王晓东电子计算机算法设计与分析第4版

合集下载

算法设计与分析王晓东

算法设计与分析王晓东

习题2-1 求下列函数的渐进表达式:3n^2+10n; n^2/10+2n; 21+1/n; logn^3; 10 log3^n 。

解答:3n^2+10n=O(n^2),n^2/10+2^n=O(2^n),21+1/n=O(1),logn^3=O(logn),10log3^n=O(n).习题2-3 照渐进阶从低到高的顺序排列以下表达式:n!,4n^2,logn,3^n,20n,2,n^2/3。

解答:照渐进阶从高到低的顺序为:n!、3^n、4n^2 、20n、n^2/3、logn、2习题2-4(1)假设某算法在输入规模为n时的计算时间为T(n)=3*2^n。

在某台计算机上实现并完成该算法的时间为t秒。

现有另外一台计算机,其运行速度为第一台计算机的64倍,那么在这台新机器上用同一算法在t秒内能解输入规模为多大的问题?(2)若上述算法的计算时间改进为T(n)=n^2,其余条件不变,则在新机器上用t秒时间能解输入规模多大的问题?(3)若上述算法的计算时间进一步改进为,其余条件不变,那么在新机器上用t秒时间能解输入规模多大的问题?解答:(1)设能解输入规模为n1的问题,则t=3*2^n=3*2^n/64,解得n1=n+6(2)n1^2=64n^2得到n1=8n(3)由于T(n)=常数,因此算法可解任意规模的问题。

习题2-5 XYZ公司宣称他们最新研制的微处理器运行速度为其竞争对手ABC公司同类产品的100倍。

对于计算复杂性分别为n,n^2,n^3和n!的各算法,若用ABC公司的计算机能在1小时内能解输入规模为n的问题,那么用XYZ公司的计算机在1小时内分别能解输入规模为多大的问题?解答:n'=100nn'^2=100n^2得到n'=10nn'^3=100n^3得到n'=4.64nn'!=100n!得到n'<n+log100=n+6.64习题2-6对于下列各组函数f(n)和g(n),确定f(n)=O(g(n))或f(n)=Ω(g(n))或f(n)=θ(g(n)),并简述理由。

计算机算法设计与分析(王晓东第4版)第8章

计算机算法设计与分析(王晓东第4版)第8章
都变成负值为止
Department of Electronic Information
30
Fun Time
z
=
9
+
21x2

3 4
x4

2x5,
s.t.
x3

1 2
x2
+
41x4
=
3
x1 x6
+ −
5 2
x2
5 2
x2
+ −
41x4 43x4
+ +
2x5 = 10 +8x5 = 1
• 选出使目标函数增加的非基本变量作为入基变量 • z 行中的正系数非基本变量都满足要求
Department of Electronic Information
24
单纯形表
max z = −x2 + 3x3 − 2x5,
s.t.
x1
+
3x2

x3
+
2x5
=
7
x4 − 2x2 + 4x3 = 12
x2 x3 x5
z 0 -1 3 -2 x1 7 3 -1 2 x4 12 -2 4 0 x6 10 -4 3 8
Department of Electronic Information
23
单纯形算法的第 1 步–选取入基变量
• 查看单纯形表的第 1 行(也称之为 z 行)中标有非 基本变量的各列中的值
2x2 − 7x4 ≤ 0 x1 + x2 + x3 + x4 = 9
x2 − x3 + 2x4 ≥ 1 xi ≥ 0, i = 1, 2, 3, 4

计算机算法设计与分析(第4版)[王晓东][电子教案]第2章

计算机算法设计与分析(第4版)[王晓东][电子教案]第2章

2.1 递归的概念
例5 整数划分问题 前面的几个例子中,问题本身都具有比较明显的递归关系,因 而容易用递归函数直接求解。 在本例中,如果设p(n)为正整数n的划分数,则难以找到递归关 系,因此考虑增加一个自变量:将最大加数n1不大于m的划分个 数记作q(n,m)。可以建立q(n,m)的如下递归关系。
A(1,0) 2 A(0, m) 1 m0 A(n,0) n 2 n2 A(n, m) A( A(n 1, m), m 1) n, m 1
2.1 递归的概念
例3 Ackerman函数 前2例中的函都可以找到相应的非递归方式定义:
n! 1 2 3 (n 1) n
T(n)
n/2
=
n/2
n
n/2 n/2
T(n/4)T(n/4)T(n/4)T(n/4) T(n/4)T(n/4)T(n/4)T(n/4) T(n/4)T(n/4)T(n/4)T(n/4) T(n/4)T(n/4)T(n/4)T(n/4
算法总体思想

将求出的小规模的问题的解合并为一个更大规模的问 题的解,自底向上逐步求出原来问题的解。
1 q ( n, n ) q ( n, m ) 1 q (n, n 1) q ( n, m 1) q (n m, m)
正整数n的划分数p(n)=q(n,n)。
n 1, m 1 nm nm n m 1
2.1 递归的概念
例6 Hanoi塔问题 设a,b,c是3个塔座。开始时,在塔座a上有一叠共n个圆盘,这 些圆盘自下而上,由大到小地叠在一起。各圆盘从小到大编号 为1,2,…,n,现要求将塔座a上的这一叠圆盘移到塔座b上,并仍 按同样顺序叠臵。在移动圆盘时应遵守以下移动规则: 规则1:每次只能移动1个圆盘; 规则2:任何时刻都不允许将较大的圆盘压在较小的圆盘之上; 规则3:在满足移动规则1和2的前提下,可将圆盘移至a,b,c中 任一塔座上。

计算机算法设计与分析【王晓东-电子工业出版社-2版】-第3章

计算机算法设计与分析【王晓东-电子工业出版社-2版】-第3章
A 50 10 B 10 40 C 40 30 D 30 5
总共有五中完全加括号的方式
( A((BC)D)) ( A(B(CD))) (( AB)(CD))
((( AB)C)D) (( A(BC))D)
16000, 10500, 36000, 87500, 34500
上海金融学院信息管理系
T(n)
=n
n/2
n/2
n/2
n/2
T(n/4)T(n/4)T(n/4)T(n/4) T(n/4)T(n/4)T(n/4)T(n/4) T(n/4)T(n/4)T(n/4)T(n/4) T(n/4)T(n/4)T(n/4)T(n/4
上海金融学院信息管理系
5
算法总体思想
如果能够保存已解决的子问题的答案,而在需 要时再找出已求得的答案,就可以避免大量重 复计算,从而得到多项式时间算法。
第3章 动态规划
1
学习要点:
理解动态规划算法的概念。 掌握动态规划算法的基本要素 (1)最优子结构性质 (2)重叠子问题性质 掌握设计动态规划算法的步骤。 (1)找出最优解的性质,并刻划其结构特征。 (2)递归地定义最优值。 (3)以自底向上的方式计算出最优值。 (4)根据计算最优值时得到的信息,构造最优解。
上海金融学院信息管理系
9
矩阵连乘问题
给定n个矩阵{A1,A2,…,An},其中Ai与Ai+1是可乘的,i=1, 2…,n-1。如何确定计算矩阵连乘积的计算次序,使得依此次 序计算矩阵连乘积需要的数乘次数最少。
穷举法:列举出所有可能的计算次序,并计算出每一种计 算次序相应需要的数乘次数,从中找出一种数乘次数最少的 计算次序。
上海金融学院信息管理系
2
• 通过应用范例学习动态规划算法设计策略。 • (1)矩阵连乘问题; • (2)最长公共子序列; • (3)最大子段和 • (4)凸多边形最优三角剖分; • (5)多边形游戏; • (6)图像压缩; • (7)电路布线; • (8)流水作业调度; • (9)背包问题; • (10)最优二叉搜索树。

计算机算法设计与分析第4版王晓东电子

计算机算法设计与分析第4版王晓东电子

渐近分析记号的若干性质
• (1)传递性: • f(n)= (g(n)), g(n)= (h(n)) f(n)= (h(n)); • f(n)= O(g(n)), g(n)= O (h(n)) f(n)= O (h(n)); • f(n)= (g(n)), g(n)= (h(n)) f(n)= (h(n)); • f(n)= o(g(n)), g(n)= o(h(n)) f(n)= o(h(n));
问题求解(Problem Solving)
理解问题 精确解或近似解
选择数据结构 算法设计策略
设计算法 证明正确性
分析算法 设计程序
算法复杂性分析
• 算法复杂性 = 算法所需要的计算机资源 • 算法的时间复杂性T(n); • 算法的空间复杂性S(n)。 • 其中n是问题的规模(输入大小)。
算法的时间复杂性
行每条指令的时间也是有限的。
程序(Program)
• 程序是算法用某种程序设计语言的具体实现。 • 程序可以不满足算法的性质(4)。 • 例如操作系统,是一个在无限循环中执行的程序,因
而不是一个算法。 • 操作系统的各种任务可看成是单独的问题,每一个问
题由操作系统中的一个子程序通过特定的算法来实现。 该子程序得到输出结果后便终止。
Байду номын сангаас第1章 算法概述
学习要点: • 理解算法的概念。 • 理解什么是程序,程序与算法的区别和内在联系。 • 掌握算法的计算复杂性概念。 • 掌握算法渐近复杂性的数学表述。 • 掌握用C++语言描述算法的方法。
算法(Algorithm)
• 算法是指解决问题的一种方法或一个过程。 • 算法是若干指令的有穷序列,满足性质: • (1)输入:有外部提供的量作为算法的输入。 • (2)输出:算法产生至少一个量作为输出。 • (3)确定性:组成算法的每条指令是清晰,无歧义的。 • (4)有限性:算法中每条指令的执行次数是有限的,执

江南大学085404计算机技术(专硕)

江南大学085404计算机技术(专硕)

江南大学085404计算机技术(专硕)计算机专业的研究生比本科生在专业领域、薪资待遇和未来发展前景上都更进一步。

相当一部分同学本科毕业后选择继续读研。

因为互联网行业的飞速发展,计算机领域更多拼的是技术,有技术不一定有机会,提升学历提升进入互联网的门槛就尤为重要,所以计算机考研是近几年的考研大热,考研复试线相对较高。

江南大学人工智能与计算机学院成立于2020年3月。

“彰显轻工特色,服务国计民生;创新培养模式,造就行业中坚”,开设了较为全面的研究方向,提供了完备的科研设施与平台,因为地处长三角地区,所以就业形式相当可观。

085404计算机技术(专业学位)有下面4个研究方向:01人工智能与模式识别02大数据与云计算03物联网与信息安全04计算机应用考试科目:①101思想政治理论②204英语(二)③302数学(二)④851算法与程序设计满分分别为100分、100分、150分、150分,初试总分为500分。

复试科目:计算机学科专业基础综合同等学力成人教育应届本科毕业生及复试时尚未取得本科毕业证书的自考和网络教育考生加试笔试:1.离散数学2.数据库原理与应用2022年考研复试分数线:337分。

招生主要事项:1.本专业招生计划70人(含推免生)2.学制3年,除专项计划外,不招收定向就业考生。

3.招收同等学力考生、成人教育应届本科毕业生及复试时尚未取得本科毕业证书的自考和网络教育考生。

4.全日制专业型硕士学费10000元/学年,同时设立奖助学金用于支持学生完成学业;5.住宿费预计1200元/学年,按实际住宿情况收取。

851·江南大学硕士研究生入学考试业务课考试大纲科目代码:851科目名称:算法与程序设计一、主要考核内容考试内容主要包括以下三个部分:1.数据结构2. 计算机算法设计3. 程序设计基础(C 或C++)考试主要知识点(一)数据结构部分:1.线性表2.栈、队列、数组3.查找和内部排序4.树和图(二)计算机算法设计部分:1. 递归与分治策略、回溯法2. 贪心算法、分支限界法、动态规划3. 算法设计中的数据结构运用(三)程序设计基础(C 或C++)部分:1.基本数据类型、各种运算符和表达式、基本控制结构。

《算法分析与设计》说课


8
8
8
10
S4
贪心算法
6
6
S5
回溯法
6
8
S6
分支限界
6
8
S7
随机化算法 总学时数
4 40
6 48
说课程教学大纲
5、课外学习内容 分支 限界 算法 设计 分治 分治 最强大脑—数独 阶乘 递归 兔子问题 会场安排问题 国王分财产
银行最优服务次序
回溯 法 贪心 贪心 算法 算法
矩阵连乘 租用游艇 排序问题
•难点模块
分治策略
动态规划 贪心算法
•难点内容
分治策略的应用
分解最优解结构 构造递归关系
回溯法
分支限界法
判断是否满足贪心性质
回溯法--剪枝函数 解空间树
说课导航
说课程教学大纲
说教学资源 说教学方法与手段 说学情与学法指导 说教学过程设计
说考核评价
说教学资源
1、教材选用原则
国家级规划教材 原则
具有先进性、适用性、时效性
汽车加油行驶 网球循环赛比赛日程
动态 规划
充分体现案例驱动、实践导向的设计思想
说课程教学大纲
6、课程重点
•重点模块
递归与分治策略
动态规划算法 贪心算法
•重点内容
二分搜索与排序
矩阵连乘 最长公共子序列
回溯法
分支限界法
最大字段和
0-
说课程教学大纲
7、课程难点
经典教材
说教学资源
王晓东教授编著的 《计算机算法设计与分析》 (C++描述)
说教学资源
2、网络资源
课外学习网站:
/JudgeOnline/problemtypelist.php

《计算机算法设计与分析》课程设计

用分治法解决快速排序问题及用回溯法解决0-1背包问题一、课程设计目的:《计算机算法设计与分析》这门课程是一门实践性非常强的课程,要求我们能够将所学的算法应用到实际中,灵活解决实际问题。

通过这次课程设计,能够培养我们独立思考、综合分析与动手的能力,并能加深对课堂所学理论和概念的理解,可以训练我们算法设计的思维和培养算法的分析能力。

二、课程设计内容:1、分治法:(2)快速排序;2、回溯法:(2)图的着色。

三、概要设计:●分治法—快速排序:分治法的基本思想是将一个规模为n的问题分解为k个规模较小的子问题,这些子问题互相独立且与原问题相同。

递归地解这些子问题,然后将各个子问题的解合并得到原问题的解。

分治法的条件:(1) 该问题的规模缩小到一定的程度就可以容易地解决;(2) 该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质;(3) 利用该问题分解出的子问题的解可以合并为该问题的解;(4) 该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子子问题。

抽象的讲,分治法有两个重要步骤:(1)将问题拆开;(2)将答案合并;●回溯法—0-1背包问题回溯法的基本思想是确定了解空间的组织结构后,回溯法就是从开始节点(根结点)出发,以深度优先的方式搜索整个解空间。

这个开始节点就成为一个活结点,同时也成为当前的扩展结点。

在当前的扩展结点处,搜索向纵深方向移至一个新结点。

这个新结点就成为一个新的或节点,并成为当前扩展结点。

如果在当前的扩展结点处不能再向纵深方向移动,则当前的扩展结点就成为死结点。

换句话说,这个节点,这个结点不再是一个活结点。

此时,应往回(回溯)移动至最近一个活结点处,并使这个活结点成为当前的扩展结点。

回溯法即以这种工作方式递归的在解空间中搜索,直到找到所要求的解或解空间中以无活结点为止。

四、详细设计与实现:分治法—快速排序快速排序是基于分治策略的另一个排序算法。

其基本思想是,对于输入的子数组[]r p a :,按以下三个步骤进行排序:(1)、分解(divide) 以元素[]p a 为基准元素将[]r p a :划分为三段[]1:-q p a ,[]q a 和,[]r q a :1+使得[]1:-q p a 中任何一个元素都小于[]q a ,而[]r q a :1+中任何一个元素大于等于[]q a ,下标q 在划分过程中确定。

计算机算法设计与分析(王晓东) 第5章 回溯法


n=3时的0-1背包问题用完全二叉树表示的解空间
5
生成问题状态的基本方法


扩展结点:一个正在产生儿子的结点称为扩展结点 活结点:一个自身已生成但其儿子还没有全部生成的节点称 做活结点 死结点:一个所有儿子已经产生的结点称做死结点 深度优先的问题状态生成法:如果对一个扩展结点R,一旦 产生了它的一个儿子C,就把C当做新的扩展结点。在完成 对子树C(以C为根的子树)的穷尽搜索之后,将R重新变 成扩展结点,继续生成R的下一个儿子(如果存在) 宽度优先的问题状态生成法:在一个扩展结点变成死结点 之前,它一直是扩展结点 回溯法:为了避免生成那些不可能产生最佳解的问题状态, 要不断地利用限界函数(bounding function)来处死那些实际 上不可能产生所需解的活结点,以减少问题的计算量。具 有限界函数的深度优先生成法称为回溯法
}
18
n后问题
在n×n格的棋盘上放置彼此不受攻击的n个皇后。按照国际象 棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线 上的棋子。n后问题等价于在n×n格的棋盘上放置n个皇后,任 何2个皇后不放在同一行或同一列或同一斜线上。
1 2 3 4 5 6 7 8 Q Q Q Q Q Q Q
void backtrack (int i) {// 搜索第i层结点 if (i > n) // 到达叶结点 更新最优解bestx,bestw; return; r -= w[i]; if (cw + w[i] <= c) {// 搜索左子树 x[i] = 1; cw += w[i]; backtrack(i + 1); cw -= w[i]; } if (cw + r > bestw) { x[i] = 0; // 搜索右子树 backtrack(i + 1); } r += w[i];

计算机算法设计与分析(第4版) 王晓东习题解答

第一章作业1.证明下列Ο、Ω和Θ的性质1)f=Ο(g)当且仅当g=Ω(f)证明:充分性。

若f=Ο(g),则必然存在常数c1>0和n0,使得∀n≥n0,有f≤c1*g(n)。

由于c1≠0,故g(n) ≥ 1/ c1 *f(n),故g=Ω(f)。

必要性。

同理,若g=Ω(f),则必然存在c2>0和n0,使得∀n≥n0,有g(n) ≥ c2 *f(n).由于c2≠0,故f(n) ≤ 1/ c2*f(n),故f=Ο(g)。

2)若f=Θ(g)则g=Θ(f)证明:若f=Θ(g),则必然存在常数c1>0,c2>0和n0,使得∀n≥n0,有c1*g(n) ≤f(n) ≤ c2*g(n)。

由于c1≠0,c2≠0,f(n) ≥c1*g(n)可得g(n) ≤ 1/c1*f(n),同时,f(n) ≤c2*g(n),有g(n) ≥ 1/c2*f(n),即1/c2*f(n) ≤g(n) ≤ 1/c1*f(n),故g=Θ(f)。

3)Ο(f+g)= Ο(max(f,g)),对于Ω和Θ同样成立。

证明:设F(n)= Ο(f+g),则存在c1>0,和n1,使得∀n≥n1,有F(n) ≤ c1 (f(n)+g(n))= c1 f(n) + c1g(n)≤ c1*max{f,g}+ c1*max{f,g}=2 c1*max{f,g}所以,F(n)=Ο(max(f,g)),即Ο(f+g)= Ο(max(f,g))对于Ω和Θ同理证明可以成立。

4)log(n!)= Θ(nlogn)证明:∙由于log(n!)=∑=n i i 1log ≤∑=ni n 1log =nlogn ,所以可得log(n!)= Ο(nlogn)。

∙由于对所有的偶数n 有,log(n!)= ∑=n i i 1log ≥∑=n n i i 2/log ≥∑=nn i n 2/2/log ≥(n/2)log(n/2)=(nlogn)/2-n/2。

当n ≥4,(nlogn)/2-n/2≥(nlogn)/4,故可得∀n ≥4,log(n!) ≥(nlogn)/4,即log(n!)= Ω(nlogn)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 定理1: (g(n)) = O (g(n)) (g(n))
渐近分析记号在等式和不等式中的意义
• f(n)= (g(n))的确切意义是:f(n) (g(n))。 • 一般情况下,等式和不等式中的渐近记号(g(n))表示
(g(n))中的某个函数。 • 例如:2n2 + 3n + 1 = 2n2 + (n) 表示 • 2n2 +3n +1=2n2 + f(n),其中f(n) 是(n)中某个函数。
• f(n)= (g(n)), g(n)= (h(n)) f(n)= (h(n));
• (2)反身性: • f(n)= (f(n)); • f(n)= O(f(n)); • f(n)= (f(n)). • (3)对称性: • f(n)= (g(n)) g(n)= (f(n)) . • (4)互对称性: • f(n)= O(g(n)) g(n)= (f(n)) ;
>0使得对所有n n0有:0 cg(n) < f(n) } • 等价于 f(n) / g(n) ,as n。
• f(n) (g(n)) g(n) o (f(n))
• (5)紧渐近界记号 • (g(n)) = { f(n) | 存在正常数c1,c2和n0使得对所有n n0
有:c1g(n) f(n) c2g(n) }
• 等式和不等式中渐近记号O,o, 和的意义是类似的。
渐近分析中函数比较
• f(n)= O(g(n)) a b; • f(n)= (g(n)) a b; • f(n)= (g(n)) a = b; • f(n)= o(g(n)) a < b;
• f(n)= (g(n)) a > b.
项留下的主项。它比T(n) 简单。
渐近分析的记号
• 在下面的讨论中,对所有n,f(n) 0,g(n) 0。 • (1)渐近上界记号O • O(g(n)) = { f(n) | 存在正常数c和n0使得对所有n n0有:
0 f(n) cg(n) } • (2)渐近下界记号 • (g(n)) = { f(n) | 存在正常数c和n0使得对所有n n0有:
• 规则O(f(n))+O(g(n)) = O(max{f(n),g(n)}) 的证明:
• 对于任意f1(n) O(f(n)) ,存在正常数c1和自然数n1,使得对所有 n n1,有f1(n) c1f(n) 。
行每条指令的时间也是有限的。
程序(Program)
• 程序是算法用某种程序设计语言的具体实现。 • 程序可以不满足算法的性质(4)。 • 例如操作系统,是一个在无限循环中执行的程序,因
而不是一个算法。 • 操作系统的各种任务可看成是单独的问题,每一个问
题由操作系统中的一个子程序通过特定的算法来实现。 该子程序得到输出结果后便终止。
• 其中I是问题的规模为n的实例,p(I)是实 例I出现的概率。
算法渐近复杂性
• T(n) , as n ; • (T(n) - t(n) )/ T(n) 0 ,as n; • t(n)是T(n)的渐近性态,为算法的渐近复杂性。 • 在数学上, t(n)是T(n)的渐近表达式,是T(n)略去低阶
渐近分析记号的若干性质
• (1)传递性: • f(n)= (g(n)), g(n)= (h(n)) f(n)= (h(n)); • f(n)= O(g(n)), g(n)= O (h(n)) f(n)= O (h(n)); • f(n)= (g(n)), g(n)= (h(n)) f(n)= (h(n)); • f(n)= o(g(n)), g(n)= o(h(n)) f(n)= o(h(n));
• f(n)= o(g(n)) g(n)= (f(n)) ;
• (5)算术运算: • O(f(n))+O(g(n)) = O(max{f(n),g(n)}) ; • O(f(n))+O(g(n)) = O(f(n)+g(n)) ; • O(f(n))*O(g(n)) = O(f(n)*g(n)) ; • O(cf(n)) = O(f(n)) ; • g(n)= O(f(n)) O(f(n))+O(g(n)) = O(f(n)) 。
• (1)最坏情况下的时间复杂性 • Tmax(n) = max{ T(I) | size(I)=n } • (2)最好情况下的时间复杂性 • Tmin(n) = min{ T(I) | size(I)=n } • (3)平均情况下的时间复杂性
• Tavg(n) = p(I )T (I ) size(I )n
0 cg(n) f(n) }
• (3)非紧上界记号o
• o(g(n)) = { f(n) | 对于任何正常数c>0,存在正数和n0
>0使得对所有n n0有:0 f(n)<cg(n) } • 等价于 f(n) / g(n) 0 ,as n。
• (4)非紧下界记号 • (g(n)) = { f(n) | 对于任何正常数c>0,存在正数和n0
计算机算法设计与分析(第4版)
王晓东 编著 电子工业出版社
第1章 算法概述
学习要点: • 理解算法的概念。 • 理解什么是程序,程序与算法的区别和内在联系。 • 掌握算法的计算复杂性概念。 • 掌握算法渐近复杂性的数学表述。 • 掌握用C++语言描述算法的方法。
算法(Algorithm)
• 算法是指解决问题的一种方法或一个过程。 • 算法是若干指令的有穷序列,满足性质: • (1)输入:有外部提供的量作为算法的输入。 • (2)输出:算法产生至少一个量作为输出。 • (3)确定性:组成算法的每条指令是清晰,无歧义的。 • (4)有限性:算法中每条指令的执行次数是有限的,执
问题求解(Problem Solving)
理解问题 精确解或近似解
选择数据结算法 设计程序
算法复杂性分析
• 算法复杂性 = 算法所需要的计算机资源 • 算法的时间复杂性T(n); • 算法的空间复杂性S(n)。 • 其中n是问题的规模(输入大小)。
算法的时间复杂性
相关文档
最新文档