这在之前被认为是不能实现的。
在不破坏单个量子粒子的前提下实现对其直接观测,两位获奖者以这样的方式为量子物理学实验新纪元开辟了一扇大门。
对于单个光子或物质粒子来说,经典物理学定律已不再适用,量子物理学开始“接手”。
但从环境中分离出单个粒子并非易事,而且一旦粒子融入外在世界,其神秘的量子性质便会消失。
因此,许多通过量子物理学推测出来的现象看似荒诞,也不能被直接观测到,研究人员也只能进行一些猜想实验,试图从原理上证明这些荒诞的现象。
通过巧妙的实验方法,阿罗什和维因兰德与研究小组一起成功地实现对量子碎片的测量和控制,颠覆了之前人们认为的其无法被直接观测到的看法。
这套新方法允许他们检验、控制并计算粒子。
两位获奖者均在量子光学领域研究光与物质间的基本相互作用,这一领域自1980年代中期以来获得了相当多的成就。
他们的突破性的方法,使得这一领域的研究朝着基于量子物理学而建造一种新型超快计算机迈出了第一步。
就如传统计算机在上世纪的影响那样,或许量子计算机将在本世纪以同样根本性的方式改变我们的日常生活。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Laboratories, Murray Hill, NJ,
USA. Retired 1979.
George E. Smith
US citizen. Born 1930 in White Plains, NY, USA. Ph.D. in Physics 1959 from University of Chicago, IL,
USA. Head of VLSI Device
Department, Bell Laboratories, Murray Hill, NJ,
USA. Retired 1986.
When the Nobel Prize in Physics is announced in Stockholm, the message is spread around the world, at almost the highest of speeds. Text, images, speech and video are shuffled around in optical fibers and through space, and are received instantly in small and convenient devices. It is something that many people have already come to take for granted. The optical fiber has been a prerequisite for this extremely rapid development in the field of communications, a development that Charles Kao predicted over 40 years ago.
Figure 1. Optic fibers made of glass make up the circulatory system of our communication society. There is enough fiber to encircle the globe more than 25 000 times.
British and US citizen. Born 1933 in Shanghai, China. Ph.D. in Electrical Engineering 1965 from University of London, UK. Vicechancellor, Chinese University of Hong Kong
from 1987 to 1996.
WБайду номын сангаасllard S. Boyle
Canadian and US citizen. Born 1924 in Amherst, NS, Canada. Ph.D. in Physics 1950 from McGill University,
QC, Canada. Executive
Just a few years later, Willard Boyle and George Smith radically altered the conditions for the field of photography, because film is no longer needed in cameras where the images can be captured electronically with an image sensor. The electronic eye, the CCD, became the first truly successful technology for the digital transfer of images. It opened the door to a daily stream of images, which is filling up the optical fiber cables. Only optical fiber is capable of transferring such large quantities of data that electronic image sensor technology yields.
The Arrival of Light
It is via sunlight that we see the world. However, it would take a long time before humans acquired the skills to control light and direct it into a waveguide. In this way coded messages could be transmitted to many people simultaneously. This development required numerous inventions, big and small, which form the foundations for the modern information society. The optical fiber required modern glass technology in order to be developed and manufactured.
Charles K. Kao
1/2 of the prize USA / United Kingdom
Willard S. Boyle 1/4 of the prize USA / Canada
George E. Smith 1/4 of the prize USA
Charles K. Kao
A reliable source of light was also needed and this was provided by semiconductor technology. Finally, an ingenious network needed to be assembled and extended, consisting of transistors, amplifiers, switches, transmitters and receivers, as well as other units, all working together. The telecommunications revolution was made possible by the work of thousands of scientists and inventors from all around the world.
Capturing Light
A ray of sunlight that falls into water bends when it hits the surface, because the so-called refractive index of water is higher than the refractive index of air. If the direction of the light beam is inverted, travelling from water into air, it is possible that it will not enter the air at all, and instead will be reflected back into the water. This phenomenon forms the basis for optical waveguide technology where light is captured inside a fiber with a higher refractive index than its surrounding environment. A ray of light that is directed into a fiber, bounces against the glass wall and moves forward since the refractive index of glass is higher than the surrounding air (figure 1).
The Nobel Prize in Physics 2009
2009.12.25
Introduction
The 2009 Nobel Prize in Physics is awarded to Charles K. Kao, Willard S. Boyle and George E. Smith, who have had important roles in shaping modern information technology. Kao initiated the search for and the development of the lowloss optical fiber presently used in optical fiber communication systems. Boyle and Smith invented the charge-coupled device (CCD) presently used in many digital cameras and in advanced medical and scientific instrumentation.
Playing with Light
The 1889 World Exhibition in Paris celebrated the centenary of the French revolution. The Eiffel tower was to become one of the most well-known monuments of this exhibition. However, a remarkable play of lights proved a less memorable spectacle. It was performed with water fountains filled with colorful beams of light. This show was made possible with electricity. A source of inspiration was also provided by earlier attempts, in the middle of the 19th century, to create beams of light guided by water. Those trials had shown that when a beam of water is exposed to sunlight, the light travels through the beam and follows its curving shape.