2020年高职高考数学模拟试题一

合集下载

【中职数学】精品 2020年三校生高考模拟考试数学试卷(一)

【中职数学】精品 2020年三校生高考模拟考试数学试卷(一)

江西省2020年三校生高考模拟考试数学试卷(一)注意事项:本试卷分是非选择题、选择题和填空、解答题两部分,满分为150分,考试时间为120分钟,试题答案请写在答题卡上,不能超出答题卡边界,解答题必须有解题过程。

第Ⅰ卷(选择题共70分)一、是非选择题(本大题共10小题,每小题3分,共30分.对每小题的命题做出判断,对的选A,错的选B,请把答案填涂在答题卡上)1、设集合A ={-3,0,3},B ={0},则A B ⊆…………………………………………………………………(A B )2、02=-x 是0)3)(2(=+-x x 的必要但不充分条件……………………………………………………(A B )3、函数x y 2sin 21=的最小正周期是π………………………………………………………………………(A B )4、在等差数列}{n a 中,33=a ,125=a ,则1562=+a a ……………………………………………(AB )5、已知向量)1,3(=a,)5,2(-=b ,则)6,1(=-b a ………………………………………………………(AB )6、已知函数2)1(2+-=+x x x f ,则4)3(=f ……………………………………………………………(A B )7、二项式5)1(+x 的展开式的项数为5………………………………………………………………………(A B )8、夹在两个平行平面间的平行线段相等……………………………………………………………………(A B )9、从1,2,3,4,5中任选两个数,恰好都是奇数的是奇数的概率是103………………………………(A B )10、椭圆15922=+y x 的离心率为32………………………………………………………………………(A B )二、单项选择题(本大题共8小题,每小题5分,共40分,请把答案填涂在答题卡上)11、集合{}21<<=x x A ,集合{}1>=x x B ,则=B A ().A .())2,1(1,⋃-∞-B .()+∞,1C .(1,2)D .[),2+∞12、已知b a >,则下列不等式成立的是().A .22ba >B .ba 11>C .22bc ac >D .0<-a b 13、设}{n a 是等比数列,如果12,442==a a ,则=6a ().A .36B .12C .16D .4814、若2log 4x =,则12x =().A .4B .4±C .8D .1615、函数xy ⎪⎭⎫⎝⎛-=311的定义域为().A .[0,+∞)B .(-∞,+∞)C .[-1,1]D .(-∞,0)16、已知ABC ∆的三边分别为7=a ,10=b ,6=c 则ABC ∆为().A .锐角三角形B .直角三角形C .钝角三角形D .无法确定17、已知直线b a //,⊆b 平面M ,下列结论中正确的是().A .//a 平面MB .//a 平面M 或⊆a 平面MC .⊆a 平面MD .以上都不对18、平面上到两定点)0,6(-和)0,6(的距离之差的绝对值等于8的点的轨迹方程为().A .1162022=-y x B .1201622=+y x C .1201622=-y x D .1162022=+y x 第Ⅱ卷(非选择题共80分)三、填空题:本大题共6小题,每小题5分,共30分.19、723≤-x 的解集为___________________(用区间表示).20、=o750tan _______________.21、5本不同的书分给4个同学,每个同学至少一本,共有___________种分法.22、等差数列{}n a 的前m 项和为30,前2m 项和为100,则它的前3m 项和为.23、若4πβα=+,则=++)tan 1)(tan 1(βα.24、轴截面为正方形的圆柱,其侧面积和表面积之比为_______________.四、解答题:本大题共6小题,25~28小题每小题8分,29~30小题每小题9分,共50分.解答应写出过程或步骤.25、若)2,1(=a,)1,1(-=b ,求:(1)b a +2;(2)b a -.26、已知等比数列1,2,4,8,16,…求10a 和10S .27、已知直线l 经过抛物线y x 82-=的焦点,且与直线012=-+y x 平行,求直线l 的方程.28、已知函数f (x )=2sin x cos x +cos2x .(1)求)4(πf 的值;(2)求)(x f 的值域.29、已知动圆过定点)0,1(,且与直线1-=x 相切.(1)求动圆的圆心C 的轨迹方程;(2)直线l 过点)0,1(,且斜率2-=k ,与圆心C 的轨迹方程交于A 、B 两点,求A 、B 两点间的距离.30、已知⊥PA 正方形ABCD 所在平面,AB PA =,M 、N 分别是AB 、PC 的中点.(1)求证://MN 平面PAD ;(2)求证:⊥MN 平面PCD .。

中职对口升学资料-2020年高考数学模拟试卷-4份-11

中职对口升学资料-2020年高考数学模拟试卷-4份-11

第二部分 数学(模拟题1)一、单项选择题.(每题5分,共8小题,共40分)1.下列正确的是( )A .{Ø}=0B .1∈{(-1,1)}C .3⊆{x |x >1}D .Ø⊆{0}2.下列函数是偶函数的是( )A .y =x 2+1B .y =sin xC .y =cos xD .y =2x3.已知函数的定义域为R ,则下列函数正确的是( )A .y =x -1B .y =2x -1C .y =log 2xD .x y =4.已知角α是三角形的一个内角,若21sin α,则α=( ) A .300 B .600 C .1200 D .300 或15005.已知点A(2,1)与点B(-2,-4),则向量BA =( )A. (-4,-5)B.(4,5)C.(-4,5)D.(4,-5)6.已知圆的方程为x 2-2x +y 2+4y -11=0,则它的圆心与半径分别是( )A .(1,2),4B .(-1,2),4C .(1,-2),4D .(-1,-2),47.下列命题错误的是( )A.如果两个平行平面同时和第三个平面相交,那么它们的交线互相平行。

B .如果一条直线与一个平面平行,并且经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

C . 如果在一个平面内有两条相交直线分别平行于另一个平面,那么这两个平面互相平行。

D .如果平面外的一条直线与平面内的所有直线都平行,那么这条直线与这个平面平行。

8.某样本容量为60,若采取分层抽样的方法,若一、二、三级品的个数之比为2:3:5,则从二级品中应抽取( )个。

A .12B .18C .30D .60二、填空题(本大题共5小题,每小题6分,共30分)9.已知y =1-2cos (2x+1),则y 的最小值是 ,最大值是 ;10.=-)314sin(π; 11.已知数列:...643-432321-,,,⨯⨯⨯则这个数列的通项公a n = . 12.已知一扇形的半径为8cm ,圆心角为600,则此扇形的弧长为 .13.若某学校高三一班有20个男生,30个女生,要从男女生中各选拔出一个同学作为学校代表参加比赛,共有 种选法。

2020年对口高职高考数学模拟试卷

2020年对口高职高考数学模拟试卷

2020年口高职高考数学模拟试卷一、 选择题1.集合P={1、2、3、4},Q={x ||x |≤2,x ∈R }则P ∩Q 等于( )A 、{1、2}B 、{3、4}C 、{1}D 、{-1、-2、0、1、2}2.数f(x)=√1+x 的定义域为( )A.[0,+∞) B (-1, +∞) C.(-∞,-1) D.R3.数y = 3 sinx + 4 cosx 的最小正周期为( )A. πB. 2πC. 2π D. 5π 4.数y = ㏒2(6-x-x 2)的单调递增区间是( )A.(-∞,- 21]B.( -3,-21)C. [-21,+∞)D. [-21,2) 5.等比数列{a n }中,a n >0,a 2a 4+2a 3a 5+a 4a 5=36那么a 3+a 5的值等于( )A.6B.12C.18D.246.函数y =log 3( x +x1) (x>1)的最大值是( ) A.-2 B.2 C.-3 D.37.直线L:4x+3y-12=0与两坐村轴围成三角形的面积是( )A.24B.12C.6D.188.函数f (x)=3cos 2x+21sin2x 的最大值为( ) A.1-23 B. 23+1 C. 23-1 D.1 9.在等差数列中,已知S 4=1 ,S 8=4则a 17 + a 18 + a 19+ a 20( )A.8B.9C.10D.1110.|a |=|b |是a 2=b 2的( )A 、充分条件而悲必要条件,B 、必要条件而非充分条件,C 、充要条件,D 、非充分条件也非必要条件11.在⊿ABC 中内角A,B 满足t anAtanB=1则⊿ABC 是( )A 、等边三角形,B 、钝角三角形,C 、非等边三角形,D 、直角三角形12.函数y=sin(43x +4π )的图象平移向量(- 3π,0)后,新图象对应的函数为y=( ) A.Sin 43x B.- Sin 43x c. Cos 43x D.-Cos 43x 13.顶点在原点,对换称轴是x 轴,焦点在直线3x-4y-12=0上的抛物线方程是( )A.y 2=16xB. y 2=12xC. y 2=-16xD. y 2=-12x第二部分 非选择题(共75分)二、 填空题(每小题5分,共25分)14.x 2-32y =1的两条渐近线的夹角是 . 15.若直线(m-2)x+2y-m+3=0的斜率等于2,则直线在轴上的截距2是 .16.等比数列{a n }中,前n 项和S n = 2 n + a 则a = .17.函数f(x)=log 24x+203,则f(1)= .18.函数y=2x-3+√13−4x 的值域 .三、解答题(21、22两小题各10分,23、24两小题各15分)21、解不等式:log 3( 3 +2x-x 2)> log 3( 3 x+1)22、设等差数列{a n }的公差是正数,且a 2a 6 = -12, a 3+a 5 = -4求前项20的和.23、如图所示若过点M (4,0)且斜率为-1的直线L 与抛物线C :y 2=2px(p>0),交于A 、B 两点,若OA ⊥OB求(1)直线L 的方程,(2)抛物线C 的方程,(3)⊿ABC 的面积24、B 船位于A 船正东26公里处,现A 、B 两船同时出发,A 船以每小时12公里的速度朝正北方向行驶,B 船以每小时5公里的速度朝正西方向行驶,那么何时两船相距最近,最近距离是多少。

高职高考数学试卷模拟卷

高职高考数学试卷模拟卷

一、选择题(每题5分,共20分)1. 下列各数中,有理数是()。

A. √9B. √-16C. πD. 2√22. 如果 |a| = 3,那么 a 的值为()。

A. ±3B. ±4C. ±2D. ±13. 已知二次函数y = ax² + bx + c(a ≠ 0),如果它的图像开口向上,且顶点坐标为(1,-2),那么 a 的取值范围是()。

A. a > 0B. a < 0C. a ≥ 0D. a ≤ 04. 在等差数列 {an} 中,如果 a1 = 3,d = 2,那么第10项 an 的值为()。

A. 19B. 20C. 21D. 225. 若函数 f(x) = 2x + 1 在区间 [1, 3] 上单调递增,那么函数 g(x) = f(x) - 3 在区间 [1, 3] 上的单调性是()。

A. 单调递减B. 单调递增C. 先增后减D. 先减后增二、填空题(每题5分,共20分)6. 已知等差数列 {an} 的前n项和为 Sn,如果 S5 = 50,a1 = 2,那么 d =________。

7. 函数y = x² - 4x + 4 的图像与x轴的交点坐标为 ________。

8. 在直角坐标系中,点 A(2,3)关于 y 轴的对称点坐标为 ________。

9. 二项式定理 (a + b)ⁿ的展开式中,a³b⁷的系数为 ________。

10. 等比数列 {an} 的公比 q = 1/2,如果 a1 = 16,那么第5项 an 的值为________。

三、解答题(每题10分,共20分)11. 解下列方程组:\[\begin{cases}2x + 3y = 8 \\4x - y = 2\end{cases}\]12. 已知函数 f(x) = -3x² + 12x - 4,求函数 f(x) 的最大值。

四、应用题(15分)13. 一批货物由甲、乙两辆卡车运输,甲车每小时运输20吨,乙车每小时运输30吨。

中职对口升学资料-2020年高考数学模拟试卷-6份-10

中职对口升学资料-2020年高考数学模拟试卷-6份-10

第二部分数学(模拟题1)一、单项选择题.(每题5分,共8小题,共40分)1.下列正确的是( )A.0 ⊈ØB.0⊆{0,-1}C.Ø∈{0}D.0∈{x|3x≥0}2.函数f (x)=-2x2-1,则函数的值域为( )A.[-2,+∞) B.[-1,+∞) C.[1,+∞) D.R3.已知→a=(-2,6),→b=(4,-2),则→a•→b=( )A.20 B.4 C.-20 D.-44.已知直线4x-3y-1=0与圆(x-2)2+y2=4,则它们的位置关系是( )A. 相交B. 相切C. 相离D. 以上都有可能5.已知cos x=2a-3,则实数a的取值范围是( )A. (-1,2)B.[-1,1]C.[1,2]D.[-5,-1]6.均值是17的样本是( )A .12,15,23 B. 9,16,27 C. 14,18,19 D. 3,19,287. 下列说法不正确的是( )A.两条相交直线一定能确定一个平面。

B.若平面α内不共线的三点到平面β的距离相等,则平面α∥平面β。

C.两平行直线一定能够确定一个平面。

D.一条直线与一个平面内的所有直线都垂直,则这条直线垂直该平面。

8. 已知点A(-2,3)和点B(1,-1),则AB两点的距离为( )A.-5B.3 C.4 D.5二、填空题(本大题共5小题,每小题6分,共30分)9.已知角α的终边经过点M(12,-5),则sinα=;10.若直线经过点(2,5)和(4,-3),那么直线方程为:;11.若三棱锥的棱长都是a,则它的表面积为:;12.从A,B,C三个球队中产生冠亚军各一队,共有种结果;13.某工厂生产一批产品,每月固定成本为12000元,每件产品的可变成本为60元,若某月生产5000件产品,则这个月的成本为元.三、解答题(本大题共2小题,共30分)14. 在4与24之间插入3个数,使这5个数成等差数列,求这3个数.(10分)15.某航空公司规定旅客可以携带一定重量的行李,如果超出规定就要付钱,假如行李费用为y元,行李质量为x千克,y与x成一次函数关系,已知小东携带40千克要付费2块钱,小明携带50千克行李要付费4块钱:(1)请写出y与x的函数关系式; (8分)(2)求旅客携带65千克行李需要付费多少?(6分)(3)求旅客最多可以免费携带多少千克行李?(6分)第二部分 数学(模拟题2)一、单项选择题.(每题5分,共8小题,共40分)1.设集合M ={-1,0,2}, N ={0,1}, 则 ( )A .M ∩N =ØB .N ∈MC .N ⊆MD .-1∉N2.下列不等式中正确得到是 ( )A .5a >3aB .5+a >3-aC .3-a >2-aD .a 3a 5> 3.函数23y 2+-=x x 的定义域为是( )A .(1,2)B .(-∞,1)∪(2,+∞)C .(-∞,1]∪(2,+∞)D .(-∞,1]∪[2,+∞)4.若f (x )=2x 2,且x ∈{-2,0,2} 则f (x ) 的值域是( )A .{-2,0,2}B .{1,9}C .[1,9]D .(1,9)5.函数与x x y y=)21(2=与的图像关于( )A .原点对称B .x 轴对称C .直线y =1对称D .y 轴对称6.若角α是第二象限角,则化简αα2sin 1tan -的结果为( ) A .sin α B .-sin α C .cos α D .-cos α7.已知点A (2,-3),点B (5,2),则向量的坐标为( )A .(3,5)B .(-3,-5)C .(-3,5)D .(3,-5)8.空间中平行于同一条直线的两条直线的位置关系是( )A .相交B .平行C .异面D .以上三种情况都有二、填空题(本大题共5小题,每小题6分,共30分)9. 已知集合A ={小于4的自然数},B ={0,1},则A ∩B = ;10.函数y =1+3sin (2x +1)的最小正周期是 ;11.已知两直线l 1: x -y+2=0与l 2: x -y -1=0,则这两条直线的距离为 ;12.假设某人从甲地到乙地有8种不同的方法,从乙地到丙地有5种不同的方法,则从甲地到丙地一共有 种方法;13.已知圆柱体的模具的底面半径为10cm ,高15cm ,现在在模具中间挖空一个半径为4cm ,高为15cm 的小圆柱体,问剩下的这个模具的体积为 ;三、解答题.(本大题共2小题,共30分)14.已知数列为:1,2,4,7,11...,求这个数列的第12项。

2020年对口高职高考数学预测模拟试卷

2020年对口高职高考数学预测模拟试卷

2020年对口高职高考数学模拟试卷一、 选择题1. 设集合M={ x |X 2>16},N={ x |log 3x >1},则M ∩N=( ).A. {x |x >3}B. {x |x >4}C. {x |x <−4}D. {x |x >4或x <4}2.下列函数既是奇函数又是增函数的是()A.y =x −1B. y =x 3C. y =log 2xD.y=2x 3.直线(√3−√2)x+y=3和x+(√2−√3)y=2的位置关系是( )A.相交不垂直B. 垂直C. 平行D.重合4.等差数列{a n }中, a 1+a 4+a 7=39, a 3+a 6+a 9=27,则数列{a n }的前9项和S n =( )A.66B. 99C. 144D.2975.若抛物线y 2=2px(p>0)过点M(4,4),则点M 到准线的距离d=( ).A.5B. 4C. 3D.26.设全集U={ x |4≤X ≤10,X ≥∈N },A={4,6,8,10},则C U A=( ).A.{5}B.{5,7}C. {5,7,9}D.{7,9} 7. “a>0且b>0”是“ab>0”的( )条件。

A. 充分不必要B.充分且必要C.必要不充分D. 以上答案都不对8.如果f(X)=a x 2+bx+c(a ≠0)是偶函数,那么g(X)=a x 3+b x 2−cx 是( ). A.偶函数 B.奇函数C.非奇非偶函数D. 既是奇函数又是偶函数9.设函数f(X)= log a x(a>0且a ≠1),f(4)=2,则f(8)=( ). A.2 B.3 C.3 D.13 10.sin 800-√3cos 800−2 sin 200的值为( )。

A.0 B.1 C.−sin200 D.4sin200 11.等比数列的前4项和是203,公比q=−13,则a 1=( ). A.-9 B.3 C.9 D.13 12.已知(23) y =(32) x2+1,则y 的最大值是( )。

中职对口升学资料-2020年高考数学模拟试卷-6份-9

中职对口升学资料-2020年高考数学模拟试卷-6份-9

第二部分数学(模拟题1)一、单项选择题.(每题5分,共8小题,共40分)1.下列正确的是( )A.0 ⊈ØB.0⊆{0,-1}C.Ø∈{0}D.0∈{x|3x≥0}2.函数f (x)=-2x2-1,则函数的值域为( )A.[-2,+∞) B.[-1,+∞) C.[1,+∞) D.R3.已知→a=(-2,6),→b=(4,-2),则→a•→b=( )A.20 B.4 C.-20 D.-44.已知直线4x-3y-1=0与圆(x-2)2+y2=4,则它们的位置关系是( )A. 相交B. 相切C. 相离D. 以上都有可能5.已知cos x=2a-3,则实数a的取值范围是( )A. (-1,2)B.[-1,1]C.[1,2]D.[-5,-1]6.均值是17的样本是( )A .12,15,23 B. 9,16,27 C. 14,18,19 D. 3,19,287. 下列说法不正确的是( )A.两条相交直线一定能确定一个平面。

B.若平面α内不共线的三点到平面β的距离相等,则平面α∥平面β。

C.两平行直线一定能够确定一个平面。

D.一条直线与一个平面内的所有直线都垂直,则这条直线垂直该平面。

8. 已知点A(-2,3)和点B(1,-1),则AB两点的距离为( )A.-5B.3 C.4 D.5二、填空题(本大题共5小题,每小题6分,共30分)9.已知角α的终边经过点M(12,-5),则sinα=;10.若直线经过点(2,5)和(4,-3),那么直线方程为:;11.若三棱锥的棱长都是a,则它的表面积为:;12.从A,B,C三个球队中产生冠亚军各一队,共有种结果;13.某工厂生产一批产品,每月固定成本为12000元,每件产品的可变成本为60元,若某月生产5000件产品,则这个月的成本为元.三、解答题(本大题共2小题,共30分)14. 在4与24之间插入3个数,使这5个数成等差数列,求这3个数.(10分)15.某航空公司规定旅客可以携带一定重量的行李,如果超出规定就要付钱,假如行李费用为y元,行李质量为x千克,y与x成一次函数关系,已知小东携带40千克要付费2块钱,小明携带50千克行李要付费4块钱:(1)请写出y与x的函数关系式; (8分)(2)求旅客携带65千克行李需要付费多少?(6分)(3)求旅客最多可以免费携带多少千克行李?(6分)第二部分 数学(模拟题2)一、单项选择题.(每题5分,共8小题,共40分)1.设集合M ={-1,0,2}, N ={0,1}, 则 ( )A .M ∩N =ØB .N ∈MC .N ⊆MD .-1∉N2.下列不等式中正确得到是 ( )A .5a >3aB .5+a >3-aC .3-a >2-aD .a 3a 5> 3.函数23y 2+-=x x 的定义域为是( )A .(1,2)B .(-∞,1)∪(2,+∞)C .(-∞,1]∪(2,+∞)D .(-∞,1]∪[2,+∞)4.若f (x )=2x 2,且x ∈{-2,0,2} 则f (x ) 的值域是( )A .{-2,0,2}B .{1,9}C .[1,9]D .(1,9)5.函数与x x y y=)21(2=与的图像关于( )A .原点对称B .x 轴对称C .直线y =1对称D .y 轴对称6.若角α是第二象限角,则化简αα2sin 1tan -的结果为( ) A .sin α B .-sin α C .cos α D .-cos α7.已知点A (2,-3),点B (5,2),则向量的坐标为( )A .(3,5)B .(-3,-5)C .(-3,5)D .(3,-5)8.空间中平行于同一条直线的两条直线的位置关系是( )A .相交B .平行C .异面D .以上三种情况都有二、填空题(本大题共5小题,每小题6分,共30分)9.已知y =1-2cosα,则y 的最小值是 ,最大值是 ; 10.=-)314sin(π; 11.已知数列:...643-432321-,,,⨯⨯⨯则这个数列的通项公a n = . 12.已知一扇形的半径为5cm ,圆心角为1200,则此扇形的面积为 .13.若某学校高三一班有25个男生,30个女生,要从男女生中各选拔出一个同学作为学校代表参加比赛,共有 种选法。

2020年春季高考高等职业教育分类考试数学模拟测试卷(一)及参考答案

2020年春季高考高等职业教育分类考试数学模拟测试卷(一)及参考答案

2020年春季高考高等职业教育分类考试数学模拟测试卷(一)及参考答案2020年春季高考高等职业教育分类考试数学模拟测试卷(一)(总分:150分时间:120分钟)一、选择题(本大题有10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合{}{}0,1,2,0,1M N ==,则M N =IA .{}2B .{}0,1C .{}0,2D .{}0,1,2 2.某几何体的三视图如下图所示,则该几何体是A .圆柱B .圆锥C .三棱柱D .三棱锥3.当输入a 的值为1,b 的值为3-时,右边程序运行的结果是 A .1 B .2- C .3- D .2 4.函数2sin(2)6 y x π=-的最小正周期是A .4πB .2πC .πD .2π 5.下列函数中,在()0,+∞上是减函数的是A .1y x =B .21y x =+C .2xy = D .()()00x x y x x >??=?-≤??6.不等式组101x y x -+≥??≤?表示的平面区域是7.函数x y sin 1+=的部分图像如图所示,则该函数在[]π2,0的单调递减区间是A .[]0,πB .3,22ππINPUT a ,b a=a+b PRINT a END-11OyDC yxO1-1-11OxyB A yxO1-1俯视图侧视图正视图C.3 0,2π??D.,22ππ2ππ32π2π8.方程320x-=的根所在的区间是A.()2,00,1 C.()1,2 D.()2,39.已知向量a(2,1)=,b(3,)λ=,且a⊥b,则λ=A.6- B.6 C.32D.32-10.函数()2log1y x=-的图像大致是二、填空题(本大题有5小题,每小题5分,共25分。

把答案填在题中的横线上)11.如图,化简AB BC CD++=uuu r uuu r uuu r.12.若函数()f x是奇函数,且()21f=,则()213.某田径队有男运动员30人,女运动员10人.用分层抽样的方法从中抽出一个容量为20的样本,则抽出的女运动员有人.14.对于右边的程序框图,若输入x的值是5,则输出y的值是.15.已知ABC的三个内角,,A B C所对的边分别是,,a b c,且30,45,2A B a===o o,则b=.三、解答题(本大题有5小题,共75分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年高职高考数学模拟试题一
数 学
本试卷共4页,24小题,满分150分。

考试用时120分钟。

注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座
位号填写在答题卡上。

用2B 铅笔将试卷类型(A)填涂在答题卡相应位置上。

将条形
码横贴在答题卡右上角“条形码粘贴处”。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,
如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域
内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和
涂改液。

不按以上要求作答的答案无效。

4.考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

一.选择题(共15题,每小题5分,共75分)
1. 设集合{}2,0,1M =-,{}1,0,2N =-,则=M N ( ).
A.{}0
B. {}1
C. {}0,1,2
D. {}1,0,1,2-
2.设x 是实数,则 “0>x ”是“0||>x ”的( )
A .充分而不必要条件
B .必要而不充分条件
C .充要条件
D .既不充分也不必要条件 3.若sin 0α<且tan 0α>是,则α是( )
A .第一象限角
B . 第二象限角
C . 第三象限角
D . 第四象限角
4.函数21
)1lg(-+-=x x y 的定义域为( )
A . B. C. D. 5.已知点)33,1(),3,1(-
B A ,则直线AB 的倾斜角是( )
A .3π
B .6
π C .32π D . 65π 6.双曲线22
1102
x y -=的焦距为( ) A .
B .
C .
D .
7.设函数()⎩⎨⎧≤+->=0
, 10 ,x log 2x x x x f ,则()[]=1f f ( ) A .5 B .1 C .2 D .2-
}2|{≤x x }12|{≠≤x x x 且}2|{>x x }
12|{≠-≥x x x 且
8.在等差数列{n a }中,已知2054321=++++a a a a a ,那么3a 等于( )
A .4
B .5
C .6
D .7
9.已知过点),2(m A -和)4,(m B 的直线与直线012=-+y x 平行,则m 的值为( )
A .0
B .-8
C . 2
D . 10
10. 函数x x cos sin 4y =是 ( )
(A) 周期为π2的奇函数 (B)周期为π2的偶函数 (C) 周期为π的奇函数 (D) 周期为π的偶函数
11、设向量a =(2,-1), b =(x,3)且a ⊥b 则x=( ) A. 21 B.3 C. 2
3 D.-2 12. 某公司有员工150人,其中50岁以上的有15人,35~49岁的有45人,不到35岁的有90人.为了调查员工的身体健康状况,采用分层抽样方法从中抽取30名员工,则各年龄段人数分别为( )
(A )5,10,15 (B) 5,9,16 (C)3,9,18 (D) 3,10,17
13.已知01a <<,log log a
a x =1log 52a y =,log log a a z =,则( ) A .x y z >> B .z y x >> C .y x z >> D .z x y >>
14. 过点P(1,2)且与直线013=+-y x 垂直的直线是( )
A. 053=+-y x
B. 063=+-y x
C. 013=-+y x
D. 053=++y x
15、函数y=sin(43x +3π )的图象平移向量(- 3
π,0)后,新图象对应的函数为( ) A. y=sin(43x +12π ) B. y=sin(43x +12π7 ) C. y=sin(43x +3
π2 ) D. y=sin 43x 二.填空题(共5小题,每小题5分,共25分)
16、不等式312≤-x 的解集为____________
17.有四张大小、形状完全相同的卡片,卡片上分别写有数字1、2、3、4,从这四张卡片中随机同时
抽取两张,抽出的两张卡片上的数字都是偶数的概率是 .
18.已知直线0125=++a y x 与圆0222=+-y x x 相切,则a 的值为 _ .
19.函数()f x 定义在区间)0,+∞⎡⎣上,且单调递增,则满足)3
1()12(f x f <-的x 取值范围是
20.已知|a |=1,|b |=2且(a -b )⊥a ,则a 与b 夹角的大小为 _ .
三.解答题(共4小题,共50分)解答应写出文字说明、演算步骤或推证过程。

21、(本小题满分12分)在ABC ∆中,已知 105=∠A , 45=∠B ,24=b . (1)求C ∠; (2)求c 边的长.
22.(本小题满分12分)如图,甲船以每小时230海里的速度向正北方向航行,乙船按固定方向匀速直线航行.当甲船位于A 1处时,乙船位于甲船的北偏西105°方向的B 1处,此时两船相距20海里.当甲船航行20分钟到达A 2处时,乙船航行到甲船的北偏西120°方向的B 2处,此时两船相距210海里,问乙船每小时航行多少海里?
23. (本小题满分12分)椭圆C 的焦点在x 轴上,且离心率为
23,抛物线y x 42=的焦点是椭圆的一个顶点 (1)求椭圆C 的标准方程;
(2)直线l 过椭圆的焦点2F 并与椭圆相交于A,B 两点,且3=AB
求11AF BF +的值;
24.(本小题满分14分) 在数列{}n a 中,13a =,1133n n n a a ++=+.
(Ⅰ)设3n n n
a b =.证明:数列{}n b 是等差数列; (Ⅱ)求数列{}n a 的前n 项和n S .。

相关文档
最新文档