数学真题2018广东3+证书高职高考数学试题及参考答案解析
2018年高考广东卷理科数学试题及答案解析版 精品

2018年普通高等学校招生全国统一考试(广东卷)A数学(理科)一 、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的 1 设i 为虚数单位,则复数56ii-= A 6+5i B 6-5i C -6+5i D -6-5i2 设集合U={1,2,3,4,5,6}, M={1,2,4 } 则CuM= A .U B {1,3,5} C {3,5,6} D {2,4,6}3 若向量BA=(2,3),CA =(4,7),则BC =A (-2,-4)B (3,4)C (6,10)D (-6,-10)4.下列函数中,在区间(0,+∞)上为增函数的是 A.y=ln (x+2) B.y=-1x + C.y=(12)x D.y=x+1x5.已知变量x ,y 满足约束条件⎪⎩⎪⎨⎧≤-≥+≤112y x y x y ,则z=3x+y 的最大值为A.12B.11C.3D.-16,某几何体的三视图如图1所示,它的体积为A .12π B.45π C.57π D.81π7.从个位数与十位数之和为奇数的两位数种任取一个,其个位数为0的概率是 A.49 B. 13 C. 29D. 198.对任意两个非零的平面向量α和β,定义βββαβα∙∙=∙。
若平面向量a ,b 满足|a|≥|b|>0,a 与b 的夹角⎪⎭⎫⎝⎛0,∈4πθ,且a ·b 和b ·a 都在集合⎭⎬⎫⎩⎨⎧∈Z n 2中,则b a ∙= A .12 B.1 C. 32 D. 52二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分。
(一)必做题(9-13题)9.不等式|x+2|-|x|≤1的解集为_____。
10. 621⎪⎭⎫ ⎝⎛+x x 的展开式中x ³的系数为______。
(用数字作答)11.已知递增的等差数列{a n }满足a 1=1,423-=a a ,则a n =____。
2018年普通高等学校招生全国统一考试数学试题 理(全国卷3,含解析)

2018年普通高等学校招生全国统一考试数学试题理(全国卷3)注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则A. B. C. D.【答案】C【解析】分析:由题意先解出集合A,进而得到结果。
详解:由集合A得,所以故答案选C.点睛:本题主要考查交集的运算,属于基础题。
2.A. B. C. D.【答案】D【解析】分析:由复数的乘法运算展开即可。
详解:故选D.点睛:本题主要考查复数的四则运算,属于基础题。
3. 中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是A. AB. BC. CD. D【答案】A【解析】分析:观察图形可得。
详解:观擦图形图可知,俯视图为故答案为A.点睛:本题主要考擦空间几何体的三视图,考查学生的空间想象能力,属于基础题。
4. 若,则A. B. C. D.【答案】B【解析】分析:由公式可得。
详解:故答案为B.点睛:本题主要考查二倍角公式,属于基础题。
5. 的展开式中的系数为A. 10B. 20C. 40D. 80【答案】C【解析】分析:写出,然后可得结果详解:由题可得令,则所以故选C.点睛:本题主要考查二项式定理,属于基础题。
6. 直线分别与轴,轴交于,两点,点在圆上,则面积的取值范围是A. B. C. D.【答案】A【解析】分析:先求出A,B两点坐标得到再计算圆心到直线距离,得到点P到直线距离范围,由面积公式计算即可详解:直线分别与轴,轴交于,两点,则点P在圆上圆心为(2,0),则圆心到直线距离故点P到直线的距离的范围为则故答案选A.点睛:本题主要考查直线与圆,考查了点到直线的距离公式,三角形的面积公式,属于中档题。
2018广东高职高考A卷数学试卷 教师版(学霸教育独家放送)

) D. 2(1-2n-1)
∴1+
1 2
+
1 22
+
1 23
+
1 24
+
1 2n1
=
a1(qn 1) q 1
1 =
1 n 2
1 1
1
=2(1-2-n)
2
9.(2018 广东高职高考 T9)若向量 AB (1,2) , AC (3,4),则 BC =
A. 3x-y-3=0
B. 3x+y-9=0
C. 3x-y-10=0
D. 3x+y-8=0
答案:A
解析:AB
中点(2,3)kAB=
2-4 5-(-1)
=
-
1 3
AB 垂直平分线 k=3
∴AB 垂直平分线是 y=3(x-2)+3 即 3x-y-3=0
14.(2018 广东高职高考 T14)数列an 为等比数列,前 n 项和 Sn=3n+1+a,a=( )
(2)由(1)得:A=-(x-52)2+245(0<x<5)
当 A=52时,A 最大=245
(3)由题得 C=2πr=10 解得:r=5π
∴S=πr2=2π5
由(2)得 A 最大=245 ∵π<4 ∴S>A
22.(2018 广东高职高考 T22)数列an 为等差数列 a1+a2+a3=6,a5+a6=25,
∴f(π8)=3sin(2×π8+������)=3sin(π4+������) =3(sin������cosπ4+ sinπ4cos������)
=3(
2 3
×
22+
2 2×
7) 3
= 14 +1 2
2018广东高考理科数学试题和答案

绝密★启用前2018年普通高等学校招生全国统一考试理科数学注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在条形码区域内。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整,笔迹清楚3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番。
为更好地了解该地区农村的经济收入变化情况,统计了该地区系农村建设前后农村的经济收入构成比例。
得到如下饼图:建设前经济收入构成比例建设后经济收入构成比例则下面结论中不正确的是〔新农村建设后,种植收入减少新农村建设后,其他收入增加了一倍以上新农村建设后,养殖收入增加一倍新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半7某圆柱的高为2,底面周长为16,其三视图如右图。
圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N 在左视图上的对应点为B,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为〔 A.5B.6C.7D.810.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个车圈构成,三个半圆的直径分别为直角三角形ABC 的斜边BC,直角边AB,AC 。
△ABC 的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ、Ⅱ、Ⅲ的概率分别记为123,,p p p ,则〔17<12分>现对一箱产品检验了20件,结果恰有2件不合格品,以〔1中确定的作为p 的值。
已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用<i>若不对该箱余下的产品作检验,这一箱的检验费用与赔偿费用的和记为X ,求EX ; <ii>以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?。
最新-2018年普通高等学校招生全国统一考试数学理试题广东卷含答案 精品003

2018年普通高等学校招生全国统一考试数学理试题(广东卷,含答案)参考公式:柱体的体积公式V =Sh ,其中S 为柱体的底面积,h 为柱体的高; 线性回归方程y bx a =+中系数计算公式为1122211()()()nnii i ii i nniii i xx y y x yx y b xx xnxη====---==--∑∑∑∑,a y bx =-,其中,x y 表示样本均值;若n 是正整数,则()n n a b a b -=-12(n n a a b --++ (2)1n n ab b --+).一、 选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设复数z 满足()12i z +=,其中i 为虚数单位,则z = A .1i + B. 1i -C. 22i +D.22i -2.已知集合(){,A x y =∣,x y 为实数,且}221xy +=,(){,B x y =∣,x y 为实数,且}y x =,则A B 的元素个数为A.0 B.1 C.2 D.3 3.若向量a, b, c 满足a ∥b 且a ⊥c ,则(2)⋅+=c a bA.4 B.3C.2D.04.设函数()f x 和()g x 分别是R上的偶函数和奇函数,则下列结论恒成立的是 A.()()f x g x +是偶函数 B.()()f x g x -是奇函数 C.()()f x g x +是偶函数 D.()()f x g x -是奇函数5.在平面直角坐标系xOy 上的区域D由不等式组02x y x ⎧≤≤⎪≤⎨⎪≤⎩给定。
若(,)M x y 为D 上的动点,点A的坐标为,则=⋅z OM OA 的最大值为 A. B. C .4D .36.甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军,若两队胜每局的概率相同,则甲队获得冠军的概率为 A .12 B .35 C .23 D .347.如下图,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则几何体的体积为正视图侧视图A.B.C.D.8.设S 是整数集Z 的非空子集,如果,,a b S ∀∈有ab S ∈,则称S 关于数的乘法是封闭的,若T ,V 是Z 的两个不相交的非空子集,TV Z =且,,,a b c T ∀∈有;,,,abc T x y z V ∈∀∈有xyz V ∈,则下列结论恒成立的是A.,T V 中至少有一个关于乘法是封闭的B. ,T V 中至多有一个关于乘法是封闭的C.,T V 中有且只有一个关于乘法是封闭的D. ,T V 中每一个关于乘法都是封闭的二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分。
广东省高职高中高考数学试卷试题有包括答案.docx

2018 年广东省普通高校高职考试数学试题一、 选择题(共15 小题,每题 5 分,共 75 分)1、(2018)已知集合 A 0,12,4,5, , B 0,2 ,则 A I B ()A. 1B. 0,2C.3,4,5D.0,1,22.(2018)函数 f x3 4 x 的定义域是()A 、 3,B 、 4,C 、,3D 、,4434 33.(2018)下列等式正确的是()A 、 lg5 lg3lg 2B 、 lg5lg3lg8C 、 lg 5lg101 lg 5D 、 lg = 21004.( 2018)指数函数 y a x 0a 1 的图像大致是( )AB C D5.(2018)“ x3 ”是 “ x 2 9 ”的()A 、必要非充分条件B 、充分非必要条件C 、充分必要条件D 、非充分非必要条件6.(2018)抛物线 y 24x 的准线方程是()A 、 x1B 、 x 1C 、 y 1D 、 y17. ( 2018)已知 ABC , BC3, AC6, C90 ,则( )A 、 sin A2 B 、coA=62D 、 cos( A B)12C 、 tan A311 1 1L1()8.(2018) 12223 24 2n 12A 、 2 ( 12 n ) B 、 2 ( 121 n )C 、 2 ( 12n 1 )D 、 2 ( 12n )uuuruuur 3,4uuur9.(2018)若向量 AB 1,2 , AC,则 BC ()A 、 4,6B 、 2, 2C 、 1,3D 、 2,210.(2018)现有 3000 棵树,其中 400 棵松树,现在提取 150 做样本,其中抽取松树 做样本的有( )棵A 、15B 、 20C 、25D 、 30 11.(2018) f xx3 , x 0,则 ff 2()x 21, x 0A 、1B 、0C 、 1D 、 212. (2018)一个硬币抛两次,至少一次是正面的概率是()A 、1B 、1C 、2D 、3323 413.(2018)已知点 A 1,4 , B 5,2 ,则 AB 的垂直平分线是()A 、 3x y 3B 、 3xy 9 0C 、 3x y 100 D 、 3x y 8 0 14.(2018)已知数列 a n 为等比数列,前 n 项和 S n3n 1a ,则 a()A 、 6B 、 3C 、0D 、315.(2018)设 f x 是定义在 R 上的奇函数,且对于任意实数 x ,有 fx 4f x ,若 f 1 3 ,则 f 4f 5( )A 、 3B 、3C 、 4D 、6二、二、填空题(共 5 小题,每题 5 分,共25 分)16、(2018)双曲线x2y21的离心率 e;432r r r r r17、(2018)已知向量 a,,,若 a b ,则 b;4 3 , b x 418、(2018)已知数据10, x,11, y,12, z的平均数为8,则 x, y, z 的平均数为;19、(2018)以两直线x y0 和 2x y 3 0 的交点为圆心,且与直线 2x y 2 0相切的圆的标准方程是;20 已知ABC对应边分别为的内角A B,C的对边分别为a, b, c ,已知 3b 4a, B 2 A,,则 cosA;三、解答题( 50 分)21、( 2018)矩形周长为10,面积为 A ,一边长为x。
2018年广东省高考数学试卷(文科)(全国新课标ⅰ含答案)
2018年广东省高考数学试卷(文科)(全国新课标Ⅰ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={0,2},B={﹣2,﹣1,0,1,2},则A∩B=()A.{0,2}B.{1,2}C.{0}D.{﹣2,﹣1,0,1,2}2.(5分)设z=+2i,则|z|=()A.0 B.C.1 D.3.(5分)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.(5分)已知椭圆C:+=1的一个焦点为(2,0),则C的离心率为()A.B.C.D.5.(5分)已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为()A.12πB.12πC.8πD.10π6.(5分)设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=﹣2x B.y=﹣x C.y=2x D.y=x7.(5分)在△ABC中,AD为BC边上的中线,E为AD的中点,则=()A.﹣B.﹣C.+D.+8.(5分)已知函数f(x)=2cos2x﹣sin2x+2,则()A.f(x)的最小正周期为π,最大值为3B.f(x)的最小正周期为π,最大值为4C.f(x)的最小正周期为2π,最大值为3D.f(x)的最小正周期为2π,最大值为49.(5分)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.2B.2C.3 D.210.(5分)在长方体ABCD﹣A1B1C1D1中,AB=BC=2,AC1与平面BB1C1C所成的角为30°,则该长方体的体积为()A.8 B.6C.8D.811.(5分)已知角α的顶点为坐标原点,始边与x轴的非负半轴重合,终边上有两点A(1,a),B(2,b),且cos2α=,则|a﹣b|=()A.B.C.D.112.(5分)设函数f(x)=,则满足f(x+1)<f(2x)的x的取值范围是()A.(﹣∞,﹣1]B.(0,+∞)C.(﹣1,0)D.(﹣∞,0)二、填空题:本题共4小题,每小题5分,共20分。
[高考数学] 2018年广东高考(文科)数学试题及答案
绝密★启用前2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{0,2}A ,{2,1,0,1,2}B,则AB =A .{0,2}B .{1,2}C .{0}D .{2,1,0,1,2}--2.设1i2i 1iz -=++,则||z = A .0B .12C .1D .23.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番. 为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.已知椭圆22214x y C a +=:的一个焦点为(2,0),则C 的离心率为A .13B .12C .22D .2235.已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为 A .122πB .12πC .82πD .10π6.设函数32()(1)f x x a x ax =+-+. 若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为 A .2y x =-B .y x =-C .2y x =D .y x =7.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =A .3144AB AC -B .1344AB AC -C .3144AB AC + D .1344AB AC + 8.已知函数22()2cos sin 2f x x x =-+,则 A .()f x 的最小正周期为π,最大值为3 B .()f x 的最小正周期为π,最大值为4 C .()f x 的最小正周期为2π,最大值为3 D .()f x 的最小正周期为2π,最大值为49.某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A .217B .25C .3D .210.在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30︒,则该长方体的体积为A .8B .62C .82D .8311.已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点(1,)A a ,(2,)B b ,且2cos23α=,则||a b -= A .15B .55C .255D .112.设函数2,0,()1,0,x x f x x -⎧=⎨>⎩≤ 则满足(1)(2)f x f x +<的x 的取值范围是A .(,1]-∞-B .(0,)+∞C .(1,0)-D .(,0)-∞二、填空题:本题共4小题,每小题5分,共20分。
【高三数学试题精选】广东2018年高考理科数学试题解析
广东2018年高考理科数学试题解析
5 c
2018年普通高等学校招生全国统一考试(广东卷)数学(理科)逐题详解
参考式台体体积式 ,其中分别是台体的上、下底面积, 表示台体的高
一、选择题本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的
1.设集合 , ,则 ( )
A B. c. D.
【解析】D;易得 , ,所以 ,故选D.
2.定义域为的四个函数 , , , 中,奇函数的个数是( )
A B. c. D.
【解析】c;考查基本初等函数和奇函数的概念,是奇函数的为与 ,故选c.
3.若复数满足 ,则在复平面内, 对应的点的坐标是( )
A B. c. D.
【解析】c;对应的点的坐标是 ,故选c.
4.已知离散型随机变量的分布列为
则的数学期望 ( )
A B. c. D.
【解析】A; ,故选A.
5.某四棱台的三视图如图所示,则该四棱台的体积是 ( )
A B. c. D.
【解析】B;由三视图可知,该四棱台上下底面边长分别为。
2018广东高考理科数学试卷及详细解答
2018年普通高等学校招生全国统一考试(广东卷)数学(理)一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{1,0,1},{0,1,2},M N =-=则M N ⋃=A .{1,0,1}- B. {1,0,1,2}- C. {1,0,2}- D. {0,1}答案:B2.已知复数Z 满足(34)25,i z +=则Z=A .34i - B. 34i + C. 34i -- D. 34i -+答案:A2525(34)25(34):=34,.34(34)(34)25i i z i i i i --===-++-提示故选A3.若变量,x y 满足约束条件121y x x y z x y y ≤⎧⎪+≤=+⎨⎪≥-⎩且的最大值和最小值分别为M 和m ,则M-m=A .8 B.7 C.6 D.5:(),(2,1)(1,1)3,3,6,.CM m M m C --==-∴-=答案:提示画出可行域略易知在点与处目标函数分别取得最大值与最小值选4.若实数k 满足09,k <<则曲线221259x y k-=-与曲线221259x y k -=-的 A .离心率相等 B.虚半轴长相等 C. 实半轴长相等 D.焦距相等09,90,250,(9)34(25)9,k k k k k k <<∴->->+-=-=-+答案:D提示:从而两曲线均为双曲线,又25故两双曲线的焦距相等,选D.5.已知向量()1,0,1,a =-则下列向量中与a 成60︒夹角的是A .(-1,1,0) B.(1,-1,0) C.(0,-1,1) D.(-1,0,1)0:11,,60,.22BB =∴答案提示即这两向量的夹角余弦值为从而夹角为选6、已知某地区中小学生人数和近视情况分别如图1和图2所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为A. 200,20B. 100,20C. 200,10D. 100,10。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年广东省高等职业院校 招收中等职业学校毕业生考试
数 学 试 题
注意事项:
1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、考场号、座位号填写在答题卡上。
用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,在选涂其他答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上:如需改动,先画掉原来的答案,然后再写上新的答案:不能使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本大题共15小题,没小题5分,满分75分.在每小题给出的四个只有一项是符合题目要求的.
1.已知集合}5,4,3{},4,3,2,1,0{==N M ,则下列结论正确的是
A.
N M ⊆ B. N M ⊇
C. {}
4,
3=N M D. {}
5,2,1,0=N M 2.函数x
x f +=
41
)(的定义域是
A. ]4,
(--∞ B. ()
4,-∞- C. ),4[+∞- D. ),4(+∞- 3.设向量a = )4,
(x ,b = )3,2(-,若a .
b ,则x= A. -5 B. -2 C. 2 D. 7 4.样本5,4,6,7,3的平均数和标准差为
A. 5和2
B. 5和2
C. 6和3
D. 6和3 设0>a 且y x a ,,1≠为任意实数,则下列算式错误..的是 A. 10
=a B. y
x y
x
a
a a +=⋅
C. y
x y x a a
a -= D. 22)(x x a a =
5.设)(x f 是定义在R 上的奇函数,已知当32
4)(时,0x x
x f x -=≥,则f(-1)=
A. -5
B. -3
C. 3
D. 5
6.已知角θ的顶点与原点重合,始边为x 轴的非负半轴,如果θ的终边与单位圆的交点为)5
4,53(
-P ,则下列等式正确的是
A. 53sin =
θ B. 54cos -=θ C. 34tan -=θ D. 4
3
tan -=θ 7.“4>x ”是“0)4)(1(>--x x ”的
A. 必要非充分条件
B. 充分非必要条件
C. 充分必要条件
D. 非充分非必要条件 8.下列运算不正确的是 A. 1log log 52102=- B. 15
252102log log log =+
C.
120= D. 422810=÷
9.函数x x x x x f sin 3sin cos 3cos )(-=的最小正周期为
A.
2
π
B. 32π
C. π
D. π2
10.抛物线x y 82
-=的焦点坐标是
A. (-2,0)
B. (2,0)
C. (0,-2)
D. (0,2)
11.已知双曲线162
22=-y a
x (a>0)的离心率为2,则a= A. 6 B. 3 C.
3 D. 2
12.从某班的21名男生和20名女生中,任意选一名男生和一名女生代表班级参加评教座谈会,则不同的选派方案共有
A. 41种
B. 420种
C. 520种
D. 820种 13.已知数列}{n a 为等差数列,且1a =2,公差d=2,若k a a a ,,21成等比数列,则k= A. 4 B. 6 C. 8 D. 10 14.设直线l 经过圆02222
=+++y x y x
的圆心,且在y 轴上的截距1,则直线l 的斜率为
A. 2
B. -2
C. 21
D. 2
1- 15. 已知函数x e y =的图象与单调递减函数R)f(x)(x =y ∈的图象相交于(a ,b ),给出的下列四个结
论:①b a
ln =,②a b ln =,③,b a f =)(④ 当x>a 时,x
e x
f <)(. 其中正确的结论共有
A. 1个
B. 2个
C. 3个
D. 4个
二、填空题:本大题共5小题,每小题5分,满分25分.
16.已知点)4,3(),10,7(),0,
0(--B A O ,则设a =OB OA +,则a
= . 17.设向量a =(2,3sin θ), b =(4,3cos θ),若a //b ,则tan θ= .
18.从编号分别为1,2,3,4的4张卡片中随机抽取两张不同的卡片,它们的编号之和为5的概率是 . 19.已知点A (1,2)和点B (3,-4),则以线段AB 的中点为圆心,且与直线x+y=5相切的圆的标准方程是 .
20.若等比数列{}n a 的前n 项和1
n 3
13--
=n
S ,则{}n a 的公比q= .
三、解答题:本大题共4小题,第21~23题各12分,第24题14分,满分50分. 解答须写出文字说明、证明过
程和演算步骤. 21.(本小题满分12分)
如图, 已知两点A (6,0)和点B (3,4),点C 在y 轴上,四边形OABC 为梯形,P 为线段OA 上异于端点
的一点,设x OP =.
(1)求点C 的坐标;
(2)试问当x 为何值时,三角形ABP 的面积与四边形OPBC 的面
积相等? 22.(本小题满分12分)
设ABC ∆的内角C B A ,,的对边分别为,,,c b a 已知a=2,b=3,c=5.
(Ⅰ)求sinC 的值;
(Ⅱ)求cos(A+B)+sin2C 的值.
23.(本小题满分12分)
已知数列{}n a 是等差数列,n S 是{}n a 的前n 项和,若26,16127==a a . (1)求n a 和n S ; (2)设2
S 1
+=
n n b ,求数列{}n b 的前n 项和为n T .
24.(本小题满分14分)
如图,设21,F F 分别为椭圆C :
1a 16a 2
2
2
2
=-+
y x (a>0)的左、右焦点,且22F F 21=.
(1)求椭圆C 的标准方程;
(2)设P 为第一象限内位于椭圆C 上的一点,过点P 和
2F 的直线交y 轴于点Q ,若21QF QF ⊥,求线段PQ 的长.
参考答案
一、选择题(共15小题,每小题5分,共75分.)
CDDBC CBBAA DBAAC
二、填空题(共5小题,每小题5分,共25分.)
16、 5;17、61 ; 18、31 ; 19、 8)1()2(22=++-Y x ; 20、 3
1
.。