2010年中考数学复习专题八:应用性问题
中考数学专题复习《代数应用性问题复习》的教案

中考数学专题复习《代数应用性问题复习》的教案一、教学目标:1. 让学生掌握代数应用性问题的基本类型及解题方法。
2. 提高学生将实际问题转化为代数问题的能力。
3. 培养学生运用代数知识解决实际问题的能力。
二、教学内容:1. 代数应用性问题的基本类型:方程问题、不等式问题、函数问题。
2. 解题方法:列方程、列不等式、列函数关系式。
3. 实际问题转化为代数问题的步骤:(1)理解实际问题的背景,找出关键信息。
(2)设未知数,找出已知数。
(3)根据实际问题建立代数模型。
(4)解代数方程(不等式、函数)。
(5)检验解的合理性,解释实际意义。
三、教学重点与难点:1. 教学重点:代数应用性问题的基本类型及解题方法。
2. 教学难点:实际问题转化为代数问题的步骤,解题方法的灵活运用。
四、教学过程:1. 导入:通过一个简单的实际问题,引发学生对代数应用性问题的思考。
2. 讲解:介绍代数应用性问题的基本类型及解题方法,结合实际问题引导学生转化为一元一次方程、一元一次不等式、函数关系式。
3. 案例分析:分析几个典型代数应用性问题,引导学生掌握解题思路。
4. 练习:布置一些代数应用性问题,让学生独立解答,巩固所学知识。
五、课后作业:1. 总结代数应用性问题的解题步骤。
2. 完成课后练习题,巩固所学知识。
3. 收集一些实际问题,尝试将其转化为代数问题,提高解决实际问题的能力。
六、教学策略:1. 案例教学:通过分析具体案例,让学生了解代数应用性问题的特点和解题方法。
2. 问题驱动:引导学生从实际问题中发现问题、提出问题,激发学生解决问题的兴趣。
3. 分组讨论:组织学生分组讨论,促进学生之间的交流与合作,提高解决问题的能力。
4. 反馈与评价:及时给予学生反馈,鼓励学生积极参与,提高课堂效果。
七、教学评价:1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
2. 课后作业:检查学生完成的课后作业,评估学生对代数应用性问题的理解和掌握程度。
初三数学:应用型问题专题

初三数学:应用型问题专题题型1方程(组)型应用题方程是描述丰富多彩的现实世界数量关系的最重要的语言,也是中考命题所要考察的重点热点之一.我们必须广泛了解现代社会中日常生活、生产实践、经济活动的有关常识.并学会用数学中方程的思想去分析和解决一些实际问题.解此类问题的方法是:(1)审题,明确未知量和已知量;(2)设未知数,务必写明意义和单位;(3)依题意,找出等量关系,列出等量方程;(4)解方程,必要时验根.题型2不等式(组)型应用题现实世界中不等关系是普遍存在的,许多现实问题很难确定(有时也不需要确定)具体的数值.但可以求出或确定这一问题中某个量的变化范围(趋势),从而对所有研究问题的面貌有一个比较清楚的认识.本节中,我们所要讨论的问题大多是要求出某个量的取值范围或极端可能性,它们涉及我们日常生活中的方方面面.列不等式时要从题意出发,设好未知量之后,用心体会题目所规定的实际情境,从中找出不等关系.题型3函数型应用问题函数及其图象是初中数学中的主要内容之一,也是初中数学与高中数学相联系的纽带.它与代数、几何、三角函数等知识有着密切联系,中考命题中既重点考查函数及其图象的有关基础知识,同时以函数为背景的应用性问题也是命题热点之一,多数省市作压轴题.因此,在中考复习中,关注这一热点显得十分重要.解这类题的方法是对问题的审读和理解,掌握用一个变量的代数式表示另一个变量,建立两个变量间的等量关系,同时从题中确定自变量的取值范围.题型4统计型应用问题统计的内容有着非常丰富的实际背景,其实际应用性特别强.中考试题的热点之一,就是考查统计思想方法,同时考查学生应用数学的意识和处理数据解决实际问题的能力.题型5几何型应用问题几何应用题常常以现实生活情景为背景,考查学生识别图形的能力、动手操作图形的能力、运用几何知识解决实际问题的能力以及探索、发现问题的能力和观察、想像、分析、综合、比较、演绎、归纳、抽象、概括、类比、分类讨论、数形结合等数学思想方法.知识运用举例:(一)方程(组)型应用题1.某牛奶加工厂现有鲜奶9吨,若在市场上直接销售鲜奶,每吨可获取利润500元;制成酸奶销售,每吨可获取利润1200元;制成奶片销售,每吨可获取利润2000元.该工厂的生产能力是:如制成酸奶,每天可加工3吨;制成奶片,每天可加工1吨.受人员限制,两种加工方式不可同时进行,受气温条件限制,这批牛奶必须在4天内全部销售或加工完毕,为此,该厂设计了两种可行方案:方案一:尽可能多的制成奶片,其余直接销售牛奶;方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成.你认为哪种方案获利最多,为什么?解:方案一,总利润为4×2000+(9-4)×500=10500(元)方案二,设加工奶片x吨,则解得,x=1.5总利润为(元)10500<12000所以方案二获利较多.2.注意:为了使同学们更好地解答本题,我们提供了一种解题思路,你可以依照这个思路,填写表格,并完成本题解答的全过程.如果你选用其他的解题方案,此时,不必填写表格,只需按照解答题的一般要求,进行解答即可.甲乙二人同时从张庄出发,步行15千米到李庄,甲比乙每小时多走1千米,结果比乙早到半小时.问二人每小时各走几千米?(1)设乙每小时走x千米,根据题意,利用速度、时间、路程之间的关系填写下表.(要求:填上适当的代数式,完成表格)(2)列出方程(组),并求出问题的解.解:(1)(2)根据题意,列方程得整理得解这个方程得经检验,都是原方程的根.但速度为负数不合题意所以只取,此时答:甲每小时走6千米,乙每小时走5千米.(二)、不等式(组)型应用题3.某乒乓球训练馆准备购买n副某种品牌的乒乓球拍,每副球拍配k(k≥3)个乒乓球. 已知A、B两家超市都有这个品牌的乒乓球拍和乒乓球出售,且每副球拍的标价都为20元,每个乒乓球的标价都为1元 . 现两家超市正在促销,A超市所有商品均打九折(按原价的90%付费)销售,而B超市买1副乒乓球拍送3个乒乓球 . 若仅考虑购买球拍和乒乓球的费用,请解答下列问题:(1)如果只在某一家超市购买所需球拍和乒乓球,那么去A超市还是B超市买更合算?(2)当k=12时,请设计最省钱的购买方案.解:(1)由题意,去A超市购买n副球拍和kn个乒乓球的费用为0.9(20n+kn)元,去B超市购买n副球拍和kn个乒乓球的费用为[20n+n(k-3)]元,由0.9(20n+kn)< 20n+ n (k-3),解得k>10;由0.9(20n+kn)= 20n+n (k-3),解得k=10;由0.9(20n+kn)> 20n+n (k-3),解得k<10.∴当k>10时,去A超市购买更合算;当k=10时,去A、B两家超市购买都一样;当3≤k<10时,去B超市购买更合算.(2)当k=12时,购买n副球拍应配12n个乒乓球.若只在A超市购买,则费用为0.9(20n+12n)=28.8n(元);若只在B超市购买,则费用为20n+(12n-3n)=29n(元);若在B超市购买n副球拍,然后再在A超市购买不足的乒乓球,则费用为20n+0.9×(12-3)n=28.1n(元).显然,28.1n<28.8n<29n.∴最省钱的购买方案为:在B超市购买n副球拍同时获得送的3n个乒乓球,然后在A超市按九折购买9n个乒乓球.(三)、函数型应用题4.元旦联欢会前某班布置教室,同学们利用彩纸条粘成一环套一环的彩纸链,小颖测量了部分彩纸链的纸环数(个) 1彩纸链长度(cm)19(1)把上表中的各组对应值作为点的坐标,在如图的平面直角坐标系中描出相应的点,猜想与的函数关系,并求出函数关系式;(2)教室天花板对角线长10m,现需沿天花板对角线各拉一根彩纸链,则每根彩纸链至少要用多少个纸环?解:(1)在所给的坐标系中准确描点.由图象猜想到与之间满足一次函数关系.设经过,两点的直线为,则可得解得,.即.当时,;当时,.即点都在一次函数的图象上.所以彩纸链的长度(cm)与纸环数(个)之间满足一次函数关系.(2),根据题意,得.解得.答:每根彩纸链至少要用59个纸环.(四)、统计型应用题5.根据北京市水务局公布的2004年、2005年北京市水资源和用水情况的相关数据,绘制如下统计图表:2005年北京市水资源分布图(单位:亿) 2004年北京市用水量统计图用水量(单位:亿)(1)北京市水资源全部由永定河水系、潮白河水系、北运河水系、蓟运河水系、大清河水系提供.请你根据以上信息补全2005年北京市水资源统计图,并计算2005年全市的水资源总量(单位:亿);(2)在2005年北京市用水情况统计表中,若工业用水量比环境用水量的6倍多0.2亿,请你先计算环境用水量(单位:亿),再计算2005年北京市用水总量(单位:亿);(3)根据以上数据,请你计算2005年北京市的缺水量(单位:亿);(4)结合2004年及2005年北京市的用水情况,谈谈你的看法.解:(1)初全2005年北京市水资源统计图见下图;水资源总量为亿.(2)设2005年环境用水量为亿.依题意得.解得.所以2005年环境用水量为亿.因为,所以2005年北京市用水总量为亿.(3)因为,所以2005年北京市缺水量为亿.(4)说明:通过对比2004年及2005年北京市的用水情况,能提出积极看法的给分.(五)、几何型应用题6.台球是一项高雅的体育运动.其中包含了许多物理学、几何学知识.图①是一个台球桌,目标球F与本球E之间有一个G球阻挡(1)击球者想通过击打E球先撞击球台的AB边.经过一次反弹后再撞击F球.他应将E球打到AB边上的哪一点?请在图①中用尺规作出这一点H.并作出E球的运行路线;(不写画法.保留作图痕迹) (2)如图②以D为原点,建立直角坐标系,记A(O,4).C(8,0).E(4,3),F(7,1),求E球接刚才方式运行到F球的路线长度.(忽略球的大小)图①解:(1)画出正确的图形(可作点E关于直线AB的对称点E1,连结E1F,E1F与AB交于点H,球E的运动路线就是EH→HF)有正确的尺规作图痕迹过点F作AB的平行线,交E1E的延长线于点N由题意可知,E1N=4,FN=3在Rt△AFNE1中,E1F=∵点E1是点E关于直线AB的对称点∴EH=E1H.∴EH+HF=E1F=5∴E球运行到F球的路线长度为5.。
初中数学复习专题应用题 PPT课件 图文

(2)试写出z与x之间的函数关系式(不必写出x的取值范围)
(3)计算当销售单价为160元时的年获利,并说明同年的年获利,销售单价 还可以定为多少元?相应的年销售分别为多少万件?
(4)公司计划:在第一年按年获利最大确定的销售单价;第二年年获利不 底于1130万元。请你借助函数的大致图象说明,第二年的销售单价x (元)应确定在什么范围内?
1 阅读型应用题
顾名思义,阅读型应用题即给出相关材料,以考 查学生的阅读理解能力。其信息量较大,应注意相关 信息的联想,发现,探索及归纳总结,知识考查往往 源于课本而又高于课本,属边缘问题,需注意。
例一 某高科技发展公司投资500万元,成功研制出一种市场需求量较大的 高科技替代产品,并投入资金1500万元进行批量生产,已知生产每件的 成本为40元,在销售过程中发现:当销售单价定为100元时,年销量为20 万件;当销量单价每增加10元,年销量将减少1万件,设销售单价为x元, 年销量为y(万元),年获利(年获利=年销售额 - 成本 - 投资)为z(万 元)
(1)若把BC作油桶高时,则油桶的底面半径R1等于多少? (2)当把AB作油桶高时,油桶的底面半径R2 与(1)中的R1 相等吗?若相等,请说明理由;若不相等,请求出R2
O1 A
C
O
Байду номын сангаас
B
D
O2
谢谢! 学妹给我打电话,说她又换工作了,这次是销售。电话里,她絮絮叨叨说着一年多来工作上的不如意,她说工作一点都不开心,找不到半点成就感。 末了,她问我:学姐,为什么想 找一份 自己热 爱的工 作这么 难呢? 我问她上一份工作干了多久,她 说不到 三个月 ,做的 还是行 政助理 的工作 ,工作 内容枯 燥乏味 不说,
中考数学专题复习《代数应用性问题复习》的教案

中考数学专题复习《代数应用性问题复习》的教案——一、教学目标:(一)知识目标:通过复习,使学生能够分析和表示不同背景下的实际问题中的数量关系,并能够运用方程、不等式、函数等代数有关知识解决实际问题中的增长率问题,调配问题、最值问题等,使学生体会数学建模思想及其步骤。
(二)过程与方法:通过复习如何分析和表示不同背景下实际问题中的等量、不等量及变量之间的函数关系,培养学生分析和判断能力,通过运用代数性的知识解决实际问题,培养学生的数学应用能力。
(三)情感目标:能过对解决问题的基本策略进行反思,进一步体会数学与人类社会的密切联系,了解数学的应用价值,提高学生的环保意识,增进对数学的理解和学数学的信心,培养创新精神和实践能力。
二、教学重点与难点:(一)教学重点:把实际问题转化为数学问题,并建立方程、不等式、函数模型解决实际问题。
(二)教学难点:正确的理解题意,找准数量关系,建立数学模型。
三、教学准备多媒体课件。
代数应用性问题—专题复习知识迁移为提高空气质量,该小区决定再花去96000元购进A、B两种树,按每3人种一棵A树或每2人种一棵B树分配给该小区880人种(注:每人只种一种树),已知A种树每棵400元,B种树每棵160元.(1) 问该小区应定购多少棵A 种树,多少棵B种树?(2) 园艺部门接到订单后,立即安排13名员工挖出A 、B两种树,已知一个工人每天可挖A种树4棵或B种树8棵,应分别安排多少人挖A 、B两种树才能使两种树同时挖好?(3)该小区计划租用甲、乙两种型号的卡车共20辆将A 、B两种树运回,已知甲型卡车每辆可同时装运11棵A种树和7棵B种树,乙型卡车每辆可同时装运7棵A种树和12 棵B种树,如何安排甲、乙两种型号的卡车可一次性将两种树运回?有几种方案?能力提升新树种好后,为了更好的保护新树,需购买一些树木支撑架支撑新树,已知某支撑架的成本价为20元,且这种产品的销售价格不能高于25元,在试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数y=-x+40.(1)当销售单价定为多少元时,厂商获得的利润最高?(2)当售价定为多少元时,利润达到36万元?(3)如果厂商要让利润不低于36万元,那么售价应定在什么范围?。
中考数学总复习知识点专题讲解8---勾股定理在动点直角三角形存在性问题中的应用

中考数学专题08 勾股定理在动动点题是近年来中考的形存在性问题是这类题目考查数学思想方法,尤其对勾股定基本思路是什么,解答的难点直角三角形是一类特殊三角形在求线段的长度等方面有广泛需掌握以下几个基本图形需掌握以下几个基本图形:题1. 如图1-1,在Rt △ABC 射线BC 以1m /s 的速度移动(1)求BC 边的长;(2)当△ABP 为直角三角形时【答案】(1)4m ;(2)见解析1考数学总复习知识点专题讲解理在动点直角三角形存在性问题中考的一个热点问题也是难点问题,而因动点产目考查的重点. 解这类题目要掌握转化、分类讨论勾股定理的运用炉火纯青,才能准确、快速的解答的难点在哪?我们将通过以下几个例题加以说明三角形,有着丰富的性质,角的关系、边的关系有广泛的应用.:BC 中,∠C =90°,AB =5m ,AC =3m ,动点移动,设运动的时间为t s .图1-1形时,求t 的值.见解析【解析】解:(1)∵∠C =90°在Rt △ABC 中,由勾股定理得4BC ==∴BC =4m .(2)由题意可知,∠ABP ≠90①当∠APB =90°时,此时P由(1)知BP =4,所以t =4②当∠BAP =90°时,如图1-由题意得:BP =t ,CP =t -4在Rt △ABP 中,由勾股定理得AP 2=BP 2-AB 2在Rt △ACP 中,由勾股定理得AP 2=AC 2+CP 2所以BP 2-AB 2=AC 2+CP 2即:()2222534t t −=+−解得:254t = 综上所述,当△ABP 为直角三【点睛】直角三角形存在性问和∠BAP 为直角时,进行分类题2. 如图2-1,在四边形ABC 若点P 是线段AD 上一动点【答案】见解析.【解析】解:∵∠D =90°,∴∠A =90°过B 作BE ⊥CD 于E ,如图则四边形ABED 为矩形所以BE =AD =7,DE =AB =3在Rt △BCE 中,由勾股定理得直角三角形时,t =4或254t =. 在性问题,分类讨论的出发角度是直角的位置行分类讨论,准确画出图形,根据勾股定理列方ABCD 中,∠D =90°,AB ∥DC ,AB =3,动点,当AP 为何值时,△BCP 是直角三角形图2-1AB ∥DC ,如图2-2所示.,CE =CD -DE =1图2-2定理得:BA D C E 位置,此题分∠APB 理列方程求解. DC =4,AD =7. 角形?BC2=CE2+BE2=50.因为∠C<90°,P在线段AD两种情况讨论:①当∠BPC=90°时,如图2-设AP=x,则PD=7-x在Rt△ABP中,由勾股定理得BP2=AP2+AB2=x2+9.在Rt△DCP中,由勾股定理得PC2=PD2+CD2= (7-x) 2+16.在Rt△BCP中,由勾股定理得PC2=PB2+BC2=x2+9+50.(7∴-x)2+16= x2+9+50解得:37 x=.即AP=3 7 .②当∠PBC=90°时,如图2-设AP =x ,则PD =7-x在Rt △ABP 中,由勾股定理得BP 2=AP 2+AB 2=x 2+9.在Rt △DCP 中,由勾股定理得PC 2=PD 2+CD 2= (7-x ) 2+16. 在Rt △BCP 中,由勾股定理得PC 2= BC 2-PB 2 = 50-x 2-9.(7∴-x )2+16=50- x 2-9解得:1234x x ==,.即AP =3或4.综上所述,当AP 为37或3【点睛】直角三角形的存在性位置进行讨论,解题方法除了以图2-4为例,是典型的“一线易知△ABP ∽△DPC ,所以即374x x =−,解得13x =因此在日常学习过程中,我们 图2-4定理得:定理得:定理得:或4时,△BCP 是直角三角形. 存在性问题用到的数学方法是分类讨论,针对直法除了利用勾股定理外,也可用相似三角形、一线三直角”模型.所以AB AP DP CD = 24x =,. 我们要针对每一个题多思考,有没有多种求解BA D C P针对直角所在不同的、三角函数等求解. 种求解方法,这样对拓展眼界有很大的好处.题3. 如图3-1,在△ABC 中向B 以1 cm /s 的速度运动,A ,B 同时出发.(1)经过多少秒,△BMN 为等边(2)经过多少秒,△BMN 为直角【答案】见解析.【解析】解:(1)设经过则AM =x ,BN =2x ,∴BM =AB -AM =30-x ,根据题意得30-x =2x ,解得x =10.所以经过10 s ,△BMN 为等边(2)设经过x 秒,△BMN 根据题意分两种情况讨论:中,AB =30 cm ,BC =35 cm ,∠B =60°,,动点N 自B 向C 以2 cm /s 的速度运动. 若点为等边三角形; 为直角三角形.图3-1x 秒,△BMN 为等边三角形,为等边三角形.MN 是直角三角形.:图3-2①当∠NMB =90°时,如图3∵∠B =60°,∴∠BNM =30°,∴BN =2BM ,即2x =2 (30-x ),解得x =15;②当∠BNM =90°时,∵∠B =60°,∴∠BMN =30°,∴BM =2BN ,即30-x =解得x =6,即经过6秒或15秒,△【点睛】(1)设时间为x ,用解之可得;(2)分①∠BNM 可得;②∠BMN =90°时,题4. 已知在Rt △ABC 中,∠(1)如图4-1,点O 是AB 的中点(2)如图4-2,若∠A =30°,AB3-2所示.图3-32×2x ,BMN 是直角三角形.x 表示出AM 、BN 、BM ,根据等边三角形的判=90°时,即可知∠BMN =30°,依据2BN =∠BNM =30°,依据2BM =BNERROR: undefinedOFFENDING COMMAND: F4S63YFF STACK:。
中考数学大一轮数学复习专题ppt课件:代数应用性问题

1 2 3
7
中考大一轮复习讲义◆ 数学
热点看台 快速提升
典例分析 1 小王上周五在股市以收盘价(收市时的价格)每股 25 元买进某公司股票 1000 股, 在接下来的一周交易日内,小王记下该股票每日收盘价格相比前一天的涨跌情况:(单位:元)
星期
一二
三
四
五
每股涨(元) +2 -0.5 +1.5 -1.8 +0.8
135-25000-125=1740(元),∴小王的本次收益为1740元.
2
3
8
中考大一轮复习讲义◆ 数学
点对点训练 1. 实数 a,b,c 在数轴上表示的点如图所示: 化简:a+|a+b|- c2-|b-c|.
答案:0
2. 比较大小:a2+b2 与 2ab.
答案: ∵a2+b2-2ab=(a-b)2≥0,∴a2+b2≥2ab.
1 列分式方程求解.思路二:先找出题中两个相等关系:第一批衬衫购进的件数
与单价的乘积=8000元,第二批衬衫购进的件数与单价的乘积=17600元,再 列出方程组求解.
2
3
10
中考大一轮复习讲义◆ 数学
热点看台 快速提升
解 方法一:设第一批进货的单价为 x 元,则第二批进货的单价为(x+8)元, 由题意得,2×80x00=1x7+6080, 解得:x=80, 经检验 x=80 是原分式方程的解,且符合题意, 则第一次进货808000=100(件),
根据上表回答问题:
(1)星期二收盘时,该股票每股为多少元?
(2)这周内该股票收盘时的最高价、最低价分别是多少?
(3)已知在本周五以收盘
价将全部股票卖出,他的收益情况如何?
解析 对于比较生疏的题型尤其要仔细审题,在充分理解题意后,再从不同
中考数学专题复习—— 应用性问题
中考数学专题复习——应用性问题足球场上有句顺口溜:“向着球门跑,越近就越好;歪着球门跑,射点要选好!”从数学角度看是何道理?应用题是中考试题的经典试题,解决应用题的思想方法如下:实际问题分析、联想、转化、抽象解答数学问题建立数学模型应用性问题的常见模型有:方程模型、不等式模型、函数模型、统计模型、几何模型方程(组)型应用题一般步骤:(1)审:未知量、已知量、相等关系;(2)设:用字母表示未知数(写明单位);(3)列:列出方程(组);(4)解:解所列方程(组);(5)验:检验答案是否符合方程、符合题意(6)答:写出答案。
例1、5.12汶川大地震发生以后,全国人民众志成城.首长到帐篷厂视察,布置赈灾生产任务,下面是首长与厂长的一段对话:首长:为了支援灾区人民,组织上要求你们完成12000顶帐篷的生产任务.厂长:为了尽快支援灾区人民,我们准备每天的生产量比原来多一半.首长:这样能提前几天完成任务?厂长:请首长放心!保证提前4天完成任务!根据两人对话,问该厂原来每天生产多少顶帐篷?不等式(组)型应用题现实世界中不等关系是普遍存在的,有关最佳决策、合理调配、统筹安排等最优化问题,一般可通过对给出的一些数据进行分析、转化、建立不等式模型,再求在约束条件下的不等式的解集.例2:某校师生积极为汶川地震灾区捐款,在得知灾区急需帐篷后,立即到当地的一家帐篷厂采购,帐篷有两种规格:可供3人居住的小帐篷,价格每顶160元;可供10人居住的大帐篷,价格每顶400元。
学校花去捐款96000元,正好可供2300人临时居住。
(1)求该校采购了多少顶3人小帐篷,多少顶10人大帐篷;(2)学校现计划租用甲、乙两种型号的卡车共20辆将这批帐篷紧急运往灾区,已知甲型卡车每辆可同时装运4顶小帐篷和11顶大帐篷,乙型卡车每辆可同时装运12顶小帐篷和7顶大帐篷。
如何安排甲、乙两种卡车可一次性将这批帐篷运往灾区?有哪几种方案?初三数学第1 页共4 页初三数学 第 2 页 共 4 页4%函数型应用问题一般步骤:(1)审:常量、变量、相等关系;(2)设:用两个字母分别表示自变量、因变量;(3)列:列出函数关系式(写出自变量的取值范围)(4)解:解决函数问题;(5)验:检验答案是否符合函数关系、符合题意(6)答:写出答案.例3、红星公司生产的某种时令商品每件成本为20元,经过市场调研发现,这种商品在未来40天内的日销售量m (件)与时间t (天)的关系如下表:未来40天内,前20天每天的价格1y (元/件)与时间t (天)的函数关系式为1254y t =+(120t ≤≤且t 为整数),后20天每天的价格2y (元/件)与时间t (天)的函数关系式为21402y t =-+(2140t ≤≤且t 为整数).下面我们就来研究销售这种商品的有关问题: (1)认真分析上表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定一个满足这些数据的m (件)与t (天)之间的关系式;(2)请预测未来40天中哪一天的日销售利润最大,最大日销售利润是多少?(3)在实际销售的前20天中,该公司决定每销售一件商品就捐赠a 元利润(a <4)给希望工程.公司通过销售记录发现,前20天中,每天扣除捐赠后的日销售利润随时间t (天)的增大而增大,求a 的取值范围.统计型应用问题:统计的内容有着非常丰富的实际背景,其实际应用性特别强,与统计有关的实际问题可建立统计模型,并利用统计的知识加以解决。
中考数学专题复习《代数应用性问题复习》的教案
中考数学专题复习《代数应用性问题复习》的教案第一章:代数应用性问题概述1.1 教学目标让学生了解代数应用性问题的基本概念和特点。
培养学生解决代数应用性问题的基本思路和方法。
1.2 教学内容代数应用性问题的定义和特点。
代数应用性问题解决的步骤和方法。
1.3 教学过程引入代数应用性问题的概念,让学生举例说明。
引导学生分析代数应用性问题的特点,如实际背景、数学模型等。
讲解代数应用性问题解决的步骤,如理解问题、建立方程等。
第二章:一元一次方程的应用2.1 教学目标让学生掌握一元一次方程的基本概念和解法。
培养学生应用一元一次方程解决实际问题的能力。
2.2 教学内容一元一次方程的定义和性质。
一元一次方程的解法和应用。
2.3 教学过程引入一元一次方程的概念,让学生举例说明。
讲解一元一次方程的性质和解法,如加减法、代入法等。
给出实际问题,让学生应用一元一次方程解决。
第三章:二元一次方程组的应用3.1 教学目标让学生掌握二元一次方程组的基本概念和解法。
培养学生应用二元一次方程组解决实际问题的能力。
3.2 教学内容二元一次方程组的定义和性质。
二元一次方程组的解法和应用。
3.3 教学过程引入二元一次方程组的概念,让学生举例说明。
讲解二元一次方程组的性质和解法,如代入法、消元法等。
给出实际问题,让学生应用二元一次方程组解决。
第四章:不等式的应用4.1 教学目标让学生掌握不等式的基本概念和解法。
培养学生应用不等式解决实际问题的能力。
4.2 教学内容不等式的定义和性质。
不等式的解法和应用。
4.3 教学过程引入不等式的概念,让学生举例说明。
讲解不等式的性质和解法,如大小比较、解集表示等。
第五章:整式的应用5.1 教学目标让学生掌握整式的基本概念和运算规则。
培养学生应用整式解决实际问题的能力。
5.2 教学内容整式的定义和性质。
整式的运算规则和应用。
5.3 教学过程引入整式的概念,让学生举例说明。
讲解整式的性质和运算规则,如加减法、乘除法等。
中考数学总复习训练 一次函数的实际应用含解析
一次函数的实际应用一、利用函数的解析式解决问题1.某市种植某种绿色蔬菜,全部用来出口.为了扩大出口规模,该市决定对这种蔬菜的种植实行政府补贴,规定每种植﹣亩这种蔬菜一次性补贴菜农若干元.经调查,种植亩数y(亩)与补贴数额x(元)之间大致满足如图1所示的一次函数关系.随着补贴数额x的不断增大,出口量也不断增加,但每亩蔬菜的收益z(元)会相应降低,且z与x之间也大致满足如图2所示的一次函数关系.(1)在政府未出台补贴措施前,该市种植这种蔬菜的总收益额为多少?(2)分别求出政府补贴政策实施后,种植亩数y和每亩蔬菜的收益z与政府补贴数额x之间的函数关系式;(3)要使全市这种蔬菜的总收益w(元)最大,政府应将每亩补贴数额x定为多少?并求出总收益w的最大值.2.某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如下表:x (元)15 20 25 …y (件)25 20 15 …若日销售量y是销售价x的一次函数.(1)求出日销售量y(件)与销售价x(元)的函数关系式;(2)求销售价定为30元时,每日的销售利润.3.如图,两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中给的数据信息,解答下列问题:(1)求整齐摆放在桌面上饭碗的高度y(cm)与饭碗数x(个)之间的一次函数解析式;(2)把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是多少?4.鞋子的“鞋码”和鞋长(cm)存在一种换算关系,下表是几组“鞋码”与鞋长换算的对应数值:(注:“鞋码”是表示鞋子大小的一种号码)鞋长(cm) 16 19 21 24鞋码(号) 22 28 32 38(1)设鞋长为x,“鞋码”为y,试判断点(x,y)在你学过的哪种函数的图象上;(2)求x、y之间的函数关系式;(3)如果某人穿44号“鞋码”的鞋,那么他的鞋长是多少?5.某市为了鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费,月用水量不超过20m3时,按2元/m3计费;月用水量超过20m3时,其中的20m3仍按2元/m3收费,超过部分按2.6元/m3计费.设每户家庭用水量为xm3时,应交水费y元.(1)分别求出0≤x≤20和x>20时y与x的函数表达式;(2)小明家第二季度交纳水费的情况如下:月份四月份五月份六月份交费金额30元34元42.6元小明家这个季度共用水多少立方米?6.一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y1(km),出租车离甲地的距离为y2(km),客车行驶时间为x(h),y1,y2与x 的函数关系图象如图所示:(1)根据图象,直接写出y1,y2关于x的函数关系式.(2)分别求出当x=3,x=5,x=8时,两车之间的距离.(3)若设两车间的距离为S(km),请写出S关于x的函数关系式.(4)甲、乙两地间有A、B两个加油站,相距200km,若客车进入A站加油时,出租车恰好进入B站加油.求A加油站到甲地的距离.7.我国是世界上严重缺水的国家之一.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费.即一月用水10吨以内(包括10吨)的用户,每吨收水费a元;一月用水超过10吨的用户,10吨水仍按每吨a元收费,超过10吨的部分,按每吨b元(b>a)收费.设一户居民月用水x吨,应收水费y元,y与x之间的函数关系如图所示.(1)求a的值;某户居民上月用水8吨,应收水费多少元;(2)求b的值,并写出当x>10时,y与x之间的函数关系式;(3)已知居民甲上月比居民乙多用水4吨,两家共收水费46元,求他们上月分别用水多少吨?二、利用函数的增减性解决问题8.某饮料厂为了开发新产品,用A种果汁原料和B种果汁原料试制新型甲、乙两种饮料共50千克,设甲种饮料需配制x千克,两种饮料的成本总额为y元.(1)已知甲种饮料成本每千克4元,乙种饮料成本每千克3元,请你写出y与x之间的函数关系式.(2)若用19千克A种果汁原料和17.2千克B种果汁原料试制甲、乙两种新型饮料,下表是试验的相关数据;请你列出关于x且满足题意的不等式组,求出它的解集,并由此分析如何配制这两种饮料,可使y值最小,最小值是多少?甲乙每千克饮料果汁含量果汁A 0.5千克0.2千克B 0.3千克0.4千克9.某厂工人小王某月工作的部分信息如下:信息一:工作时间:每天上午8:00~12:00,下午14:00~18:00,每月25天;信息二:生产甲、乙两种产品,并且按规定每月生产甲产品的件数不少于60件.生产产品件数与所用时间之间的关系见下表:生产甲产品数(件)生产乙产品数(件)所用时间(分)10 10 35030 20 850信息三:按件计酬,每生产一件甲产品可得1.50元,每生产一件乙产品可得2.80元.根据以上信息,回答下列问题:(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分;(2)小王该月最多能得多少元此时生产甲、乙两种产品分别多少件.10.“5.12”汶川特大地震灾害发生后,社会各界积极为灾区捐款捐物,某经销商在当月销售的甲种啤酒尚有2万元货款未收到的情况下,先将销售甲种啤酒全部应收货款的70%捐给了灾区,后又将该月销售乙种啤酒所得的全部货款的80%捐给了灾区.已知该月销售甲、乙两种啤酒共5000件,甲种啤酒每件售价为50元,乙种啤酒每件售价为35元,设该月销售甲种啤酒x件,共捐助救灾款y元.(1)该经销商先捐款元,后捐款元;(用含x的式子表示)(2)写出y与x的函数关系式,并求出自变量x的取值范围;(3)该经销商两次至少共捐助多少元?11.为支持四川抗震救灾,重庆市A、B、C三地现在分别有赈灾物资100吨、100吨、80吨,需要全部运往四川重灾地区的D、E两县.根据灾区的情况,这批赈灾物资运往D县的数量比运往E县的数量的2倍少20吨.(1)求这批赈灾物资运往D、E两县的数量各是多少?(2)若要求C地运往D县的赈灾物资为60吨,A地运往D的赈灾物资为x吨(x为整数),B地运往D县的赈灾物资数量小于A地运往D县的赈灾物资数量的2倍.其余的赈灾物资全部运往E县,且B地运往E县的赈灾物资数量不超过25吨.则A、B两地的赈灾物资运往D、E两县的方案有几种?请你写出具体的运送方案;(3)已知A、B、C三地的赈灾物资运往D、E两县的费用如下表:A地B地C地运往D县的费用(元/吨)220 200 200运往E县的费用(元/吨)250 220 210为及时将这批赈灾物资运往D、E两县,某公司主动承担运送这批赈灾物资的总费用,在(2)问的要求下,该公司承担运送这批赈灾物资的总费用最多是多少?12.某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.(1)今年三月份甲种电脑每台售价多少元?(2)为了增加收入,电脑公司决定再经销乙种型号电脑,已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?(3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a元,要使(2)中所有方案获利相同,a值应是多少此时,哪种方案对公司更有利?13.“5•12”四川汶川大地震的灾情牵动全国人民的心,某市A、B两个蔬菜基地得知四川C、D两个灾民安置点分别急需蔬菜240吨和260吨的消息后,决定调运蔬菜支援灾区.已知A蔬菜基地有蔬菜200吨,B蔬菜基地有蔬菜300吨,现将这些蔬菜全部调往C、D两个灾民安置点.从A地运往C、D两处的费用分别为每吨20元和25元,从B地运往C、D两处的费用分别为每吨15元和18元.设从B地运往C处的蔬菜为x吨.(1)请填写下表,并求两个蔬菜基地调运蔬菜的运费相等时x的值;C D 总计A 200吨B x吨300吨总计240吨260吨500吨(2)设A、B两个蔬菜基地的总运费为w元,写出w与x之间的函数关系式,并求总运费最小的调运方案;(3)经过抢修,从B地到C处的路况得到进一步改善,缩短了运输时间,运费每吨减少m 元(m>0),其余线路的运费不变,试讨论总运费最小的调运方案.14.某公司有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:A型利润B型利润甲店200 170乙店160 150(1)设分配给甲店A型产品x件,这家公司卖出这100件产品的总利润为W(元),求W 关于x的函数关系式,并求出x的取值范围;(2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来;(3)为了促销,公司决定仅对甲店A型产品让利销售,每件让利a元,但让利后A型产品的每件利润仍高于甲店B型产品的每件利润.甲店的B型产品以及乙店的A,B型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大?一次函数的实际应用参考答案与试题解析一、利用函数的解析式解决问题1.某市种植某种绿色蔬菜,全部用来出口.为了扩大出口规模,该市决定对这种蔬菜的种植实行政府补贴,规定每种植﹣亩这种蔬菜一次性补贴菜农若干元.经调查,种植亩数y(亩)与补贴数额x(元)之间大致满足如图1所示的一次函数关系.随着补贴数额x的不断增大,出口量也不断增加,但每亩蔬菜的收益z(元)会相应降低,且z与x之间也大致满足如图2所示的一次函数关系.(1)在政府未出台补贴措施前,该市种植这种蔬菜的总收益额为多少?(2)分别求出政府补贴政策实施后,种植亩数y和每亩蔬菜的收益z与政府补贴数额x之间的函数关系式;(3)要使全市这种蔬菜的总收益w(元)最大,政府应将每亩补贴数额x定为多少?并求出总收益w的最大值.【考点】二次函数的应用;一次函数的应用.【专题】压轴题.【分析】(1)根据题意可知直接计算这种蔬菜的收益额为3000×800=2400000(元);(2)设种植亩数y和每亩蔬菜的收益z与政府补贴数额x之间的函数关系式分别为:y=kx+800,z=k1x+3000,并根据图象上点的坐标利用待定系数法求函数的解析式即可;(3)表示出蔬菜的总收益w(元)与x之间的关系式,w=﹣24x2+21600x+2400000,利用二次函数最值问题求最大值.【解答】解:(1)政府没出台补贴政策前,这种蔬菜的收益额为3000×800=2400000(元)(2)设种植亩数y和每亩蔬菜的收益z与政府补贴数额x之间的函数关系式分别为:y=kx+800,z=k1x+3000,分别把点(50,1200),(100,2700)代入得,50k+800=1200,100k1+3000=2700,解得:k=8,k1=﹣3,种植亩数与政府补贴的函数关系为:y=8x+800每亩蔬菜的收益与政府补贴的函数关系为z=﹣3x+3000(x>0)(3)由题意:w=yz=(8x+800)(﹣3x+3000)=﹣24x2+21600x+2400000=﹣24(x﹣450)2+7260000,∴当x=450,即政府每亩补贴450元时,总收益额最大,为7260000元.【点评】主要考查利用一次函数和二次函数的模型解决实际问题的能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义准确的列出解析式,再把对应值代入求解.利用二次函数的顶点坐标求最值是常用的方法之一.2.某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如下表:x (元)15 20 25 …y (件)25 20 15 …若日销售量y是销售价x的一次函数.(1)求出日销售量y(件)与销售价x(元)的函数关系式;(2)求销售价定为30元时,每日的销售利润.【考点】一次函数的应用.【专题】压轴题;图表型.【分析】(1)已知日销售量y是销售价x的一次函数,可设函数关系式为y=kx+b(k,b 为常数,且k≠0),代入两组对应值求k、b,确定函数关系式.(2)把x=30代入函数式求y,根据:(售价﹣进价)×销售量=利润,求解.【解答】解:(1)设此一次函数解析式为y=kx+b(k,b为常数,且k≠0).(1分)则.(2分)解得k=﹣1,b=40(4分)即一次函数解析式为y=﹣x+40(5分)(2)当x=30时,每日的销售量为y=﹣30+40=10(件)(6分)每日所获销售利润为(30﹣10)×10=200(元)(8分)【点评】本题主要考查用待定系数法求一次函数关系式,并会用一次函数研究实际问题.3.如图,两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中给的数据信息,解答下列问题:(1)求整齐摆放在桌面上饭碗的高度y(cm)与饭碗数x(个)之间的一次函数解析式;(2)把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是多少?【考点】一次函数的应用.【专题】应用题;压轴题.【分析】(1)可设y=kx+b,因为由图示可知,x=4时y=10.5;x=7时,y=15,由此可列方程组,进而求解;(2)令x=4+7,求出相应的y值即可.【解答】解:(1)设y=kx+b(k≠0).(2分)由图可知:当x=4时,y=10.5;当x=7时,y=15.(4分)把它们分别代入上式,得(6分)解得k=1.5,b=4.5.∴一次函数的解析式是y=1.5x+4.5(x是正整数).(8分)(2)当x=4+7=11时,y=1.5×11+4.5=21(cm).即把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是21cm.(10分)【点评】本题意在考查学生利用待定系数法求解一次函数关系式,并利用关系式求值的运算技能和从情景中提取信息、解释信息、解决问题的能力.而它通过所有学生都熟悉的摞碗现象构造问题,将有关数据以直观的形象呈现给学生,让人耳目一新.从以上例子我们看到,数学就在我们身边,只要我们去观察、发现,便能找到它的踪影;数学是有用的,它可以解决实际生活、生产中的不少问题.4.鞋子的“鞋码”和鞋长(cm)存在一种换算关系,下表是几组“鞋码”与鞋长换算的对应数值:(注:“鞋码”是表示鞋子大小的一种号码)鞋长(cm) 16 19 21 24鞋码(号) 22 28 32 38(1)设鞋长为x,“鞋码”为y,试判断点(x,y)在你学过的哪种函数的图象上;(2)求x、y之间的函数关系式;(3)如果某人穿44号“鞋码”的鞋,那么他的鞋长是多少?【考点】一次函数的应用.【专题】压轴题;图表型.【分析】(1)可利用函数图象判断这些点在一条直线上,即在一次函数的图象上;(2)可设y=kx+b,把两个点的坐标代入,利用方程组即可求解;(3)令(2)中求出的解析式中的y等于44,求出x即可.【解答】解:(1)如图,这些点在一次函数的图象上;(2)设y=kx+b,由题意得,解得,∴y=2x﹣10.(x是一些不连续的值.一般情况下,x取16、16.5、17、17.5、26、26.5、27等);(3)y=44时,x=27.答:此人的鞋长为27cm.【点评】本题首先利用待定系数法确定一次函数的解析式,然后利用函数实际解决问题.5.某市为了鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费,月用水量不超过20m3时,按2元/m3计费;月用水量超过20m3时,其中的20m3仍按2元/m3收费,超过部分按2.6元/m3计费.设每户家庭用水量为xm3时,应交水费y元.(1)分别求出0≤x≤20和x>20时y与x的函数表达式;(2)小明家第二季度交纳水费的情况如下:月份四月份五月份六月份交费金额30元34元42.6元小明家这个季度共用水多少立方米?【考点】一次函数的应用.【专题】应用题.【分析】(1)因为月用水量不超过20m3时,按2元/m3计费,所以当0≤x≤20时,y与x 的函数表达式是y=2x;因为月用水量超过20m3时,其中的20m3仍按2元/m3收费,超过部分按2.6元/m3计费,所以当x>20时,y与x的函数表达式是y=2×20+2.6(x﹣20),即y=2.6x ﹣12;(2)由题意可得:因为四月份、五月份缴费金额不超过40元,所以用y=2x计算用水量;六月份缴费金额超过40元,所以用y=2.6x﹣12计算用水量.【解答】解:(1)当0≤x≤20时,y与x的函数表达式是:y=2x;当x>20时,y与x的函数表达式是:y=2×20+2.6(x﹣20)=2.6x﹣12;(2)因为小明家四、五月份的水费都不超过40元,故0≤x≤20,此时y=2x,六月份的水费超过40元,x>20,此时y=2.6x﹣12,所以把y=30代入y=2x中得,2x=30,x=15;把y=34代入y=2x中得,2x=34,x=17;把y=42.6代入y=2.6x﹣12中得,2.6x﹣12=42.6,x=21.所以,15+17+21=53.答:小明家这个季度共用水53m3.【点评】本题是贴近社会生活的应用题,赋予了生活气息,使学生真切地感受到“数学来源于生活”,体验到数学的“有用性”.这样设计体现了《新课程标准》的“问题情景﹣建立模型﹣解释、应用和拓展”的数学学习模式.6.一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y1(km),出租车离甲地的距离为y2(km),客车行驶时间为x(h),y1,y2与x 的函数关系图象如图所示:(1)根据图象,直接写出y1,y2关于x的函数关系式.(2)分别求出当x=3,x=5,x=8时,两车之间的距离.(3)若设两车间的距离为S(km),请写出S关于x的函数关系式.(4)甲、乙两地间有A、B两个加油站,相距200km,若客车进入A站加油时,出租车恰好进入B站加油.求A加油站到甲地的距离.【考点】一次函数的应用.【分析】(1)可根据待定系数法来确定函数关系式;(2)可依照(1)得出的关系式,得出结果;(3)要根据图象中自变量的3种不同的取值范围,分类讨论;(4)根据(3)中得出的函数关系式,根据自变量的取值范围分别计算出A加油站到甲地的距离.【解答】解:(1)y1=60x(0≤x≤10),y2=﹣100x+600(0≤x≤6)(2)当x=3时,y1=180,y2=300,∴y2﹣y1=120,当x=5时y1=300,y2=100,∴y1﹣y2=200,当x=8时y1=480,y2=0,∴y1﹣y2=480.(3)当两车相遇时耗时为x,y1=y2,解得x=,S=y2﹣y1=﹣160x+600(0≤x≤)S=y1﹣y2=160x﹣600(<x≤6)S=60x(6<x≤10);(4)由题意得:S=200,①当0≤x≤时,﹣160x+600=200,∴x=,∴y1=60x=150.②当<x≤6时160x﹣600=200,∴x=5,∴y1=300,③当6<x≤10时,60x≥360不合题意.即:A加油站到甲地距离为150km或300km.【点评】本题通过考查一次函数的应用来考查从图象上获取信息的能力.借助函数图象表达题目中的信息,读懂图象是关键.注意自变量的取值范围不能遗漏.7.我国是世界上严重缺水的国家之一.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费.即一月用水10吨以内(包括10吨)的用户,每吨收水费a元;一月用水超过10吨的用户,10吨水仍按每吨a元收费,超过10吨的部分,按每吨b元(b>a)收费.设一户居民月用水x吨,应收水费y元,y与x之间的函数关系如图所示.(1)求a的值;某户居民上月用水8吨,应收水费多少元;(2)求b的值,并写出当x>10时,y与x之间的函数关系式;(3)已知居民甲上月比居民乙多用水4吨,两家共收水费46元,求他们上月分别用水多少吨?【考点】一次函数的应用;二元一次方程组的应用;分段函数.【分析】(1)由图中可知,10吨水出了15元,那么a=15÷10=1.5元,用水8吨,应收水费1.5×8元;(2)由图中可知当x>10时,有y=b(x﹣10)+15.把(20,35)代入一次函数解析式即可.(3)应先判断出两家水费量的范围.【解答】解:(1)a=15÷10=1.5.(1分)用8吨水应收水费8×1.5=12(元).(2分)(2)当x>10时,有y=b(x﹣10)+15.(3分)将x=20,y=35代入,得35=10b+15.b=2.(4分)故当x>10时,y=2x﹣5.(5分)(3)∵假设甲乙用水量均不超过10吨,水费不超过46元,不符合题意;假设乙用水10吨,则甲用水14吨,∴水费是:1.5×10+1.5×10+2×4<46,不符合题意;∴甲、乙两家上月用水均超过10吨.(6分)设甲、乙两家上月用水分别为x吨,y吨,则甲用水的水费是(2x﹣5)元,乙用水的水费是(2y﹣5)元,则(8分)解得:(9分)故居民甲上月用水16吨,居民乙上月用水12吨.(10分)【点评】本题主要考查了一次函数与图形的结合,应注意分段函数的计算方法.二、利用函数的增减性解决问题8.某饮料厂为了开发新产品,用A种果汁原料和B种果汁原料试制新型甲、乙两种饮料共50千克,设甲种饮料需配制x千克,两种饮料的成本总额为y元.(1)已知甲种饮料成本每千克4元,乙种饮料成本每千克3元,请你写出y与x之间的函数关系式.(2)若用19千克A种果汁原料和17.2千克B种果汁原料试制甲、乙两种新型饮料,下表是试验的相关数据;请你列出关于x且满足题意的不等式组,求出它的解集,并由此分析如何配制这两种饮料,可使y值最小,最小值是多少?甲乙每千克饮料果汁含量果汁A 0.5千克0.2千克B 0.3千克0.4千克【考点】一元一次不等式组的应用.【专题】应用题;压轴题.【分析】(1)由题意可知y与x的等式关系:y=4x+3(50﹣x)化简即可;(2)根据题目条件可列出不等式方程组,推出y随x的增大而增大,根据实际求解.【解答】解:(1)依题意得y=4x+3(50﹣x)=x+150;(2)依题意得解不等式(1)得x≤30解不等式(2)得x≥28∴不等式组的解集为28≤x≤30∵y=x+150,y是随x的增大而增大,且28≤x≤30∴当甲种饮料取28千克,乙种饮料取22千克时,成本总额y最小,即y最小=28+150=178元.【点评】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.注意本题的不等关系为:甲种果汁不超过19,乙种果汁不超过17.2.9.某厂工人小王某月工作的部分信息如下:信息一:工作时间:每天上午8:00~12:00,下午14:00~18:00,每月25天;信息二:生产甲、乙两种产品,并且按规定每月生产甲产品的件数不少于60件.生产产品件数与所用时间之间的关系见下表:生产甲产品数(件)生产乙产品数(件)所用时间(分)10 10 35030 20 850信息三:按件计酬,每生产一件甲产品可得1.50元,每生产一件乙产品可得2.80元.根据以上信息,回答下列问题:(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分;(2)小王该月最多能得多少元此时生产甲、乙两种产品分别多少件.【考点】二元一次方程组的应用;一次函数的应用.【专题】压轴题;阅读型;图表型.【分析】(1)设生产一件甲种产品需x分,生产一件乙种产品需y分,利用待定系数法求出x,y的值.(2)设生产甲种产品用x分,则生产乙种产品用(25×8×60﹣x)分,分别求出甲乙两种生产多少件产品.【解答】解:(1)设生产一件甲种产品需x分,生产一件乙种产品需y分.由题意得:(2分)即:解这个方程组得:答:生产一件甲产品需要15分,生产一件乙产品需要20分.(4分)(2)设生产甲种产品共用x分,则生产乙种产品用(25×8×60﹣x)分.则生产甲种产品件,生产乙种产品件.(5分)∴w总额===0.1x+1680﹣0.14x=﹣0.04x+1680(7分)又,得x≥900,由一次函数的增减性,当x=900时w取得最大值,此时w=0.04×900+1680=1644(元)此时甲有(件),乙有:(件)(9分)答:小王该月最多能得1644元,此时生产甲、乙两种产品分别60,555件.【点评】通过表格当中的信息,我们可以利用列方程组来求出生产甲、乙两种产品的时间,然后利用列函数关系式表示出小王得到的总钱数,然后利用一次函数的增减性求出钱数的最大值.10.“5.12”汶川特大地震灾害发生后,社会各界积极为灾区捐款捐物,某经销商在当月销售的甲种啤酒尚有2万元货款未收到的情况下,先将销售甲种啤酒全部应收货款的70%捐给了灾区,后又将该月销售乙种啤酒所得的全部货款的80%捐给了灾区.已知该月销售甲、乙两种啤酒共5000件,甲种啤酒每件售价为50元,乙种啤酒每件售价为35元,设该月销售甲种啤酒x件,共捐助救灾款y元.(1)该经销商先捐款元,后捐款元;(用含x的式子表示)(2)写出y与x的函数关系式,并求出自变量x的取值范围;(3)该经销商两次至少共捐助多少元?【考点】一次函数的应用.【专题】压轴题.【分析】(1)根据题意可直接得出经销商先捐款50x•70%=35x元,后捐款35(5000﹣x)•80%或(140000﹣28x)元;(2)根据题意可列出式子为y=7x+140000,根据“50x﹣20000≥0”,“5000﹣x>0”求出自变量取值范围为400≤x<5000;(3)当x=400时,y最小值=142800.【解答】解:(1)50x•70%或35x,35(5000﹣x)•80%或(140000﹣28x);(2)y与x的函数关系式为:y=7x+140000,由题意得解得400≤x<5000,∴自变量x的取值范围是400≤x<5000;(3)∵y=7x+140000是一个一次函数,且7>0,400≤x<5000,∴当x=400时,y最小值=142800.答:该经销商两次至少共捐款142800元.【点评】主要考查利用一次函数的模型解决实际问题的能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义求解.注意要根据自变量的实际范围确定函数的最值.11.为支持四川抗震救灾,重庆市A、B、C三地现在分别有赈灾物资100吨、100吨、80吨,需要全部运往四川重灾地区的D、E两县.根据灾区的情况,这批赈灾物资运往D县的数量比运往E县的数量的2倍少20吨.(1)求这批赈灾物资运往D、E两县的数量各是多少?(2)若要求C地运往D县的赈灾物资为60吨,A地运往D的赈灾物资为x吨(x为整数),B地运往D县的赈灾物资数量小于A地运往D县的赈灾物资数量的2倍.其余的赈灾物资全部运往E县,且B地运往E县的赈灾物资数量不超过25吨.则A、B两地的赈灾物资运往D、E两县的方案有几种?请你写出具体的运送方案;(3)已知A、B、C三地的赈灾物资运往D、E两县的费用如下表:A地B地C地运往D县的费用(元/吨)220 200 200运往E县的费用(元/吨)250 220 210为及时将这批赈灾物资运往D、E两县,某公司主动承担运送这批赈灾物资的总费用,在(2)问的要求下,该公司承担运送这批赈灾物资的总费用最多是多少?【考点】一元一次不等式组的应用;一次函数的应用.【专题】压轴题;方案型.【分析】(1)设这批赈灾物资运往D县的数量为a吨,运往E县的数量为b吨,得到一个二元一次方程组,求解即可.(2)根据题意得到一元二次不等式,再找符合条件的整数值即可.(3)求出总费用的函数表达式,利用函数性质可求出最多的总费用.【解答】解:(1)设这批赈灾物资运往D县的数量为a吨,运往E县的数量为b吨.(1分)由题意,得(2分)解得(3分)答:这批赈灾物资运往D县的数量为180吨,运往E县的数量为100吨.(4分)(2)由题意,得(5分)解得即40<x≤45.∵x为整数,∴x的取值为41,42,43,44,45.(6分)则这批赈灾物资的运送方案有五种.具体的运送方案是:方案一:A地的赈灾物资运往D县41吨,运往E县59吨;B地的赈灾物资运往D县79吨,运往E县21吨.。
中考数学复习:专题9-11 应用对称性解决实际问题
应用对称性解决实际问题【专题综述】轴对称图形和中心对称图形都是对称图形,应用其定义和性质求解诸如工厂决策、平分面积和周长、确定函数及求值,是初中数学中常见的问题,下面略举几例,与大家共同探究求解此类问题的方法.定理1 如果两个图形关于某一直线对称,则对称轴是对应点连线的垂直平分线.定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分.【方法解读】一、工程决策例1 如图1,A、B是两个蓄水池,都在河流a的同旁,为了方便灌溉农作物,要在河边建一个抽水站,将河水送到A、B两地,问该站建在河边的哪一点,可使所修建的渠道最短,试在图中画出该点(不写作法).分析根据定理1可知:只需作出点A关于河流a的对称点D,连结BD交a于C,则C点即为所求符合题意的点.二、平分周长和面积例2 如图2所示,一个矩形内有任意一圆,请你用一直线同时将圆与矩形的周长二等分,说明作图的道理和方法.分析根据定理2可知,经过对称中心的任意一条直线可将中心对称图形周长等分、面积等分.设矩形对角线交点为O1,则O1为矩形的对称中心,圆的圆心为O,则O为圆的对称中心,故直线⊙O1为所求直线.例3 有一块方角形钢板,如图3所示.请你用一条直线将其分为面积相等的两部分(不写作法,保留作图痕迹,在图中直接画出).分析 延长FE 可将这块方钢分成两个矩形ABMF 、MCDE .设两矩形的对称中心分别为O 、O 1,根据定理2可知,经过中心O 的任意一条直线可将矩形MCDE 面积平分;经过中心O 1的任意一条直线可将矩形ABMF 面积平分,故过O 、O 1的直线可将这块方钢面积平分.三、求解析式例4 如图4所示,正方形ABCD 的边长是4,将此正方形置于直角坐标系xOy 中,使AB 在x 轴正半轴上,A 点坐标是(1,0).(1)经过点C 的直线y =43x -83与x 轴交于点E ,求四边形AECD 的面积; (2)若直线l 经过点E 且将正方形ABCD 面积平分,求直线l 的方程.分析 (1)略;(2)根据定理2可知,设矩形的对称中心为O ,平分矩形面积的直线l 必经过矩形中心O ,所以直线EO 为所求作的直线l .又O 点坐标为(3,2),E 点坐标为(2,0),故直线l 的方程为y =2x -4.四、求最值例5 代数式()224129x x ++-+的最小值是_______.分析 通过观察代数式,可构造如图5所示的几何图形,设线段AB 上有一点E ,且AB =12,AE =x ,则EB =12-x .AC =2,且垂直AB 于A ;BD =3,且垂直BD 于B .则CE =24x +,DE =()2129x -+那么,问题变成E 在AB 上何处时,CE +DE 最小?根据定理1可知,设点F 为点C 关于AB 的对称点,并设E 为DF 与AB 的交点;则CE +DE =FE +ED =DF 为最小(两点之间线段最短).此时DF2=122+(3+2)2=169,所以DF =169=13,即代数式的最小值为13.【强化训练】1. (2017黑龙江省龙东地区)如图,在矩形ABCD中,AD=4,∠DAC=30°,点P、E分别在AC、AD上,则PE+PD的最小值是()A.2B.23C.4D.83 32. (2017山东省莱芜市)如图,菱形ABCD的边长为6,∠ABC=120°,M是BC边的一个三等分点,P 是对角线AC上的动点,当PB+PM的值最小时,PM的长是()A.72B.273C.355D.2643.(2017天津)如图,在△ABC中,AB=AC,AD、CE是△ABC的两条中线,P是AD上一个动点,则下列线段的长度等于BP+EP最小值的是()A.BC B.CE C.AD D.AC4.(2017广西贺州市)如图,在⊙O中,AB是⊙O的直径,AB=10,AC CD DB==,点E是点D关于AB的对称点,M是AB上的一动点,下列结论:①∠BOE=60°;②∠CED=12∠DOB;③DM⊥CE;④CM+DM的最小值是10,上述结论中正确的个数是()A.1B.2C.3D.45.(2017临沂)如图,在平面直角坐标系中,反比例函数kyx(x>0)的图象与边长是6的正方形OABC的两边AB,BC分别相交于M,N两点,△OMN的面积为10.若动点P在x轴上,则PM+PN的最小值是()A.62B.10C.226D.2296.(2017山东省菏泽市)如图,矩形ABOC的顶点A的坐标为(﹣4,5),D是OB的中点,E是OC上的一点,当△ADE的周长最小时,点E的坐标是()A.(0,43)B.(0,53)C.(0,2)D.(0,103)7.(2017贵州省毕节市)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD平分∠CAB交BC于D 点,E,F分别是AD,AC上的动点,则CE+EF的最小值为()A .340B .415C .524 D .6 8. (2017贵州省黔南州)如图,在正方形ABCD 中,AB =9,点E 在CD 边上,且DE =2CE ,点P 是对角线AC 上的一个动点,则PE +PD 的最小值是( )A .310B .103C .9D .929. (2017山东省东营市)如图,已知菱形ABCD 的周长为16,面积为83,E 为AB 的中点,若P 为对角线BD 上一动点,则EP +AP 的最小值为 .10. (2016四川省雅安市)如图,在矩形ABCD 中,AD =6,AE ⊥BD ,垂足为E ,ED =3BE ,点P 、Q 分别在BD ,AD 上,则AP +PQ 的最小值为( )A .2B 2C .3D .33。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学二轮复习专题训练:应用性问题
1.6月1日起,某超市开始有偿提供可重复使用的三种环保购物袋,每只售价分别为1元、2元和3元,这三种环保购物袋每只最多分别能装大米3公斤、5公斤和8公斤.6月7日,小星和爸爸在该超市选购了3只环保购物袋用来装刚买的20公斤散装大米,他们选购的3只环保购物袋至少应付给超市 元.
2.一种药品经过两次降价,药价从原来每盒60元降至现在的48.6元,则平均每次降价的百分率是 . 3.汶川地震牵动着全国亿万人民的心,某校为地震灾区开展了“献出我们的爱” 赈灾捐款活动.八年级(1)班50名同学积极参加了这次赈灾捐款活动,下表是全班捐款情况的统计表: 捐款(元) 10
15
30
50 60
人数
3 6 11
13 6 因不慎两处被墨水污染,已无法看清,但已知全班平均每人捐款38元.
根据以上信息请计算出该班捐款金额的众数为 ,中位数为 。
4.小刚身高1.7m ,测得他站立在阳关下的影子长为0.85m 。
紧接着他把手臂竖直 举起,测得影子长为1.1m ,那么小刚举起手臂超出头顶 A.0.5m B.0.55m C.0.6m D.2.2m
5.甲、乙、丙三名射击运动员在某场测试中各射击20次,3人的测试成绩如下表: 甲的成绩 环数 7 8 9 10 频数 4 6
6
4
丙的成绩 环数 7 8
9
10
频数 5
5 5 5
则甲、乙、丙3名运动员测试成绩最稳定的是( ) A .甲 B .乙 C .丙 D .3人成绩稳定情况相同 6.如图,一座堤坝的横截面是梯形,根据图中
给出的数据,则坝底宽为( )(精确到0.1m )参考
数据:
2
1.414,
3
1.732
A .20 m
B .22.9 m
C .24 m
D . 25.1m.
7.如图,海上有一灯塔P ,在它周围6海里内有暗礁.一艘海轮以18海里/时的速度由西向东方向航行,行至A 点处测得灯塔P 在它的北偏东60°的方向上,继续向东行驶20分钟后,到达B 处又测得灯塔P 在它的北偏东45°方向上,如果海轮不改变方向继续前进有没有暗礁的危险?
A 东B
P
北
8.某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2:1, 在温室内,沿前侧的侧内墙保留3m 宽的空地.其它三侧内墙各保留1m 宽的通道,当矩形温室的长与宽各为多少时,蔬菜种植区域的面积是288m2?
乙的成绩 环数 7 8 9 10 频数 6
4
4
6
蔬菜种植区
前侧空地
A
D
C
B
14m
6m
30︒
45︒
9.“爱心”帐篷集团的总厂和分厂分别位于甲、乙两市,两厂原来每周生产帐篷共9千顶,现某地震灾区急需帐篷14千顶,该集团决定在一周内赶制出这批帐篷.为此,全体职工加班加点,总厂和分厂一周内制作的帐篷数分别达到了原来的1.6倍、1.5倍,恰好按时完成了这项任务. (1)在赶制帐篷的一周内,总厂和分厂各生产帐篷多少千顶?
(2)现要将这些帐篷用卡车一次性运送到该地震灾区的A B ,两地,由于两市通住A B ,两地道路的路况不同,卡车的运载量也不同.已知运送帐篷每千顶所需的车辆数、两地所急需的帐篷数如下表:
A 地
B 地
每千顶帐篷 所需车辆数
甲市 4 7 乙市
3
5
所急需帐篷数(单位:千顶)
9 5
请设计一种运送方案,使所需的车辆总数最少.说明理由,并求出最少车辆总数.
10.一种电讯信号转发装置的发射直径为31km .现要求:在一边长为30km 的正方形城区选择若干个安装点,每个点安装一个这种转发装置,使这些装置转发的信号能完全覆盖这个城市.问:
(1)能否找到这样的4个安装点,使得这些点安装了这种转发装置后能达到预设的要求? (2)至少需要选择多少个安装点,才能使这些点安装了这种转发装置后达到预设的要求?
答题要求:请你在解答时,画出必要的示意图,并用必要的计算、推理和文字来说明你的理由.(下面给出了几个边长为30km 的正方形城区示意图,供解题时选用)
答案
1. 8 ;
2. 10%;
3. 50,40;
4. A ;
5. A;
6. D;
7. 解:过点P 作PC ⊥AB 于C 点,根据题意,得
A 东B
P
北
45°
60°
AB =18×
2
060
=6,∠PAB =90°-60°=30°,∠PBC =90°-45°=45°,∠PCB =90°,
∴PC =BC 在Rt △PAC 中 tan30°=
P C A B B C
+=
6P C P C
+
即
33
6P C P C
=
+,解得PC =33+3
图1
∵33+3>6,∴海轮不改变方向继续前进无触礁危险 8. 解:设矩形温室的宽为x m,则长为2x m.
根据题意,得(x -2)·(2x -4)=288.
解这个方程,得x 1=-10(不合题意,舍去),x 2=14 所以x =14,2x =2×14=28.
答:当矩形温室的长为28m ,宽为14m 时,蔬菜种植区域的面积是288m 2.
9.解:(1)设总厂原来每周制作帐篷x 千顶,分厂原来每周制作帐篷y 千顶.
由题意,得91.6 1.514x y x y +=⎧⎨+=⎩
,
.
解得54x y =⎧⎨
=⎩,
.
所以1.68x =(千顶),1.56y =(千顶).
答:在赶制帐篷的一周内,总厂、分厂各生产帐篷8千顶、6千顶.
(2)设从(甲市)总厂调配m 千顶帐篷到灾区的A 地,则总厂调配到灾区B 地的帐篷为(8)m -千顶,(乙市)分厂调配到灾区A B ,两地的帐篷分别为(9)(3)m m --,千顶. 甲、乙两市所需运送帐篷的车辆总数为n 辆.
由题意,得47(8)3(9)5(3)(38)n m m m m m =+-+-+-≤≤
.
即68(38)n m m
=-+≤≤
.
因为10-<,所以n 随m 的增大而减小.
所以,当8m =时,n 有最小值60.
答:从总厂运送到灾区A 地帐篷8千顶,从分厂运送到灾区A B ,两地帐篷分别为1千顶、5千顶时所用车辆最少,最少的车辆为60辆.
10.解:(1)将图1中的正方形等分成如图的四个小正方形,将这4个转发装置安装在这4个小正方形对角线的交点处,此时,每个小正方形的对角线长为1
302152312=< ,每个转发装置都能完全覆盖一个小正方形区
域,故安装4个这种装置可以达到预设的要求.
(图案设计不唯一)
(2)将原正方形分割成如图2中的3个矩形,使得B E D G C G ==.将每个装置安装在这些矩形的对角线交点处,设A E x =,则30E D x =-,15D H =.
由B E D G =,得2222
3015(30)x x +=+-,
2251560
4
x ∴=
=
,2
2153030.2314B E ⎛⎫∴=
+≈< ⎪⎝⎭
, 即如此安装3个这种转发装置,也能达到预设要求.
或:将原正方形分割成如图2中的3个矩形,使得31B E =,H 是C D 的中点,将每个装置安装在这些矩形的对角线交点处,则2
2
3130
61A E =
-=
,3061D E =-, 22
(3061)1526.831D E ∴=
-
+<≈,即
如此安装三个这个转发装置,能达到预设要求.要用两个圆覆盖一个正方形,则一个圆至少要经过正方形相邻两个顶点.如图3,用一个直径为31的O 去覆盖边长为30的正方形A B C D ,设O 经过A B ,,O 与A D 交
于E ,连B E ,则22
13130
61152
A E A D =
-=<=
,这说明用两个直径都为31的圆不能完全覆盖正方形
A B C D .
所以,至少要安装3个这种转发装置,才能达到预设要求.
A
D C B 图1
B F D A E H G
图 2 图3 D
C
F B E A O。