初中数学人教版八年级上册13.2画轴对称图形教案
人教版八年级数学上册13.2.1《画轴对称图形》教案

人教版八年级数学上册13.2.1《画轴对称图形》教案一. 教材分析人教版八年级数学上册13.2.1《画轴对称图形》是学生在掌握了轴对称的概念和性质的基础上,进一步学习如何通过作图的方法来画出各种轴对称图形。
本节内容通过具体的实例,使学生进一步理解轴对称图形的特征,提高他们的观察能力和动手能力,培养他们的空间想象能力。
二. 学情分析学生在学习本节内容前,已经掌握了轴对称的基本概念和性质,能够识别和判断一个图形是否是轴对称图形。
但是,对于如何通过作图的方法来画出轴对称图形,部分学生可能还存在困难。
因此,在教学过程中,需要教师通过详细的讲解和示范,引导学生掌握作图的方法。
三. 教学目标1.知识与技能:使学生能够理解和掌握轴对称图形的特征,能够通过作图的方法来画出各种轴对称图形。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象能力和动手能力。
3.情感态度价值观:培养学生对数学的兴趣,提高他们解决问题的能力,培养他们的合作意识。
四. 教学重难点1.重点:使学生能够理解和掌握轴对称图形的特征,能够通过作图的方法来画出各种轴对称图形。
2.难点:如何引导学生通过作图的方法来画出轴对称图形。
五. 教学方法采用问题驱动法、案例教学法、合作学习法等,通过引导学生观察、操作、思考、交流等活动,提高他们的空间想象能力和动手能力。
六. 教学准备教师准备PPT、作图工具(直尺、圆规等)、练习题等。
七. 教学过程1.导入(5分钟)通过一个简单的实例,引导学生回顾轴对称的概念和性质,激发他们的学习兴趣。
2.呈现(10分钟)教师通过PPT展示各种轴对称图形,引导学生观察和思考,使他们能够发现轴对称图形的特征。
3.操练(10分钟)教师引导学生通过作图的方法来画出各种轴对称图形,边讲解边示范,使他们能够理解和掌握作图的方法。
4.巩固(10分钟)教师给出一些练习题,让学生独立完成,检测他们对于轴对称图形的理解和掌握。
2024年人教版八年级数学上册教案及教学反思全册第13章 轴对称 画轴对称图形(第1课时)教案

第十三章轴对称13.2 画轴对称图形第1课时一、教学目标【知识与技能】能画出简单平面图形作轴对称之后的图形,了解画一般轴对称图形的方法.【过程与方法】让每个学生在生动具体的问题情境中参与数学活动,通过积极主动的探索,加深自己的理解和认识.【情感、态度与价值观】让学生体验到成功的喜悦,树立自信心,体验合作交流的重要性,感受数学美,明白数学来源于生活又服务于生活的道理.二、课型新授课三、课时第1课时,共1课时。
四、教学重难点【教学重点】1.轴对称变换的定义.2.能够按要求作出简单平面图形经过轴对称后的图形.【教学难点】利用轴对称进行一些图案设计.五、课前准备教师:课件、三角尺、直尺、圆规等。
学生:三角尺、直尺、圆规。
六、教学过程(一)导入新课我们前面学习了轴对称图形以及轴对称图形的一些相关的性质.如果有一个图形和一条直线,如何画出这个图形关于这条直线对称的图形呢?这节课我们一起来学习作轴对称图形的方法.(出示课件3)(二)探索新知1.创设情境,探究轴对称图形的画法教师问1:(出示课件2)观察思考,欣赏美丽图案,思考这些图案是怎样形成的?你想学会制作这种图案的方法吗?学生回答:这些图案都是轴对称图形,希望学习这些图案制作方法.教师问2:在一张半透明纸的左边部分,画一只左脚印,把这张纸对折后描图,打开对折的纸,就能得到相应的右脚印,这时,右脚印和左脚印成轴对称,折痕所在直线就是它们的对称轴,并且连接任意一对对应点得到的线段被对称轴垂直平分.类似地,请你再画一个图形做一做,看看能否得到同样的结论呢?(出示课件5)学生问:这个如何做呢?出示下边的图案教师问3:认真观察,左脚印和右脚印有什么关系?(出示课件6)学生回答:成轴对称教师问4:对称轴是折痕所在的直线,即直线l,它与图中的线段PP ′是什么关系?学生回答:直线l垂直平分线段PP′教师总结点拨:由一个平面图形可以得到与它关于一条直线l对称的图形,这个图形与原图形的形状、大小完全相同;新图形上的每一点都是原图形上的某一点关于直线l的对称点;连接任意一对对应点的线段被对称轴垂直平分.教师讲解:同学们自己能做出一个类似的图形吗?学生回答:可以做到.师生共同解答如下:(1)取一张长方形纸;(2)将纸对折,中间夹上复写纸;(3)在纸上沿折叠线画出半只蝴蝶;(4)把纸展开.得到的图案如下:教师问5:取一张白纸折叠夹上复写纸,任画一个你最喜欢的图形,打开纸看一下,然后改变折痕方向重新叠纸,在原来的图形上描图,再打开,你会发现什么结论?学生动手作图后回答:这两个图形关于某直线成轴对称.教师问6:当对称轴的方向和位置发生变化时,得到图形的方向和位置会变吗?学生画图后回答:当对称轴的方向和位置发生变化时,得到图形的方向和位置不会变化.例1:将一张正方形纸片按如图①,图②所示的方向对折,然后沿图③中的虚线剪裁得到图④,将图④的纸片展开铺平,得到的图案是()(出示课件8)师生共同解答如下:动手剪一剪,亲自操作后得到答案:B.例2:如图,将长方形ABCD 沿DE 折叠,使A 点落在BC 上的F 处,若∠EFB =50°,则∠CFD 的度数为( )(出示课件10)A .20° B.30° C .40° D.50°师生共同解答如下:A. B. C. D. A B D CE F由折叠知道:∠EFD=∠A=90°,∵∠EFB=50°,∴∠CFD=180°-90°-50°==40°.答案:C.总结点拨:折叠是一种轴对称变换,折叠前后的图形形状和大小不变,对应边和对应角相等.2、运用新知,作轴对称图形教师问7:如何画一个点的轴对称图形?学生回答:画出点A关于直线l的对称点A′.教师问8:如何画呢?师生共同解答如下:作法:(1)过点A作l的垂线,垂足为点O.(2)在垂线上截取OA′=OA.点A′就是点A关于直线l的对称点. (出示课件12)教师问8:如何画一条线段的对称图形?学生回答:已知线段AB,画出AB关于直线l的对称线段.师生共同解答如下:(出示课件13)教师问9:如果有一个图形和一条直线,如何画出与这个图形关于这条直线对称的图形呢?师生共同探究后,完成下边的问题例3:如图,已知△ABC 和直线l ,作出与△ABC 关于直线l 对称的图形.师生共同解答如下:(出示课件14)分析:△ABC 可以由三个顶点的位置确定,只要能分别画出这三个顶点关于直线l 的对称点,连接这些对称点,就能得到要画的图形.(出示课件15)作法:(1)过点A 画直线l 的垂线,垂足为点O ,在垂线上截取OA ′=OA ,A ′就是点A 关于直线l 的对称点.(2)同理,分别画出点B ,C 关于直线l 的对称点B ′,C ′ .(3)连接A ′B ′,B ′C ′,C ′A ′,得到△ A ′B ′C ′即为所求. l AB C总结点拨:(出示课件16)作轴对称图形的方法:几何图形都可以看作由点组成.对于某些图形,只要作出图形中一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到与原图形成轴对称的图形.例4:在3×3的正方形格点图中,有格点△ABC和△DEF,且△ABC和△DEF关于某直线成轴对称,请在下面给出的图中画出4个这样的△DEF.(出示课件17)师生共同解答如下:总结点拨:作一个图形关于一条已知直线的对称图形,关键是作出图形上一些点关于这条直线的对称点,然后再根据已知图形将这些点连接起来.(出示课件18)(三)课堂练习(出示课件21-25)1.作已知点关于某直线的对称点的第一步是()A.过已知点作一条直线与已知直线相交B.过已知点作一条直线与已知直线垂直C.过已知点作一条直线与已知直线平行D.不确定2.如图,把一张长方形的纸按图那样折叠后,B,D两点落在B′,D′点处,若得∠AOB′=70°,则∠B′OG的度数为________.3.如图,把下列图形补成关于直线l的对称图形.4.如图给出了一个图案的一半,虚线l 是这个图案的对称轴.整个图案是个什么形状?请准确地画出它的另一半.5.如图,画△ABC关于直线m的对称图形.参考答案:1.B2.55°3.解答如下图:4.解答如下图:5.解答如下图:(四)课堂小结今天我们学了哪些内容:1.轴对称图形的基本特征。
人教版八年级上册13.2画轴对称图形13.2:画轴对称图形教学设计

人教版八年级上册13.2画轴对称图形13.2:画轴对称图形教
学设计
一、教学目标
1.学生能够理解对称轴的概念;
2.学生能够通过练习认识象限对称、中心对称和轴对称;
3.学生能够通过实际操作画出轴对称图形。
二、教学重点和难点
教学重点:
1.对称轴和对称中心的概念;
2.轴对称图形的画法和特点。
教学难点:
1.象限对称、中心对称和轴对称的辨认;
2.对称轴和对称中心的区别。
三、教学内容和步骤
1.了解对称轴和对称中心的概念
教师通过教室里的对称物件,如窗户、书柜、桌子等,让学生了解对称物的特点,引入对称轴和对称中心的概念,追问对称物的对称轴和对称中心在哪里。
2.认识象限对称、中心对称和轴对称
教师通过示范,让学生学会认识象限对称、中心对称和轴对称的特点。
并鼓励学生在讲解中,运用自己的思维,掌握不同对称方式的辨认。
3.练习画出轴对称图形
1。
人教版数学八年级上册13.2画轴对称图形(第2课时)教学设计

希望同学们认真完成作业,通过实践和练习,不断提高自己的几何图形认识和运用能力。
(四)课堂练习,500字
1.教师布置课堂练习题,要求学生在规定时间内完成。
“下面,请同学们完成这几道练习题,巩固所学知识。遇到问题可以互相讨论,也可以请教老师。”
2.学生独立完成练习题,教师巡回辅导,解答学生疑问。
3.教师选取部分学生的练习题进行讲解,分析解题思路和方法。
“这道题目考查了我们对轴对称图形的性质的理解。我们可以通过找到对称轴,然后利用对称性质解决问题。”
“现在,请同学们分成小组,讨论一下轴对称图形的性质以及它们在实际生活中的应用。每个小组派一名代表分享讨论成果。”
2.学生在小组内展开讨论,教师巡回指导,解答学生疑问。
“同学们,你们发现轴对称图形有哪些性质?它们在生活中有哪些应用?”
3.各小组代表分享讨论成果,教师点评并总结。
“很好,各小组都取得了不错的成果。轴对称图形的性质包括:对称轴两侧的图形完全一致,对称轴上的点称为对称点等。它们在生活中的应用非常广泛,如剪纸、建筑、标志等。”
3.教师布置课后作业,提醒学生加强练习。
“课后,请同学们完成这几道练习题,巩固所学知识。下节课我们将进一步探讨轴对称图形的其他性质和应用。”
五、作业布置
为了巩固本节课所学的轴对称图形知识,培养学生的动手操作能力和应用能力,特布置以下作业:
1.完成课本第13.2节课后练习题,包括填空题、选择题和解答题,要求学生在规定时间内独立完成,注意解题过程的规范性和逻辑性。
人教版数学八年级上册13.2画轴对称图形(第2课时)教学设计
一、教学目标
(一)知识与技能
人教版八年级上册数学 13.2 第1课时 画轴对称图形教案1

13.2画轴对称图形第1课时画轴对称图形1.理解图形轴对称变换的性质.(难点)2.能按要求画出一个图形关于某直线对称的另一个图形.(重点)一、情境导入观察下面的图形:(1)这些图案有什么共同特点?(2)能否根据其中一部分画出整个图案?二、合作探究探究点一:轴对称变换【类型一】剪纸问题将一张正方形纸片按如图①,图②所示的方向对折,然后沿图③中的虚线剪裁得到图④,将图④的纸片展开铺平,再得到的图案是( )解析:严格按照图中的顺序先向右上翻折,再向左上翻折,剪去左上角,展开得到图形B.故选B.方法总结:此类题目主要考查学生的动手能力及空间想象能力,对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.【类型二】折叠问题如图,将矩形ABCD沿DE折叠,使A点落在BC上的F处,若∠EFB=60°,则∠CFD=( )A.20° B.30° C.40° D.50°解析:根据图形翻折变换后全等可得△ADE≌△FDE,∴∠EAD=∠EFD=90°.∵∠EFB =60°,∴∠CFD=30°,故选B.方法总结:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,对应边和对应角相等.探究点二:作轴对称图形【类型一】画一个图形关于已知直线对称的另一个图形画出△ABC关于直线l的对称图形.解析:分别作出点A 、B 、C 关于直线l 的对称点,然后连接各点即可.解:如图所示:方法总结:我们在画一个图形关于某条直线对称的图形时,先确定一些特殊的点,然后作这些特殊点的对称点,顺次连接即可得到.【类型二】在方格中设计轴对称图形在3×3的正方形格点图中,有格点△ABC 和△DEF ,且△ABC 和△DEF 关于某直线成轴对称,请在下面给出的图中画出4个这样的△DEF .解析:对称轴可以随意确定,根据你确定的对称轴去画另一半对称图形即可.解:如图所示:方法总结:作一个图形关于一条已知直线的对称图形,关键是作出图形上一些点关于这条直线的对称点,然后再根据已知图形将这些点连接起来.【类型三】利用轴对称设计图案某居民小区搞绿化,要在一块矩形空地(如下图)上建花坛,现征集设计方案,要求设计的图案由圆和正方形组成(圆与正方形的个数不限),并且使整个矩形场地成轴对称图形.请在下边矩形中画出你的设计方案.K解析:矩形是轴对称图形,而正方形和圆也是轴对称图形,设计出的图案只要折叠重合即可.解:如图所示:方法总结:利用轴对称可以设计出精美的图案,一个图形经过不同位置的几次变换,若再结合平移、旋转等,便可以得到非常美丽的图案.三、板书设计作轴对称图形1.如何由一个平面图形得到它的轴对称图形.2.利用轴对称设计图案.本节课尽量创设与学生生活环境、知识背景相关的教学情境,以生动活泼的形式呈现有关内容.重视动手操作,实践探究,但如果只有操作,而没有数学体验,数学课很容易上成劳技课,所以,本节课的设计在重视活动的同时,又重视知识的获取,因为动手操作的目的本身就在于更直观地发现新知识.练习的设计具有一定的层次性,使不同的学生在学习数学的过程中得到不同的发展.。
人教版八年级数学上册13.2画轴对称图形教案

§13.2 画轴对称图形一、教学内容分析《画轴对称图形》选自人教版《义务教育教科书•八年级上册》(2013版)第十三章《轴对称》第二单元。
前面一节学生认识了轴对称图形和两个图形关于某条直线对称。
它们都是讲一个图形或两个图形之间的位置关系,是一个静止的状态,作轴对称图形是由一个图形得到与它轴对称的图形的过程,是一个运动的过程。
利用线段的垂直平分线的性质,在已知两个具有轴对称性质的图形的一个的情况下,能画出另一个图形之后,引入平面直角坐标系,利用坐标关于x轴以及关于y轴的特点,直接由已知坐标得出对称之后的坐标,最终连线画出轴对称图形。
二、学生学情分析学生已经认识了轴对称图形和两个图形关于某条直线对称,但在此之前都属于静态的过程,而画轴对称图形属于动态的过程,在上课过程中应让学生自己多动手操作从而认识到这点。
在学生学完本节课内容之后,心里难免会有一种复杂的轴对称图形又是如何得来的状态,教师可在课堂上利用几何画板演示轴对称图形变换,消除学生疑惑,让学生认识到轴对称图形在现实生活中的应用。
三、教学重难点重点:能够按要求作出简单平面图形经过轴对称后的图形,坐标对称规律的探索及其应用。
难点:用坐标表示轴对称图形。
四、教学目标1.知识与技能(1)能够按要求作出简单平面图形经过轴对称后的图形。
(2)掌握点或图形的轴对称变换引起的点的坐标变化规律,能利用这种变化规律在平面直角坐标系中作出一个图形的轴对称图形。
2.过程与方法经历探索点或图形的轴对称变换引起的点的坐标变化的过程,培养学生的观察归纳能力,运用数形结合的方法,把坐标与图形变换联系起来,体味几何图形的趣味性和数学内容的深刻性。
3.情感态度与价值观通过作轴对称图形感受对称美,懂得生活中的美可以用数学去分析解释。
五、教学过程设计1.创设情境,引出课题利用多媒体展示许许多多漂亮的轴对称图形,询问学生知道这些图形是怎么得来的,进而引出已知一个三角形及其对称轴,画出另一个三角形的问题。
人教版八年级数学上册教学设计13.2 画轴对称图形

人教版八年级数学上册教学设计13.2 画轴对称图形一. 教材分析人教版八年级数学上册“画轴对称图形”这一节,主要让学生掌握轴对称图形的概念,学会如何寻找对称轴,并能够运用这个概念解决一些实际问题。
教材通过引入生活中的实例,激发学生的学习兴趣,接着引导学生通过观察、操作、猜想、推理等过程,体会轴对称图形的特征,最后通过一些练习题,巩固学生对知识的理解和运用。
二. 学情分析学生在七年级时已经学习了图形的变换,对图形的平移、旋转等概念有了一定的了解。
但轴对称图形与这些变换有所不同,它需要学生能够从图形中抽象出对称轴,并理解对称轴是将图形分成两个完全相同的部分。
因此,在教学过程中,需要关注学生对抽象概念的理解,以及他们能否将理论知识应用到实际问题中。
三. 教学目标1.了解轴对称图形的概念,理解轴对称图形的特征。
2.学会寻找对称轴,并能运用轴对称图形的知识解决一些实际问题。
3.培养学生的观察能力、操作能力以及抽象思维能力。
四. 教学重难点1.重点:轴对称图形的概念,对称轴的寻找。
2.难点:理解轴对称图形的特征,将理论知识应用到实际问题中。
五. 教学方法采用问题驱动的教学方法,让学生在解决问题的过程中,逐渐理解并掌握轴对称图形的知识。
同时,运用观察、操作、猜想、推理等方法,引导学生主动探索,提高他们的抽象思维能力。
六. 教学准备1.准备一些生活中的轴对称图形实例,如剪纸、图片等。
2.准备一些练习题,包括基础题和拓展题。
3.准备黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)通过展示一些生活中的轴对称图形实例,如剪纸、图片等,让学生观察并说出它们的特点。
引导学生发现这些图形都具有对称性,从而引入本节课的主题——轴对称图形。
2.呈现(10分钟)讲解轴对称图形的概念,让学生理解什么是对称轴,如何判断一个图形是否是轴对称图形。
通过一些具体例子,让学生学会寻找对称轴,并理解对称轴是将图形分成两个完全相同的部分。
人教版数学八年级上册教案《13-2画轴对称图形》(第1课时)

人教版数学八年级上册教案《13-2画轴对称图形》(第1课时)一. 教材分析《13-2画轴对称图形》是人教版数学八年级上册的教学内容,这部分内容是在学生已经掌握了轴对称的概念和性质的基础上进行学习的。
通过这部分的学习,学生能够进一步理解轴对称图形的性质,并能够运用这些性质来解决实际问题。
教材中通过丰富的例题和练习题,帮助学生巩固知识,提高解题能力。
二. 学情分析学生在学习这部分内容时,已经具备了一定的数学基础,对轴对称的概念和性质有一定的了解。
但是,对于如何运用这些性质来解决实际问题,学生可能还比较困惑。
因此,在教学过程中,需要注重引导学生将理论知识与实际问题相结合,提高学生的解决问题的能力。
三. 教学目标1.知识与技能:使学生能够理解和掌握轴对称图形的性质,并能够运用这些性质来解决实际问题。
2.过程与方法:通过观察、操作、猜想、验证等活动,培养学生的空间想象能力和思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的自主学习能力。
四. 教学重难点1.重点:轴对称图形的性质。
2.难点:如何运用轴对称图形的性质来解决实际问题。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过设置问题,引导学生思考和探索,激发学生的学习兴趣。
通过案例分析和实际问题解决,帮助学生理解和掌握知识。
通过小组合作学习,培养学生的团队协作能力和沟通能力。
六. 教学准备1.准备相关的教学材料,如PPT、例题、练习题等。
2.准备一些实际的例子,如剪纸、图片等,用于引导学生观察和操作。
七. 教学过程1.导入(5分钟)通过一个简单的例子,如剪纸,引导学生观察和操作,让学生感受到轴对称图形的魅力。
同时,提出问题,引导学生思考轴对称图形的性质。
2.呈现(10分钟)通过PPT展示轴对称图形的性质,让学生直观地理解轴对称图形的特点。
同时,通过讲解,让学生掌握如何运用轴对称图形的性质来解决实际问题。
3.操练(10分钟)让学生分组进行合作,通过实际操作,验证轴对称图形的性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学人教版八年级上册实用资料
13.2画轴对称图形
第1课时画轴对称图形
教学目标
1.理解图形轴对称变换的性质.
2.能按要求作出一个平面图形关于某直线对称的图形.
教学重点
画轴对称图形.
教学难点
轴对称变换的性质.
教学设计一师一优课一课一名师(设计者:)
教学过程设计
一、创设情景,明确目标
播放多媒体课件,展示生活中与轴对称现象有关的美丽图案.如:剪纸艺术、服饰文化、几何图案、花边艺术等.
欣赏美丽图案,思考这些图案是怎样形成的?图案有什么特点?
二、自主学习,指向目标
1.自学教材第67至68页.
2.请完成“《学生用书》”相应部分.
三、合作探究,达成目标
探究点一轴对称图形的性质
活动一:在一张半透明的纸上画一个图形,将这张纸对折,描图后,再打开这张纸,你能发现什么现象?
展示点评:(1)画出的轴对称图形的形状与大小和原图形有何关系?对称轴在吗?这两个图形全等吗?
(2)画出的轴对称图形的点与原图形上的点有何关系?
小组讨论:对应点的连线与对称轴有何关系?
反思小结:由一个平面图形可以得到与它关于一条直线对称的图形,这个图形的形状、大小与原图形的形状、大小完全相同;新图形上的每一点都是原图形上的某一点关于直线的对称点;连接任意一对对应点的线段被对称轴垂直平分.
跟踪训练:见《学生用书》相应部分
探究点二 画轴对称图形
活动二:如图,已知△ABC 和直线l ,画出△ABC 关于直线l 对称的图形.
展示点评:(1)三角形关于直线l 的对称图形是什么形状? (2)三角形的轴对称图形可以由哪几个点确定? (3)如何作一个已知点的对称点? 小组讨论:作轴对称图形的方法.
反思小结:几何图形都可以看作由点组成,对于某些图形,只要画出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形.
跟踪训练:见《学生用书》相应部分 四、总结梳理,内化目标 1.本节课学习了哪些内容?
2.由一个平面图形得到与它成轴对称的另一个图形,两个图形之间有什么关系? 3.画轴对称图形的一般方法是什么?依据是什么?
实际问题―→轴对称变换的性质――→应用
画轴对称图形
五、达标检测,反思目标
1.将一张矩形的纸对折,然后用笔尖在上面扎出“B ”,再把它铺平,你可见到的是( C ) A. B.
C.
D.
2.把图中实线部分补成以虚线l 为对称轴的轴对称图形,看看会得到什么图案. 解:作图略,是蝴蝶.
3.如图,由三个小正方形组成的图形,请你在图中补画一个小正方形,使补画后的图形为轴对称图形.
,第2题图)
,)第3题图
答:
●布置作业,巩固目标教学难点
1.上交作业教科书习题13.2第1题.
2.课后作业见《学生用书》.
第2课时用坐标表示轴对称
教学目标
1.理解在平面直角坐标系中,已知点关于x轴或y轴对称的点的坐标的变化规律.2.掌握在平面直角坐标系中作出一个图形的轴对称图形的方法.
教学重点
在平面直角坐标系中关于x轴或y轴对称的点的坐标的变化规律和作出与一个图形关于x轴或y轴对称的图形.
教学难点
点的坐标变换规律的灵活运用.
教学设计一师一优课一课一名师(设计者:)
教学过程设计
一、创设情景,明确目标
同学们,你们去过北京吗?你知道老北京城是如何布局的吗?让我们一起看一看老北京城吧!
教师用多媒体出示教科书中图13.2-3的一幅老北京城的示意图,西直门和东直门是关于中轴线对称的.如果以天安门为原点,分别以长安街和中轴线为x轴和y轴建立平面直角坐标系,对应于如图所示的东直门的坐标,你能找到西直门的位置,说出西直门的坐标吗?
对于平面直角坐标系中任意一点,你能找出其关于x轴或y轴对称的点的坐标吗?它们之间有什么规律?
二、自主学习,指向目标
1.自学教材第68至70页.
2.请完成“《学生用书》”相应部分.
三、合作探究,达成目标
探究点一关于x轴,y轴对称的点的坐标的变化规律
活动一:按要求画出教科书中图13.2-4中的点,并填写表格.
展示点评:再找几个点,分别画出它们的对称点,检验你发现的规律?
小组讨论:每对对称点的坐标有什么变化规律?
反思小结:在平面直角体系中,关于x轴对称的点的横坐标不变,纵坐标互为相反数;关于y轴对称的点的横坐标互为相反数,纵坐标不变.点(x,y)关于x轴对称的点的坐标是(x,-y),点(x,y)关于y轴对称的点的坐标是(-x,y).
跟踪训练:见《学生用书》相应部分
探究点二在平面直角坐标系中画出与一个图形关于x轴或y轴对称的图形
活动二:如图,四边形ABCD的四个顶点的坐标分别为A(-5,1),B(-2,1),C(-2,5),D(-5,4),分别画出与四边形ABCD关于x轴和y轴对称的图形.
展示点评:点(x,y)关于y轴对称的点的坐标为(-x,y),因此四边形ABCD的顶点A,B,C,D关于y轴对称的点分别为A′(__5__,__1__),B′(__2__,__1__),C′(__2__,__5__),D′(__5__,__4__),依次连接A′B′,B′C′,C′D′,D′A′,就可得到与四边形ABCD关于x轴对称的四边形A′B′C′D′.
类似地,请你在图上画出与四边形ABCD 关于x 轴对称的图形.
小组讨论:在平面直角坐标系中,画与一个图形关于x 轴或y 轴对称的图形的步骤. 反思小结:先求出已知图形中一些特殊点(多边形的顶点)的对称点的坐标,描出并连接这些点,就可以得到这个图形的轴对称图形,步骤简述为:①求特殊点的坐标;②描点;③连线.
跟踪训练:见《学生用书》相应部分 四、总结梳理,内化目标 1.本节课学习了哪些内容?
2.在平面直角坐标系中已知点关于x 轴或y 轴的对称点的坐标有什么变化规律及如何判断两个点是否关于x 轴或y 轴对称?
3.说一说画一个图形关于x 轴或y 轴对称的图形的方法和步骤.
实际问题―→关于x 轴和y 轴对称点的坐标变化规律――→应用
画关于x 轴和y 轴对称的图形
五、达标检测,反思目标
1.分别写下列各点关于x 轴和y 轴对称的点的坐标:(-2,6),(1,-2),(-1,3),(-4,-2),(1,0).
答:关于x 轴:(-2,-6),(1,2),(-1,-3),(-4,2),(1,0) 关于y 轴:(2,6),(-1,-2),(1,3),(4,-2),(-1,0) 2.平面内点A(-1,2)和点B(1,2)的对称轴是__y 轴__,点A 和点B 之间的距离是__2__;点A(2,-3)向上平移6个单位后的点关于x 轴对称的点的坐标是__(2,-3)__. 3.如图,以长方形ABCD 的中心为原点建立坐标系,点A 的坐标为(3,2),则点B 的坐标是__(3,-2)__,点C 的坐标是__(-3,-2)__,点D 的坐标是__(-3,2)__.
4.如图,在网格中作出△ABC 关于x 轴和y 轴对称的图形.
,第3题图)
,第4题图)
作图略.
●布置作业,巩固目标教学难点
1.上交作业教科书习题13.2第3,4,5题.2.课后作业见《学生用书》.。