高分子材料与加工考题知识点
高分子材料加工原理考试复习重点

名词解释5道 15分判断10道 10分选择10道 20分问答4道 40分论述题1题 15分第一章绪论通用高分子的主要种类和概念纤维:一种细长形状(长径比>10)、截面积较小(<0.05mm2)的物体塑料:以合成(或天然)的高分子化合物为基本成份、在加工中通过塑化流动或原位聚合而成型的柔韧性或刚性固体高分子材料橡胶:以合成(或天然)的高分子化合物为基本成份的高弹性的高分子材料涂料:应用于物体表面并能结成坚韧保护膜的物质的总称胶粘剂:能把各种材料粘合在一起的物质材料是用来制造各种产品的物质,是具有满足指定工作条件下使用要求的形态和物理性状的物质。
第二章聚合物流体的制备聚合物流体的制备包括熔体的制备和溶液的制备第二节中的1,2,3小节·熔体的话是通过加热,不同加热的方法,加热,熔体转移,熔体移轴,剪切,理解热传导,熔融方法上的要求聚合物的熔融:即完成聚合物由固体转变为熔体的过程。
一.熔融的方法(了解蓝色字体的方法和区别)1. 无熔体移走的传导熔融2. 有熔体强制移走的传导熔融: 熔融的一部分热量由接触表面的传导提供,一部分热量通过熔膜中的粘性耗散将机械能转变为热能来提供。
·力学耗散:力学的能量损耗,即机械能转化为热能的现象.在外力作用下,大分子链的各运动单元可能沿力的方向做从优取向的运动,就要克服内部摩擦,所以要消耗能量,这些能量转化为热能.随着螺杆的转动,筒壁上的熔膜被强制刮下来移走,而使熔融层受到剪切作用,使部分机械能转变为热能.哪种热能占主导地位,取决于聚合物本身的物理性质、加工条件和设备的结构参数。
当机筒温度较低、螺杆转数较高时,由剪切产生的剪切热占主要地位。
当螺杆转数较低,机筒温度较高时,机筒的传导热占主要地位。
3.压缩熔融: 熔融热量由将机械能转变为热能来提供。
4.耗散混合熔融: 熔融热量由在整个体积内将机械能转变为热能来提供的。
例:双辊塑炼(开炼)5.利用电、化学或其它能源的耗散熔融方法:熔融的热量通过电、化学或其它能源转变为热能来提供。
高分子加工工程复习题(含部分答案)

《高分子加工工程》主要习题第一章绪论1. 何谓成型加工高分子材料成型加工的基本任务是什么将聚合物(有时加入各种添加剂、助剂或改性材料)转变为制品或实用材料的一种工程技术。
1.研究各种成型加工方法和技术;2.研究产品质量与各种因素之间的关系;3.研究提高产量和降低消耗的途径。
2. 简述聚合物成型加工时的关键步骤。
A.如何使聚合物产生流动与变形方法: a.加热熔体; b.加溶剂溶液; c.加增塑剂或其它悬浮液。
B.如何硬化定型方法:热固性:交联反应固化定型。
热塑性:a.熔体冷却b.溶液加热挥发成溶剂c.悬浮体先加热使颗粒熔合,再冷却硬化定型3. 简述聚合物转变时所发生的主要变化。
a.形状:满足使用要求而进行,通过流动与变形而实现。
b.结构:组成:非纯聚合物组成方式:层压材料,增强材料,复合材料宏观结构:如多孔泡沫,蜂窝状,复合结构微观结构:结晶度,结晶形态,分子取向等c.性质:有意识进行:生橡胶的两辊塑炼降解,硫化反应,热固性树脂的交联固化方法条件不当而进行:温度过高、时间过长而引起的降解4. 聚合物成型加工方法是如何分类的简要分为那几类1.根据形变原理分6类:a.熔体加工:b.类橡胶状聚合物的加工:c.聚合物溶液加工:d.低分子聚合物和预聚体的加工:e. 聚合物悬浮体加工:f.机械加工:2.根据加工过程中有无物理或化学变化分为三类:a.主要发生物理变化:b.主要发生化学变化:c.既有物理变化又有化学变化:5. 简述成型加工的基本工序1.预处理:准备工作:原料筛选,干燥,配制,混合2.成型:赋予聚合物一定型样3.机械加工:车,削,刨,铣等。
4.修饰:美化制品。
5.装配:粘合,焊接,机械连接等。
6. 简述塑料的优缺点。
优点:a.原料价格低廉;b.加工成本低;c.重量轻;d.耐腐蚀;e.造型容易;f.保温性能优良;g.电绝缘性好。
缺点:a.精度差;b.耐热性差;c.易燃烧;d.强度差;e.耐溶剂性差;f.易老化。
高分子材料加工工艺

高分子材料加工技术复习提要一、填空题1.大材料包含(金属)、(非金属)、(高分子)。
2.高分子材料加工前, 原料状态可分为(粉状)、(粒料)、(溶液)、(分散体)。
3.成型加工后进行处理有(调温)、(调湿)、(调温调湿)。
4.塑料可分为(热塑性)塑料、(热固性)塑料两大类。
5.塑料三态: (玻璃态)、(高弹态)、(粘流态)。
6.高分子材料热机械特征与成型加工关系(6个空)。
二、名词解释1.挤出成型: 挤出成型时预处理过物料经料斗加入挤出机中, 在外部加热和内摩擦生热作用下以流动状态经过口模成型方法。
2.注塑成型: 注塑成型是将热塑性塑料先在加热机筒中均匀塑化, 然后由螺杆或柱塞推压到闭合模具型腔中, 经冷却定型后得到所需塑料制品过程。
3.焦烧: 橡胶分子在贮存和生产过程中提前硫化现象.4.喷霜: 橡胶助剂渗出制品表面现象。
5.塑料: 相对分子量在10000以上, 以高分子化合物为基础成份, 添加助剂能够自由成型一类材料总称。
6.橡胶: 橡胶是一个高弹性高分子化合物, 是无定形高聚物。
7.弹性体: 材料在受力发生大变形再撤出外力后快速回复其近似初始形状和尺寸材料。
8.相溶性: 聚合物共混物制品在预期使用期内, 其组分一直不析出或者不分层。
三、 简答题1.简述塑料挤出造粒工艺步骤及影响原因。
原料预处理配料挤出机头成型冷却牵引造粒2.简述塑料挤出成型工艺步骤并叙述影响注塑成型关键原因。
3.简述橡胶配方五大致系。
生胶体系、 硫化促进活化体系、 补强填充体系、 防老体系、 增塑体系 4.简述压缩模塑工艺步骤及其影响原因。
加料闭模排气固化脱模清理模具影响原因: 模压压力、 模压温度、 模压时间。
5.简述压延成型工艺步骤及其影响原因。
6.简述热固性塑料、 热塑性塑料定义和区分, 并举例。
热固性塑料: 成型过程中, 发生化学反应, 生成不溶不熔网状结构一类聚合物。
口模冷却定型原料预处理电、 加热、 内摩擦生热热塑性塑料: 能反复加热软化, 冷却硬化一类高分子材料。
【可编辑全文】《高分子材料加工工艺》复习资料习题答案

高分子材料加工工艺第一章绪论1.材料的四要素是什么?答:材料的四要素是:材料的制备(加工)、材料的结构、材料的性能和材料的使用性能。
2.什么是工程塑料?区分“通用塑料”和“工程塑料”,“热塑性塑料”和“热固性塑料”。
答:按用途和性能分,又可将塑料分为通用塑料和工程塑料。
工程塑料是指拉伸强度大于50MPa,冲击强度大于6kJ/m2,长期耐热温度超过100℃的、刚性好、蠕变小、自润滑、电绝缘、耐腐蚀性优良等的、可替代金属用作结构件的塑料。
但这种分类并不十分严格,随着通用塑料工程化(亦称优质化)技术的进展,通过改性或合金化的通用塑料,已可在某些应用领域替代工程塑料。
热塑性塑料一般是线型高分子,在溶剂可溶,受热软化、熔融、可塑制成一定形状,冷却后固化定型;当再次受热,仍可软化、熔融,反复多次加工。
热固性塑料一般由线型分子变为体型分子,在溶剂中不能溶解,未成型前受热软化、熔融,可塑制成一定形状,在热或固化剂作用下,一次硬化成型;一当成型后,再次受热不熔融,达到一定温度分解破坏,不能反复加工。
3.与其它材料相比,高分子材料具有那些特征(以塑料为例)?答:与其他材料相比,高分子材料有以下特性(以塑料为例)。
(1)质轻。
(2)拉伸强度和拉伸模量较低,韧性较优良。
(3)传热系数小,可用作优良的绝热材料。
(4)电气绝缘性优良。
(5)成型加工性优良。
(6)减震、消音性能良好。
(7)某些塑料具有优良的减磨、耐磨和自润滑性能。
(8)耐腐蚀性能优良。
(9)透光性良好可作透明或半透明材料。
(10)着色性良好。
(11)可赋予各种特殊的功能如透气性、难燃性、粘结性、离子交换性、生物降解性以及光、热、电、磁等各种特殊性能。
(12)使用过程中易产生蠕变、疲劳、冷流、结晶等现象,长期使用性能较差。
(13)热膨胀系数大。
(14)耐热性(熔点、玻璃化转变温度)较低,使用温度不高。
(15)易燃烧。
4.获取高分子的手段有那些?答:高分子化合物的制造:获取高分子化合物的方法大致可分为三种;聚合反应、利用高分子反向和复合化。
高分子材料成型加工(考试重点及部分习题答案)

高分子材料成型加工考试重点内容及部分习题答案第二章高分子材料学1、热固性塑料:未成型前受热软化,熔融可塑制成一定形状,在热或固化剂作用下,一次硬化成型。
受热不熔融,达到一定温度分解破坏,不能反复加工。
在溶剂中不溶。
化学结构是由线型分子变为体型结构。
举例:PF、UF、MF2、热塑性塑料:受热软化、熔融、塑制成一定形状,冷却后固化成型。
再次受热,仍可软化、熔融,反复多次加工。
在溶剂中可溶。
化学结构是线型高分子。
举例:PE聚乙烯,PP聚丙烯,PVC聚氯乙烯。
3、通用塑料:是指产量大、用途广、成型性好、价格便宜的塑料。
4、工程塑料:具有较好的力学性能,拉伸强度大于50MPa,冲击强度大于6kJ/m2,长期耐热温度超过100度的、刚性好、蠕变小、自润滑、电绝缘、耐腐蚀可作为结构材料。
举例:PA聚酰胺类、ABS、PET、PC5、缓冷:Tc=Tmax,结晶度提高,球晶大。
透明度不好,强度较大。
6、骤冷(淬火):Tc<Tg,大分子来不及重排,结晶少,易产生应力。
结晶度小,透明度好,韧性好。
定义:是指熔融状态或半熔融状态的结晶性聚合物,在该温度下保持一段时间后,快速冷却使其来不及结晶,以改善制品的冲击性能。
7、中速冷:Tc>=Tg,有利晶核生成和晶体长大,性能好。
透明度一般,结晶度一般,强度一般。
8、二次结晶:是指一次结晶后,在一些残留的非晶区和结晶不完整的部分区域内,继续结晶并逐步完善的过程。
9、后结晶:是指聚合物加工过程中一部分来不及结晶的区域,在成型后继续结晶的过程。
第三章添加剂1、添加剂的分类包括工艺性添加剂(如润滑剂)和功能性添加剂(除润滑剂之外的都是,如稳定剂、填充剂、增塑剂、交联剂)2、稳定剂:防止或延缓高分子材料的老化,使其保持原有使用性能的添加剂。
针对热、氧、光三个引起高分子材料老化的主要因素,可将稳定剂分为热稳定剂、抗氧剂(防老剂)、光稳定剂。
热稳定剂是一类能防止高分子材料在成型加工或使用过程中因受热而发生降解或交联的添加剂。
高分子材料加工与应用测试 选择题 64题

1. 高分子材料在加工过程中最常用的成型方法是:A. 注塑成型B. 压延成型C. 吹塑成型D. 挤出成型2. 下列哪种高分子材料常用于制造食品包装袋?A. 聚乙烯B. 聚氯乙烯C. 聚丙烯D. 聚苯乙烯3. 高分子材料的熔融指数(MI)是用来衡量其:A. 硬度B. 韧性C. 流动性D. 耐热性4. 在注塑成型中,保压阶段的主要目的是:A. 提高产品的尺寸精度B. 增加产品的密度C. 减少产品的收缩率D. 提高产品的表面光洁度5. 下列哪种添加剂可以提高高分子材料的耐候性?A. 增塑剂B. 稳定剂C. 填充剂D. 润滑剂6. 高分子材料的热变形温度(HDT)是指在一定负荷下,材料开始变形的温度,通常用于评估材料的:A. 耐热性B. 耐寒性C. 耐化学性D. 耐磨性7. 在挤出成型过程中,螺杆的作用是:A. 提供动力B. 混合材料C. 输送材料D. 冷却材料8. 下列哪种高分子材料具有良好的透明性和耐冲击性?A. 聚碳酸酯C. 聚丙烯D. 聚氯乙烯9. 高分子材料的拉伸强度是指材料在拉伸过程中所能承受的最大应力,通常用于评估材料的:A. 韧性B. 硬度C. 强度D. 弹性10. 在吹塑成型中,中空制品的壁厚均匀性主要取决于:A. 模具设计B. 材料选择C. 吹气压力D. 冷却时间11. 下列哪种高分子材料常用于制造汽车保险杠?A. 聚氨酯B. 聚乙烯C. 聚丙烯D. 聚氯乙烯12. 高分子材料的冲击强度是指材料在受到冲击载荷时所能承受的最大能量,通常用于评估材料的:A. 韧性B. 硬度C. 强度D. 弹性13. 在注塑成型中,模具的冷却系统设计主要影响产品的:A. 尺寸精度B. 表面光洁度C. 收缩率D. 生产效率14. 下列哪种添加剂可以提高高分子材料的阻燃性?A. 增塑剂B. 稳定剂C. 阻燃剂D. 润滑剂15. 高分子材料的断裂伸长率是指材料在拉伸断裂前的最大伸长量,通常用于评估材料的:A. 韧性B. 硬度D. 弹性16. 在挤出成型中,口模的设计主要影响产品的:A. 尺寸精度B. 表面光洁度C. 收缩率D. 生产效率17. 下列哪种高分子材料具有良好的耐化学性和耐热性?A. 聚酰胺B. 聚乙烯C. 聚丙烯D. 聚氯乙烯18. 高分子材料的硬度是指材料抵抗外力压入的能力,通常用于评估材料的:A. 韧性B. 硬度C. 强度D. 弹性19. 在注塑成型中,注射速度的控制主要影响产品的:A. 尺寸精度B. 表面光洁度C. 收缩率D. 生产效率20. 下列哪种添加剂可以提高高分子材料的耐磨性?A. 增塑剂B. 稳定剂C. 填充剂D. 润滑剂21. 高分子材料的弹性模量是指材料在弹性变形范围内应力与应变的比值,通常用于评估材料的:A. 韧性B. 硬度C. 强度D. 弹性22. 在挤出成型中,螺杆的转速主要影响产品的:A. 尺寸精度B. 表面光洁度C. 收缩率D. 生产效率23. 下列哪种高分子材料具有良好的电绝缘性?A. 聚乙烯B. 聚氯乙烯C. 聚丙烯D. 聚苯乙烯24. 高分子材料的耐热性是指材料在高温下保持其性能的能力,通常用于评估材料的:A. 耐热性B. 耐寒性C. 耐化学性D. 耐磨性25. 在注塑成型中,模具的浇口设计主要影响产品的:A. 尺寸精度B. 表面光洁度C. 收缩率D. 生产效率26. 下列哪种添加剂可以提高高分子材料的耐候性?A. 增塑剂B. 稳定剂C. 填充剂D. 润滑剂27. 高分子材料的耐化学性是指材料在化学介质中保持其性能的能力,通常用于评估材料的:A. 耐热性B. 耐寒性C. 耐化学性D. 耐磨性28. 在挤出成型中,冷却系统的设计主要影响产品的:A. 尺寸精度B. 表面光洁度C. 收缩率D. 生产效率29. 下列哪种高分子材料具有良好的耐冲击性和耐磨性?A. 聚氨酯B. 聚乙烯C. 聚丙烯D. 聚氯乙烯30. 高分子材料的耐磨性是指材料抵抗磨损的能力,通常用于评估材料的:A. 韧性B. 硬度C. 强度D. 弹性31. 在注塑成型中,模具的排气系统设计主要影响产品的:A. 尺寸精度B. 表面光洁度C. 收缩率D. 生产效率32. 下列哪种添加剂可以提高高分子材料的耐热性?A. 增塑剂B. 稳定剂C. 填充剂D. 润滑剂33. 高分子材料的耐寒性是指材料在低温下保持其性能的能力,通常用于评估材料的:A. 耐热性B. 耐寒性C. 耐化学性D. 耐磨性34. 在挤出成型中,螺杆的压缩比设计主要影响产品的:A. 尺寸精度B. 表面光洁度C. 收缩率D. 生产效率35. 下列哪种高分子材料具有良好的耐候性和耐化学性?A. 聚酰胺B. 聚乙烯C. 聚丙烯D. 聚氯乙烯36. 高分子材料的耐候性是指材料在自然环境中保持其性能的能力,通常用于评估材料的:A. 耐热性B. 耐寒性C. 耐化学性D. 耐磨性37. 在注塑成型中,模具的顶出系统设计主要影响产品的:A. 尺寸精度B. 表面光洁度C. 收缩率D. 生产效率38. 下列哪种添加剂可以提高高分子材料的耐寒性?A. 增塑剂B. 稳定剂C. 填充剂D. 润滑剂39. 高分子材料的耐化学性是指材料在化学介质中保持其性能的能力,通常用于评估材料的:A. 耐热性B. 耐寒性C. 耐化学性D. 耐磨性40. 在挤出成型中,螺杆的长径比设计主要影响产品的:A. 尺寸精度B. 表面光洁度C. 收缩率D. 生产效率41. 下列哪种高分子材料具有良好的耐热性和耐磨性?A. 聚酰胺B. 聚乙烯C. 聚丙烯D. 聚氯乙烯42. 高分子材料的耐磨性是指材料抵抗磨损的能力,通常用于评估材料的:A. 韧性B. 硬度C. 强度D. 弹性43. 在注塑成型中,模具的冷却系统设计主要影响产品的:A. 尺寸精度B. 表面光洁度C. 收缩率D. 生产效率44. 下列哪种添加剂可以提高高分子材料的耐候性?A. 增塑剂B. 稳定剂C. 填充剂D. 润滑剂45. 高分子材料的耐化学性是指材料在化学介质中保持其性能的能力,通常用于评估材料的:A. 耐热性B. 耐寒性C. 耐化学性D. 耐磨性46. 在挤出成型中,螺杆的转速主要影响产品的:A. 尺寸精度B. 表面光洁度C. 收缩率D. 生产效率47. 下列哪种高分子材料具有良好的耐冲击性和耐磨性?A. 聚氨酯B. 聚乙烯C. 聚丙烯D. 聚氯乙烯48. 高分子材料的耐磨性是指材料抵抗磨损的能力,通常用于评估材料的:A. 韧性B. 硬度C. 强度D. 弹性49. 在注塑成型中,模具的排气系统设计主要影响产品的:A. 尺寸精度B. 表面光洁度C. 收缩率D. 生产效率50. 下列哪种添加剂可以提高高分子材料的耐热性?A. 增塑剂B. 稳定剂C. 填充剂D. 润滑剂51. 高分子材料的耐寒性是指材料在低温下保持其性能的能力,通常用于评估材料的:A. 耐热性B. 耐寒性C. 耐化学性D. 耐磨性52. 在挤出成型中,螺杆的压缩比设计主要影响产品的:A. 尺寸精度B. 表面光洁度C. 收缩率D. 生产效率53. 下列哪种高分子材料具有良好的耐候性和耐化学性?A. 聚酰胺B. 聚乙烯C. 聚丙烯D. 聚氯乙烯54. 高分子材料的耐候性是指材料在自然环境中保持其性能的能力,通常用于评估材料的:A. 耐热性B. 耐寒性C. 耐化学性D. 耐磨性55. 在注塑成型中,模具的顶出系统设计主要影响产品的:A. 尺寸精度B. 表面光洁度C. 收缩率D. 生产效率56. 下列哪种添加剂可以提高高分子材料的耐寒性?A. 增塑剂B. 稳定剂C. 填充剂D. 润滑剂57. 高分子材料的耐化学性是指材料在化学介质中保持其性能的能力,通常用于评估材料的:A. 耐热性B. 耐寒性C. 耐化学性D. 耐磨性58. 在挤出成型中,螺杆的长径比设计主要影响产品的:A. 尺寸精度B. 表面光洁度C. 收缩率D. 生产效率59. 下列哪种高分子材料具有良好的耐热性和耐磨性?A. 聚酰胺B. 聚乙烯C. 聚丙烯D. 聚氯乙烯60. 高分子材料的耐磨性是指材料抵抗磨损的能力,通常用于评估材料的:A. 韧性B. 硬度C. 强度D. 弹性61. 在注塑成型中,模具的冷却系统设计主要影响产品的:A. 尺寸精度B. 表面光洁度C. 收缩率D. 生产效率62. 下列哪种添加剂可以提高高分子材料的耐候性?A. 增塑剂B. 稳定剂C. 填充剂D. 润滑剂63. 高分子材料的耐化学性是指材料在化学介质中保持其性能的能力,通常用于评估材料的:A. 耐热性B. 耐寒性C. 耐化学性D. 耐磨性64. 在挤出成型中,螺杆的转速主要影响产品的:A. 尺寸精度B. 表面光洁度C. 收缩率D. 生产效率答案:1. A2. A3. C4. C5. B6. A7. C8. A9. C10. C11. A12. A13. C14. C15. A16. B17. A18. B19. B20. C21. D22. D23. A24. A25. A26. B27. C28. C29. A30. A31. B32. B33. B34. A35. A36. D37. C38. B39. C40. B41. A42. A43. C44. B45. C46. D47. A48. A49. B50. B51. B52. A53. A54. D55. C56. B57. C58. B59. A60. A61. C62. B63. C64. D。
高分子材料加工工艺学复习题及答案

高分子材料加工工艺学复习题1、按纺丝速度的高低,聚酯纺丝技术路线可分成哪四个类型?P251)常规纺丝:纺丝速度1000~1500m/min,其卷绕丝为未拉伸丝,通称UDY(undrawn yarn)。
2)中速纺丝:纺丝速度1500~3000m/min,其卷绕丝具中等取向度,为中取向丝,通称MOY (medium oriented yarn)。
3)高速纺丝:纺丝速度3000~6000 m/min,纺丝速度4000 m/min以下的卷绕丝具有较高的取向度,为预取向丝,通称POY(pre-oriented yarn)。
若在纺丝过程中引入拉伸作用,可获得具有高取向度和中等结晶度的卷绕丝,为全拉伸丝,通称FDY(fully drawn yarn)。
4)超高速纺丝:纺丝速度6000~8000 m/min。
卷绕丝具有高取向度和中等结晶结构,为全取向丝,通称FOY(fully oriented yarn)。
2、合成PET的原料(单体)是什么?写出直接酯化法合成聚对苯二甲酸乙二酯的主要化学反应式。
P11,P13 分子式自写单体:对苯二甲酸双羟乙二酯(BHET)直接酯化法即将对苯二甲酸(TPA)与乙二醇(EG)直接进行酯化反应,一步制得BHET。
BHET 缩聚脱除EG生成PET。
反应式:3、聚酯切片干燥的目的是什么?其干燥机理是什么?P20 P20~21目的1)除去水分。
在纺丝温度下,切片中的水分存在使PET大分子的酯键水解,聚合度下降,纺丝困难、质量降低;少量水分汽化造成纺丝断头。
2)提高切片含水的均匀性,以保证纤维质量均匀。
3)提高结晶度及软化点,防止环结阻料。
机理1)切片中的水分PET大分子缺少亲水性基团,吸湿能力差,通常湿切片含水率<0.5%,其水分分为两部分:一部分是沾附在切片上表面的非结合水,另一部分是与PET大分子上的羰基及极少数的端羟基等以氢键结合的结合水。
2)切片的干燥曲线切片干燥包括两个基本过程:加热介质传热给切片,使水分吸热并从切片表面蒸发,水分从切片内部迁移至切片表面,再进入干燥介质中。
高分子材料成型加工考试重点及部分习题答案

高分子材料成型加工考试重点内容及部分习题答案第二章高分子材料学1、热固性塑料:未成型前受热软化,熔融可塑制成一定形状,在热或固化剂作用下,一次硬化成型;受热不熔融,达到一定温度分解破坏,不能反复加工;在溶剂中不溶;化学结构是由线型分子变为体型结构;举例:PF、UF、MF2、热塑性塑料:受热软化、熔融、塑制成一定形状,冷却后固化成型;再次受热,仍可软化、熔融,反复多次加工;在溶剂中可溶;化学结构是线型高分子;举例:PE聚乙烯,PP聚丙烯,PVC聚氯乙烯;3、通用塑料:是指产量大、用途广、成型性好、价格便宜的塑料;4、工程塑料:具有较好的力学性能,拉伸强度大于50MPa,冲击强度大于6kJ/m2,长期耐热温度超过100度的、刚性好、蠕变小、自润滑、电绝缘、耐腐蚀可作为结构材料;举例:PA聚酰胺类、ABS、PET、PC5、缓冷:Tc=Tmax,结晶度提高,球晶大;透明度不好,强度较大;6、骤冷淬火:Tc<Tg,大分子来不及重排,结晶少,易产生应力;结晶度小,透明度好,韧性好;定义:是指熔融状态或半熔融状态的结晶性聚合物,在该温度下保持一段时间后,快速冷却使其来不及结晶,以改善制品的冲击性能;7、中速冷:Tc>=Tg,有利晶核生成和晶体长大,性能好;透明度一般,结晶度一般,强度一般;8、二次结晶:是指一次结晶后,在一些残留的非晶区和结晶不完整的部分区域内,继续结晶并逐步完善的过程;9、后结晶:是指聚合物加工过程中一部分来不及结晶的区域,在成型后继续结晶的过程; 第三章添加剂1、添加剂的分类包括工艺性添加剂如润滑剂和功能性添加剂除润滑剂之外的都是,如稳定剂、填充剂、增塑剂、交联剂2、稳定剂:防止或延缓高分子材料的老化,使其保持原有使用性能的添加剂;针对热、氧、光三个引起高分子材料老化的主要因素,可将稳定剂分为热稳定剂、抗氧剂防老剂、光稳定剂;热稳定剂是一类能防止高分子材料在成型加工或使用过程中因受热而发生降解或交联的添加剂;主要用于热敏性聚合物如PVC聚氯乙烯树脂,是生产PVC塑料最重要的添加剂; 抗氧剂是可抑制或延缓高分子材料自动氧化速度,延长其使用寿命的物质;光稳定剂是指可有效抑制光致降解物理和化学过程的一类添加剂;3、热稳定剂分为A、铅盐类稳定剂包括三盐基硫酸铅、二盐基亚磷酸铅、二盐基硬脂酸铅,具有优良的热稳定性、电绝缘性、润滑性,毒性大,透明性差;B、金属皂类稳定剂,包括硬脂酸、油酸等的金属盐;加工性能好,润滑性;C、有机锡类稳定剂,包括硫醇盐类、马来酸盐型;优良的稳定性、透明性;D、有机锑类稳定剂,包括硫醇锑类;E、有机辅助稳定剂,包括环氧化物、亚磷酸酯、多元醇类;F、复合稳定剂,由金属皂类稳定剂与有机辅助稳定剂以及润滑剂复配而成;G、稀土类稳定剂,属于镧系稀土元素的有机复合物;4、增塑剂:是指添加到高分子材料中能使体系的可塑性增加,改进其柔软性、延伸性和加工性的物质;增塑剂按作用方式,有外增塑作用和内增塑作用;起外增塑作用的增塑剂大多是有机低分子化合物或聚合物,通常为高沸点的油类或低熔点的固体,有极性和非极性之分;极性增塑剂的溶解度参数高,主要增塑极性聚合物,非极性增塑剂的溶解度参数低,多数用于非极性聚合物的增塑;非极性增塑剂对非极性聚合物的增塑是溶剂化作用机理,即增塑剂进入聚合物的分子链段之间,加大了大分子之间的距离,降低了聚合物分子间的作用力,其增塑效果与增塑剂的体积成正比,故又称“体积效应”;极性增塑剂对极性聚合物的增塑机理是“屏蔽效应”,即增塑剂分子中的极性基团与聚合物分子的极性基团互相吸引,取代了聚合物分子间的极性基团的相互作用,从而削弱了聚合物分子间的作用力,其增塑效果与增塑剂分子数有关,同时体积效应也起作用;5、常用的增塑剂:塑料增塑剂和橡胶增塑剂;塑料增塑剂,极性,酯类增塑剂常用在PVC中;橡胶增塑剂,非极性,包括:物理增塑剂又称软化剂包括石油系、煤焦油系、松油系、合成酯类、液体聚合类和化学增塑剂又称塑解剂包括含硫化合物、噻唑类和胍类6、增塑和塑炼的区别:增塑是加小分子的增塑剂,使制品的塑性增加,改进其柔软性、延伸性和加工性;塑炼:为了满足各种加工工艺的要求,必须使生胶由强韧的弹性状态变成柔软而具有可塑性的状态,这种使弹性生胶变成可塑状态的工艺过程称作塑炼;区别:增塑是依靠增加小分子增塑剂,塑炼是依靠剪切或塑解剂来降低过高的橡胶分子量,提高橡胶塑性;7、润滑剂:定义是降低熔体与加工机械或成型模具之间以及熔体内部相互之间的摩擦和黏附,改善加工流动性,提高生产能力和制品外观质量的一类添加剂;润滑剂是典型的工艺性添加剂,仅在加工时发挥作用;分为内润滑剂和外润滑剂;内润滑剂是降低物料之间的内摩擦,外润滑剂是降低物料与设备之间的外摩擦;8、交联剂:定义是凡能引起聚合物交联的物质就称为交联剂;橡胶的交联剂习惯上称为硫化剂a硫磺,适用于不饱和橡胶、含少量双键的三元乙丙橡胶和丁基橡胶;b含硫化合物,是分子中含有硫原子,能够在硫化温度下分解出活性硫使得橡胶硫化的物质;常用于电线绝缘层;c有机过氧化物,最常用的是过氧化二异丙苯和过氧化苯甲酰,适用于氟橡胶、硅橡胶、乙丙橡胶等饱和橡胶、部分不饱和橡胶以及聚烯烃的交联,不能用于丁基橡胶和氯磺化聚乙烯橡胶;d金属氧化物,常用的有氧化锌、氧化镁,适用于含极性基团或活泼酸性基团的聚合物,如氯丁橡胶、氯化丁基橡胶的交联;还可作为硫磺硫化体系中的硫化活性剂;e胺类化合物,含有两个或以上的胺基,主要用于酚醛树脂、氨基树脂等热固性塑料以及氟橡胶的交联;f双官能团化合物,可作为不饱和聚酯树脂的交联剂;g合成树脂,主要为酚醛树脂,可作为不饱和丁基橡胶、乙丙橡胶的交联剂;9、不同交联剂与聚合物的一一对应:不饱和橡胶选择硫磺、促进剂、活性剂组成的硫化体系;饱和橡胶选择过氧化物作为硫化剂;有极性基团的橡胶用金属氧化物交联;大多数热固性塑料和丙烯酸酯类橡胶一般用胺类交联剂;10、交联体系:包括交联剂、促进剂、活性剂;促进剂:凡在胶料中能够提高硫化速度、缩短硫化时间、降低硫化温度、减少硫化剂用量,并能提高或改善硫化胶物理机械性能的物质称为硫化促进剂;按与硫化氢反应的性质分为酸性、碱性、中性促进剂;活性剂:凡能够提高胶料中硫化促进剂的活性、减少硫化促进剂的用量、缩短硫化时间的物质称为硫化活性剂,也叫“促进助剂”,一般分无机活性剂和有机活性剂;无机活性剂主要是氧化锌、氧化镁、氧化钙等金属氧化物;氧化锌是最重要的,还可作为含卤橡胶的硫化剂;有机活性剂主要是硬脂酸HSt;11、填充剂也称“填料”:为了改善高分子材料的成型加工性能,赋予或提高制品某些特定的性能,或为了增加物料体积、降低制品成本而加入的一类物质;一般为固体物质,分为增量填充剂和补强填充剂;增量填充剂又叫“增量剂”,用于橡胶时一般没有补强作用,仅为了增加胶料体积和降低制品成本,对材料的使用性能无影响或影响很小,但往往能够改善压出、压延等工艺性能;用于塑料时虽不能提高制品的力学性能,但可改善成型加工性能或赋予制品某些新的性能;补强填充剂又叫“补强剂”主要用于橡胶,不但能改善胶料的工艺性能,提高硫化胶的拉伸强度、定伸强度、弹性、耐磨性等力学性能,而且能增大胶料体积、降低制品成本; 最常用的填充剂是碳酸钙;橡胶最常用的补强剂是炭黑;12、哪一类热塑性聚合物在成型加工中需使用热稳定剂为什么对于加有较多增塑剂和不加增塑剂的两种塑料配方,应如何考虑热稳定剂的加入量为什么答:热敏性聚合物,如聚氯乙烯PVC树脂,由于PVC是一种极性高分子,分子间作用力很强,导致加工温度超过分解温度,只有加入热稳定剂才能实现在高温下的加工成型,制得性能优良的制品;加有较多增塑剂的塑料不加或少加热稳定剂,不加增塑剂的塑料应多加热稳定剂;假如增塑剂的塑料降低了聚合物分子间的作用力,制品的玻璃化温度和软化温度均降低,故可少加热稳定剂;13、什么是增塑剂根据塑化效率可分为哪些类型其各自的特点如何答:增塑剂是指添加到高分子材料中能使体系的可塑性增加,改进其柔软性、延伸性和加工性的物质;根据塑化效率可分为三种类型:a主增塑剂,与聚合物的相容性好,凝胶化能力很强,可大量添加并单独使用;b辅助增塑剂,与聚合的相容性有限,凝胶化能力较低,只能与主增塑剂并用,但往往起到功能性作用;c增量剂,与聚合物的相容性很差,凝胶化能力极差,不可单独使用,只可限量使用,以减少主增塑剂用量;14、橡胶硫化体系主要是由哪些添加剂组成的各自作用是什么答:a硫化促进剂,作用是能提高硫化速度、缩短硫化时间、降低硫化温度、减少硫化剂用量,并能提高、改善硫化胶物理机械性能;b硫化活性剂,作用提高胶料中硫化促进剂的活性、减少硫化促进剂的用量、缩短硫化时间、可使交联键的数量增加、交联键中硫原子数减少、因而硫化胶的热稳定性能得到提高;c防焦剂,作用是可防止或延迟胶料在加工和贮存时产生焦烧、提高胶料的操作安全性和贮存稳定性;第四章制品设计和配方设计分析下列配方,要求:1、指出各组分在配方中的作用;2、判断制品基本性能,并说出相应的理由;配方1:PVC树脂XS-4100,邻苯二甲酸二辛酯10,邻苯二甲酸二丁酯8,环氧脂肪酸辛酯3,液体钡-镉2,硬脂酸钡,硬脂酸镉,硬脂酸,二氧化钛3配方2:PVC树脂XS-5100,三盐基性硫酸铅5,二盐基性亚磷酸铅,亚磷酸三苯酯,硬脂酸铅,硬脂酸正丁酯,石蜡,氧化锑5配方3:PVC树脂XS-3100,DOP 20,DBP20,DOS10,氯化石蜡5,,滑石粉1,氧化钛,二月桂酸二丁基锡3配方4:丁腈橡胶100,硫磺,促进剂M ,促进剂,ZnO 5,硬脂酸1,防老剂4010NA 1,半补强碳黑60,陶土30,沥青5,石蜡答:配方1:增塑剂体系:邻苯二甲酸二辛酯,有良好综合性能,混合性能好、增速效率高、挥发性较低、耐水抽出、电气性能高、耐热及耐气候性良好;苯二甲酸二丁酯,稳定性、耐挠曲性、粘结性和防水性均优于其他增塑剂;环氧脂肪酸辛酯,具有杰出的热稳固性、同时耐寒性、耐候性和光稳固性亦佳;与聚氯乙烯的相容性好,塑化速度快,塑化温度比DOP低,增速效力高,润滑性,可改良共同料的操纵机能;在成品中参加一定比例的成品,在低温中能坚持成品的坚韧柔嫩,增添产物的光泽度,延伸产物的应用寿命;热稳定体系:液体钡-镉,液体稳定剂,分散性好,透明性优良,具有优良的热和光稳定性、润滑性、无析出性,优良的初期着色和色泽保持稳定性;硬脂酸钡,热稳定剂,具有良好的长期耐热性及润滑性,稳定效果比硬脂酸钙大,但不及硬脂酸铅,与镉皂、锌皂或环氧化合物并用有良好的协同效应;硬脂酸镉,热稳定剂和润滑剂,具有优良的透明性、光稳定性、耐水性、电绝缘性,初期着色性极小,热稳定效能高,制品的耐候性好;本品可单独使用,也可与钡皂、有机锡化合物、环氧化合物或亚磷酸酯并用,有显着的协同效应;本品常与钡皂并用,但加工操作性不太好,加工温度低时,塑化不完全,温度过高时易焦化;在硬质制品中与铅类稳定剂配合可改善加工性;硬脂酸,热稳定剂和润滑剂,具有很好的润滑性和较好的光热稳定作用;在塑料PVC中,硬脂酸有助于防止加工过程中的焦化;着色剂:二氧化钛,白色无机颜料,是白色颜料中着色力最强的一种,具有优良的遮盖力和着色牢度,适用于不透明的白色制品;从配方1中可知,由于用的是中等粘度的4型PVC树脂,加有增塑剂体系用量21份,故应属半硬制品,又因加入了二氧化钛作着色剂,所以是一种白色的半硬制品;第六章高分子材料混合与制备1、混合:定义是将两种组分相互分布在各自所占的空间中,即,使两种或多种组分所占空间的最初分布情况发生变化;混合分为非分散混合和分散混合;非分散混合:在混合中仅增加粒子在混合物中空间分布均匀性而不减小粒子初始尺寸的过程称为非分散混合或简单混合;分散混合:是指在混合过程中发生粒子尺寸减小到极限值,同时增加相界面和提高混合物组分均匀性的混合过程;分散混合主要靠剪切应力和拉伸应力作用实现的;混合设备高速混合机:非分散混合;挤出机、开炼机、密炼机:分散混合;2、橡胶的塑炼目的、实质、机理、影响因素:目的:主要是为了降低生胶的弹性、增加可塑性、获得适当的流动性、使橡胶与配合剂在混炼过程中易于混合分散均匀,有利于胶料进行各种成型操作,使生胶分子量分布变窄,胶料质量均匀一致;实质:是橡胶分子链断裂,相对分子质量降低,从而橡胶的弹性下降;机理:塑炼方法分为机械塑炼法和化学塑炼法,机械塑炼法最广泛,机械塑炼分为低温塑炼和高温塑炼,低温塑炼以机械降解作用为主,氧起稳定游离基的作用,高温塑炼以自动氧化降解作用为主,机械作用强化橡胶与氧的接触;机械塑炼机理:是典型的力化学反应过程,在机械塑炼过程中,机械力作用使大分子链断裂,氧对橡胶分子起化学降解作用,这两个作用同时存在;低温机械塑炼机理:机械力作用,对橡胶塑炼的直接结果就是使橡胶分子断裂;造成橡胶分子断裂的主要作用力,就是塑炼中的剪切力;高温塑炼机理:温度提高,橡胶分子和氧均活泼,可直接进行氧化反应,使橡胶分子降解; 影响因素:机械塑炼有开炼机塑炼、密炼机塑炼、螺杆塑炼机塑炼;开炼机塑炼:辊距、辊速比、温度是影响塑炼效果的主要因素;密炼机塑炼:装胶容量和上顶栓压力是影响塑炼效果的主要因素;螺杆塑炼机塑炼:温度是影响因素;3、橡胶的混炼,加料次序:开炼机混炼中最常用的投料顺序是:生胶--固体软化剂--促进剂、促进助剂、防老剂--补强剂、填充剂--液体软化剂--硫磺、超促进剂;密炼机混炼加料顺序:基本同上,但交联剂和促进剂须在密炼后的开炼辅助操作中加入;4、什么是“非分散混合”,什么是“分散混合”,两者各主要通过何种物料运动和混合操作来实现答:非分散混合:在混合中仅增加粒子在混合物中空间分布均匀性而不减小粒子初始尺寸的过程称为非分散混合或简单混合;这种混合的运动基本形式是通过对流来实现的,可以通过包括塞形流动和不需要物料连续变形的简单体积排列和置换来达到;分散混合:是指在混合过程中发生粒子尺寸减小到极限值,同时增加相界面和提高混合物组分均匀性的混合过程;分散混合主要靠剪切应力和拉伸应力作用实现的;5、塑料的塑化与橡胶的塑炼二者的目的和原理有何异同答:塑料的塑化:是使物料在温度和剪切力的作用下熔融,获得剪切混合的作用,驱出其中的水分和挥发物,使各组分的分散更趋均匀,得到具有一定可塑性的均匀物料,是分散混合过程;橡胶的塑炼:强迫生胶反复通过两个转速不同的滚筒之间的间隙,使之在强剪切力作用下长分子链被切断,相对分子量减小,降低生胶的弹性,从而流动性增加即可塑性增加的工艺过程,使橡胶与配合剂在混炼过程中易于混合分散均匀,此外使得制得的胶料质量也均匀一致;第七章压制成型1、压缩率与螺杆压缩比的区别:压缩率的定义是热固性塑料制品的比重与粉状或粒状的热固性模塑料的表观比重之比;即,压塑料在压制前后的体积变化;螺杆的压缩比:螺杆第一螺槽的容积/螺杆最后螺槽的容积;压缩比的获得:等距变深,等深变距,变深变距;压缩比升高,制品致密,排除物料中所含空气的能力大;2、排气的作用、方式:排气的作用:赶走气泡、水分、挥发物,缩短固化周期,避免制品内部出现气泡或分层现象;排气的方式:卸压,松模,时间很短即可零点几秒-几秒,如此连续几次2-5次;排气的次数、间隔时间决定于所模压物料的性质;排气不能过早,也不能过迟;3、保压的作用和方法:排气后以慢速升高压力,在一定的模压压力和温度下保持一段时间,使热固性树脂的缩聚反应推进到所需的程度;保压固化时间取决于塑料的类型、模压温度和压力,时间不能过长也不能过段,一般在模内的保压固化时间为数分钟左右;4、模型硫化:硫化历程分四个阶段:焦烧阶段、预硫阶段、正硫化阶段、过硫阶段;焦烧阶段:又称“硫化诱导期”,是指橡胶在硫化开始前的延迟作用时间,在此阶段胶料尚未开始交联,胶料在模型内具有良好的流动性;预硫阶段:焦烧期以后橡胶开始交联的阶段;随着交联反应的进行,橡胶的交联程度逐渐增加,并形成网状结构,橡胶的物理机械性能逐渐上升,但尚未达到预期的水平,但有些性能却优于正硫化阶段时的胶料;正硫化阶段:橡胶的交联反应达到一定的程度,此时各项物理机械性能均达到或接近最佳值,其综合性能最佳;此时交联键会发生重排、裂解等反应,同时存在的交联裂解反应达到了平衡,因此胶料的物理机械性能在一个阶段基本上保持恒定或变化很少,所以也称为“平坦硫化阶段”;过硫阶段:正硫化以后继续硫化便进入过硫阶段,此阶段往往氧化及热断链反应占主导地位,因此胶料会出现物理机械性能下降的现象;返原性胶料:在过硫阶段中,天然橡胶、丁基橡胶等主链为线型大分子结构,在过硫阶段断链多于交联而出现硫化返原现象的胶料称为返原性胶料;非返原性胶料:大部分合成橡胶,如丁苯、丁腈橡胶等在过硫阶段中易产生氧化支化反应和环化结构,胶料的物理机械性能变化很小,甚至保持恒定,这种胶料称为硫化非返原性胶料;5、硫化仪测得的胶料硫化曲线:硫化仪能连续的测定与加工性能和硫化性能有关的参数,包括初始黏度、最低粘度、焦烧时间、硫化速度、正硫化时间和活化能等;测定的基本原理是根据胶料的剪切模量与交联密度成正比为基础的;硫化仪在硫化过程中对胶料施加一定振幅的剪切变形,通过剪切力的测定,即可反映硫化交联过程的情况;第八章挤出成型1、挤出螺杆分哪三段,各段的作用、结构参数、形式、适应性、温度设置a加料段;作用是对料斗送来的塑料进行加热,同时输送到压缩段;塑料在该段螺槽内始终保持固体状态;加料段对塑料一般没有压缩作用,故螺距和螺槽深度都可以保持不变,而且螺槽深度也较深,因此加料段通常是等深等距的深槽螺纹;b压缩段;又叫相迁移段,作用是对加料段送来的物料起挤压和剪切作用,螺杆与料筒配合使物料接触传热面不断更新,在料筒的外加热和螺杆摩擦作用下,固体物料逐渐软化、熔融为黏流态;同时赶走塑料中的空气及其他挥发成分,增大塑料的密度,塑料通过压缩段后,能够成为完全塑化的黏流状态;压缩段应能对塑料产生较大的压缩作用和剪切作用,该段螺槽容积应逐步减小;从螺杆的结构特征来看,压缩作用可以通过减小螺距及螺槽深度来实现;压缩段的长度与塑料的性质有关;渐变型和突变型螺杆有何区别各适合哪类塑料的挤出为什么答:无定形塑料的压缩段较长,熔融温度范围宽的塑料其压缩段最长,如PVC挤出成型用的螺杆,压缩段为螺杆全长的100%,即全长均起压缩作用,这样的螺杆叫渐变型螺杆;结晶型塑料熔融温度范围较窄,压缩段较短,某些熔化温度范围很窄的结晶型塑料,如PA,其压缩段更短,甚至仅为一个螺距的长度,这样的螺杆叫突变型螺杆;非晶型塑料适合选用渐变形螺杆,结晶型塑料适合选用突变型螺杆;c均化段;又叫计量段,作用是将塑化均匀的物料在均化段螺杆与料筒和机头相配合所产生的强大剪切作用和回压作用下进一步搅拌塑化混合均匀,并定量定压的通过机头口模进行挤出成型;由于从压缩段来的物料已达到所需的压缩比,故均化段一般无压缩作用,螺距和螺槽深度可以不变,这一段常常是等距等深的浅槽螺纹;为了稳定料流,均化段应有足够的长度,通常是螺杆全长的20%-25%;但对于PVC等热敏性塑料,所采用的渐变型螺杆往往无均化段,可避免黏流态物料在均化段停留时间过长而导致分解;2、挤出理论:固体输送理论、熔化理论和熔体输送理论;熔融过程的两种物态:固体物料和熔融物料;熔体输送四种流动:通常把物料在螺槽中的流动视为四种类型的流动组成:a正流;是物料沿螺槽方向向机头的流动,是均化段熔体的主流,起挤出物料的作用;b逆流;沿螺槽与正流方向相反方向的流动,是由机头口模、过滤网等对料流的阻碍所引起的反压流动,故又称压力流动,它将引起挤出生产能力的损失;c横流;物料沿X轴和Y轴两方向在螺槽内往复流动,也是由螺杆旋转时螺棱的推挤作用和阻挡作用所造成的,仅限于在每个螺槽内的环流,对总的挤出生产率影响不大,但对于物料的热交换、混合和进一步均匀塑化影响很大;d漏流;物料在螺杆和料筒的间隙沿着螺杆的轴向往料斗方向的流动,也是由于机头和口模等对物料的阻力所产生的反压流动;影响挤出机生产能力的是正流、逆流、漏流,横流对挤出量没有影响;3、橡胶压出,半成品:不是制品,经过硫化才能得到制品;第九章注射成型1、柱塞式分流梭的作用:减毛料,增加流速,促进混合分散;作用是将料筒内流经该处的物料引导成为薄层,使塑料流体产生分流和收敛流动,以缩短传热导程;既加快了热传导,也有利于减少或避免塑料过热而引起的热分解现象;在塑料熔体分流后,在分流梭与料筒间隙中的流速增加,剪切速度增大,从而产生较大的摩擦热,料温升高,黏度下降,使塑料得到进一步的混合塑化,有效提高柱塞式注射机的生产率及制品质量;分流梭为柱塞式注射机所特有;从加热效率出发分析必须使用分流梭的原因2、凝封、保压与热固性塑料模压保压的区别凝封前保压,可以将喷嘴、料筒前端的熔融塑化物料通过流道继续缓慢注入到模具型腔,补偿模具当中的冷却收缩而产生的体积收缩;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复习课主要内容1 在工业上获得成功应用的“高分子材料”在概念上要具有哪些方面的特点或要求?(重要)a有一定的力学性能;b兼或同时具有一定的功能特性;c具有一定的可加工性;d市场价值(经济价值);e环保、节能、安全特征(社会价值)。
要求:可满足生产或生活中的某种需要,并能够参与社会经济发展的循环过程。
2为什么聚合物流体通常被认为是软物质或复杂流体?(理解,不需掌握)软物质:即复杂流体,主要特征是易形变,弱力引起大形变。
聚合物流体同软物质都是多层次多尺度,小刺激产生大变化。
3如何理解“流动”?(重要)流动:运动单元在外场作用下相对运动并损耗能量。
聚合物流体的流动现象:聚合物流体某尺寸水平上的运动单元在外场作用下相互间产生相对运动并损耗能量的现象。
4 为什么高分子材料往往需要在加工成型过程中对其流动性进行必要的调控?甚至有些高分子材料流动性的调控非常困难以至难以规模化工业生产?(了解)高分子材料通常不具有所需要的流动性,因此需要对其进行调控以实现材料的工业化生产。
而高分子材料不具有所需要的流动的原因有:1时间尺度不匹配:基于聚合物流体在不同空间结构尺度上的相对运动而形成的聚合物流体流动往往超出高分子材料成型加工生产实际所需要的时间尺度要求,太慢或者太快。
2分子链间的相互作用的影响:影响分子链间的相对运动,影响凝聚态结构及超分子结构的稳定性(破坏或重建)及其不同运动单元的相对运动。
3分子链间相互作用形式:分子链间的相互作用是形成高聚物多姿多彩的凝聚状态的内在原因,是指大分子间存在的形式多样的次价键作用力——分子间作用力,它们具有不同的强度、方向性及对距离和角度的依赖性,是材料结构自组织形成并发生演变的基础;包括:Van de Waals力、氢键及分子间配键作用。
5为满足成型和加工的需要,通常如何获得或调控某些特定的高分子材料的流动性?(没记)a、主要调整温度压力等外在工艺技术条件,包括:Van de Waals力、氢键及分子间配键作用;b、主要对分子结构进行化学改性(如纤维素),或将化学结构控制和工艺技术条件控制相结合,如对一些天然高分子材料。
c、主要优选并引入增塑剂等低分子物或超临界流体等介质,如对淀粉、PVC等聚合物材料。
6 聚合物材料的可加工性通常包含哪些方面?(没记)1. 可模塑性:Mouldability2. 可挤压性:Extrudability3. 可纺性:Spinnability4. 可延性:Stretchability7 熔融指数?熔融指数在实际的成型加工过程中有什么样的应用?其局限性?(重要)熔融指数(MI),全称熔液流动指数,或熔体流动指数,是在一定温度和压力作用下,10min 内从特定毛细管中流出聚合物熔体的克数。
应用:用MFI确定HDPE用途;利用MFI确定PP用途描述的是特定温度、流场条件下聚合物流体的流动性,并以此确定聚合物的牌号。
其对聚合物流体流动性的表征具有局限性,熔融指数概念更多局限于PE、PP。
8 什么是可挤压性?可模塑性?(明确定义或公式)可挤压性:聚合物通过挤压作用产生形变并由此获得形状和保持形状的能力。
可模塑性:材料在一定温度和压力作用下产生形变并在模具中获得特定的形状、保持该形状的能力。
9 什么是流变?什么是流变学?(明确定义或公式)流变:流动和变形,在本质上是材料某尺度上的运动单元在外场作用下产生相对运动,同时伴随因材料结构变化引起材料形变响应的现象或过程。
流变学:研究流变的科学,即研究材料呈流体状态时流变现象或过程的科学。
研究材料呈流体状态时流变现象或过程的科学。
10 什么是静态流变学?(明确定义或公式)又称稳态流变,研究单一方向稳态剪切作用下聚合物流体的流动和变形。
11 什么是动态流变学?(明确定义或公式)研究周期性动态作用下聚合物流体的流动和形变。
12什么是剪切速率?(明确定义或公式)剪切应力:单位面积上剪切力的大小。
τ=F/A剪切速率:单位时间内,流体在剪切作用下流体产生的剪切应变。
γ=d(dx/dy)/dt剪切速率的含义:(1)流体流动速度的梯度;(2)距离dy的液层在dt时间内相对移动的距离;(3)单位时间内,流体在剪切作用下流体产生的剪切应变。
13什么是牛顿流体?其在结构上有什么特点?(没记)牛顿流体:满足牛顿定律(τ=η·γ)的流体。
黏度不随剪切条件的改变而改变;剪切应力和剪切速率始终呈正比关系;流体内部结构不随剪切条件改变而变化。
14 什么是牛顿粘度?(没记)η=τ/γ15什么是表观粘度?(没记)不满足牛顿定律的流体为非牛顿流体,其粘度定义为表观粘度。
是指在一定速度梯度下,用流速梯度除以相应的切力所得的商。
16什么是假塑性流体?什么是涨塑性流体?什么是宾汉流体?分别具有什么样的结构特点?(没记)幂律定义为τ=Kγn,n>1微涨塑性流体,n<1为假塑性流体,n=1为牛顿流体。
宾汉流体:当应力小于某一临界值时,流体呈现纯弹性体特征,应变速率为零,当应力大于临界值时,流体呈现为宾汉流体。
假塑性流体:是非牛顿流体中最为普通的一种,表现的流动曲线是非直线的。
流体的表现粘度随剪切应力的增加而降低。
涨塑性流体:这种流体的流动曲线也不是直线,与假塑性流体不同的是它的表现粘度会随剪切应力的增加而上升。
属于这一类型的流体大多数是固体含量高的悬浮液,解释为当悬浮液处于静态时,体系中有固体粒子构成的空隙最小,其中流体只能勉强充满这些空间。
当施加于这一体系的剪切应力不大时,流体可以在移动的固体颗粒间充当润滑剂,因此表观粘度不高。
但当剪切速率逐渐增高时,固体离子堆彻被破坏,整个体系显得有些膨胀,此时流体不能充满所有空隙,润滑作用受限,表观粘度就随着剪切速率的增大而增大。
宾汉流体:其剪切应力和剪切速率的关系变现为直线,它的流动只有当剪切应力高至于一定值后才发生塑性流动。
之所以这样是流体在静止时形成了凝胶结构,外力超过τy时这种三维结构受到破坏。
17什么是幂律定律?通常有哪两种形式?其描述聚合物流体流变行为上的局限性?(没记)幂律定义为τ=Kγn,n>1微涨塑性流体,n<1为假塑性流体,n=1为牛顿流体。
或者logτ=logK+klogγ或者γ = k ⋅τm局限性:18什么是稠度?什么是流动度?(理解)稠度:当剪切应力作用于材料时,材料抵抗流动(永久变形)的性质,从总体上描述一个物体的流动性,是材料内部摩擦的一种变现。
对非牛顿流体有时就用切变力-切边速率关系曲线上某切变速率时的斜率来表示物体的稠度。
流动度:19什么是线性粘弹性?如何确定某聚合物流体的线性粘弹性?(理解)可以用Hooke’s solid和Newton Liquid线性组合进行描述的粘弹行为成为线性粘弹性。
测量:静态法和动态法,都是测量在特定应力和应变条件下的流变响应曲线。
静态实验为在阶跃应力或应变作用下,观察应力或应变随时间的发展。
动态实验则采用斜边的应力或应变,来观察相应的应变或应力的响应。
20理想的牛顿流体是粘性的流体,为什么这类流体没有弹性?(特别注意)理想牛顿流体没有能量存储,没有储能模量,因此没有弹性。
而满足虎克定律的流体没有粘性。
21聚合物粘弹性流体的松弛时间的定义?指物体受力变形,外力解除后材料恢复正常状态所需时间。
22举例说明流变学在生产或生活的应用?(1)研究结构与性能的关系:多相多组分体系中结构的均匀性(定性),包括聚合物共混相结构演变(相分离、相分散、相归并);流变性能与结构的定量关系(本构模型)。
(2)生产:墨水品质分析与控制、果汁结构稳定性分析、啤酒泡沫的持久性、热熔胶品质选择。
举例:煮水饺时放一些盐巴,防止水饺在煮的过程中破皮,因为盐溶解在水中可促使溶解的淀粉蛋白质等大分子盐析出来,在水饺表面形成凝胶类结构,提高水饺皮强度,减弱了流变产生破碎的倾向23在化工流体的管道输送中,常常加入一些聚合物到流体中,以提高输送能力并降低能耗,其依据是什么?为了消除湍流;很少的聚合物可使黏度迅速提升,湍流没有了,能耗降低,相对流体的输送量增多。
24当流体流经截面积逐渐减小的流道时的流动常称为收敛流动,试比较牛顿流体和假塑性流体分别在收敛流动中流动方式上的不同?假塑性流体有弹性,其中的长分子链供拉伸:有剪切作用也有拉伸作用。
而牛顿流体没有长分子链:只有剪切而没有拉伸作用。
25什么是零剪切粘度?极限粘度?静态流变学确定零件切黏度:η=动态:极限粘度:又称特性粘度,高聚物溶液的浓度较稀时,其相对粘度的对数值与高聚物溶液质量浓度的比值。
26 对于假塑性流体而言,其零剪切粘度和极限粘度的意义是什么?27什么是简单圆管?为什么在流体计算时常需要将部分流道假定为简单圆管的结构?简单圆管:具有均匀圆形截面而且沿管轴方向半径均保持恒定的简单圆形管道。
简单圆管中流体流动通常为比较简单的一维流动,讨论时比较易于处理。
28理想的牛顿流体在简单圆管中的流速分布是典型的抛物线形状,请用图示画出牛顿流体、假塑性流体和涨塑性流体在简单圆管中的流速分布上有何不同?(画图,重点是流速分布)假塑性流体最尖,牛顿流体中间,涨塑性流体最不尖。
29成型加工过程中一般需要控制好聚合物流体在成型加工设备中流道内的流动,通常需要从哪些影响因素着手考虑?(了解)30假塑性流体为什么经历一个收敛流动进入毛细管结构时会产生入口压力降?物料经过入口区时经历强烈的拉伸流动和剪切流动,会因此储存和消耗部分能量,导致产生压力降。
31什么是端末效应?其产生的流体结构基础是什么?牛顿流体流经毛细管流道时是否会产生端末效应?当聚合物流体由较粗的流道进入毛细管式时,沿流动方向都会产生压降,一方面消耗于粘性流体的摩擦损耗,同时存在与流动过程中沿毛细管轴向分子链产生一定程度的取向;若毛细管比较短,流体在出口处会出现回弹现象,即端口处流体比毛细管中显著膨胀的现象。
这种在毛细管入口端产生压力将和出口端离模膨胀的现象,与聚合物提的黏弹性有关,称为端末效应,或分别称为入口效应和模口膨化效应牛顿流体:32聚合物流体的端末效应在成型加工过程中,尤其在挤出过程中,往往是影响产品尺寸控制的重要方面,如需要进一步减弱这种不需要的端末效应,可以考虑用哪些具体的措施或方法?33什么是聚合物流体的熔体破裂现象?挤出过程中若出现这种现象通常是什么原因?如何消除?(重要)熔体破裂:在一定的工艺技术条件下,通过一定流道后挤出物出现的表面粗糙如鲨鱼皮、无光泽、粗细不均匀、扭曲,或得到波浪形、竹节形、周期性螺旋形挤出物,甚至断裂性形状不规则的碎片或圆柱,这种基础是出现的成为熔体破裂现象。
原因:具体原因还不清楚,但主要源于管壁上的滑移和流体内的弹性(分子链响应显著慢于外力场或应力场的变化)(老师说:分子链间相互作用远小于弹性力,难维持原状态,因此扭曲,但有方向)。