2018高职高考数学模拟试卷
高职高考数学模拟试卷

---精品文档欢迎来主页下载 2018高职高考数学模拟试卷120分钟。
小题,满分150分。
考试时间本试题卷共24注意事项:、答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、1铅笔将试卷类型填涂在答题卡试室号、座位号填定在答题卡上。
用2B 相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴除”铅笔把答题纸上对应题目的答案标号用2B2、选择题每小题选出答案后,涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
3、非选择题用黑色字迹的签字笔或钢笔将答案写在答题纸上。
4、考生必须保持答题卡的整洁。
不能使用涂改液。
A试卷类型:75分)小题,每小题5分,共一、单项选择题(本大题共15在每小题列出的四个备选答案中,只有一个是符合题目要求的。
错涂、多涂或未涂均无分。
????5,44N?,3M?,0,1,23,)1.已知集合,,则下列结论正确的是( ????MM?NN?52,0,1?N?,3,4?MN?M D. C. A. B.log(x?1)2?x)f(的定义域是(2 、函数)x?2A B CD ),??(((??,0)1,2]2)21(,log2?log31a?0?”的(”是“)3.“aa A.必要非充分条件 B.充分非必要条件C.充分必要条件D.非充分非必要条件4. 下列等式正确的是( ) .7lg7?lg B. A. 1lg3?lg7?3lg3lg37?7lg D.C. 37lg3lg?3lg7?????????xcb??1,02,a?4,5x? ( ,).5. 设向量,,且满足与,垂直则cba?11? C. D. A.B. 2?2223x?1?2的解集是()6.不等式精品文档.欢迎来主页下载---精品文档11???? B. C.(-1,3) D.(1,3) A.?1,,1????33????.)x+y-5=0的直线方程是(7、过点A(2,3),且垂直于直线2 2x+y-7=0 x-y-1=0 D、x-2y+4=0 B、y -2 x +4=0 C、2A、). 函数的最大值是( 8. )?4sinxcosx(x?Rf(x) D. C. B.A. 8412k??),则9.已知角的值是(终边上的一点?cos,?4),P(3k41216 D.A.C.. B ?3?4?55?.)平移后的图象对应的函数为(的图象按向量10、函数,1)?a=(x2y?sin6??B、A、1)?y?sin(2y?sin(2x?)?1x?63??D、、C1y?sin(2x??x?)y)?1?sin(236n???a).已知数列a 的前项和,则( 11. ?Sn5nn1n?5141 D. C. A. B. 654230x,,xx,x,xxxxxx,则的均值为,均值为,,,12. 在样本若90805314254213xxxxx ). 均值( ,,,,54231 D. C. A. B. 90848085 22yx1??. )、双曲线则它到右焦点的距离(13上的一点到左焦点的距离是6,925??D、4或16 16 C、4 4 、A16 B、或3?a?aa?10,a?}{a)且中,,则有(.等差数列14 3125n2??3a???a???a2,?a?2d?3,d33,d2,d..B .C.DA 1111的样本数据,分组后组距与频数如下表:一个容量为15.40精品文档.的频率为()则样本在区间[60,100]A.0.6 B.0.7 C.0.8 D.0.9分,共25分)二、填空题(本大题共5小题,每小题5????*a.16. 已知等比数列且,则,满足9a?a?aa?0Nn?756nn?33|?|?2,|b|a??ba. ,且b和的夹角为,则17. 已知向量a4率概是偶数的个数,则这个数五从1,2,3,4,5个数中任取一18. 。
2018年高职高考数学模拟试题.pptx

2018 年高职高考数学模拟试题
姓名:
班级:
分数:
一、选择题:本大题共 15 小题,每小题 5 分,满分 75 分. 在每小题给出的四个 选项中,只有一项是符合题目要求的.
1、已知集合 M {1,1}, N {0,1, 2}, 则 M N (
)
A.{0 }
B.{1 }
C. {0,1,2}
2、函数 y
1
的定义域为(
4 x2
D.{-1,0,1,2 } )
A. (2, 2)
B.[2, 2]
C.(, 2)
D.(2, )
3、已知向量a (3,5), b (2, x) ,且 a b ,则 x=( )
A、 6 5
B、 6 5
C、 5 6
D、 5 6
4、sin 30 (
)
A.1
B. 1
C. 3
)
A.3x y 1 0 B.3x y 1 0 C.x y 1 0 D.x y 1 0
1
学海无 涯
11、已知 f (x) log 2 (3x 11) 3 x ,则 f (9)
A.10 B.14 C.2 D.-2
12、设{an }是等比数列,如果a2 4, a4 12 ,则 a6 A.36
B.12
C.16
D.48
13、抛物线 y2 8x 的准线方程是( )
A.x 2 B.x 2
C. y 2
D.y 2
14、椭圆 x2 y2 1 的两焦点坐标是( ) 36 25
A、 0, 11 , 0, 11
B、 6,0,6, 0
C、 0,5,0,5
D、 11,0 , 11,0
(x)
2 x
2018年浙江省高职考数学模拟试卷14

2018年浙江省高职考数学模拟试卷(十四)一、选择题1. 已知集合R U =,{}21>-=x x B ,则B C U 等于 ( ) A.φ B.)3,1(- C.),3()1,(+∞--∞ D.[]3,1-2. 已知c b a >>,且0=++c b a ,则下列不等式中正确的是 ( )A.222c b a >> B.bc ac > C.ac ab > D.b c b a >3. 若函数32)(2+-=x x x f ,[]2,2-∈x ,则)(x f 的值域为 ( ) A.[]11,2- B. []11,2 C. []3,2 D. []11,34. 命题甲“a ,G ,b 三个数成等比数列”是命题乙“ab G ±=”成立的 ( ) A.充分不必要条件 B.必要条件 C.充要条件 D.既不充分也不必要条件5. 下列函数在),0(+∞内是增函数的是 ( )A.x x f 3)(-=B.1)(2+-=x x fC.xx f ⎪⎭⎫ ⎝⎛=31)( D.x x f 3log )(= 6. 函数0)1(12)(-+-=x x f x 的定义域为 ( )A.[)+∞,0B.[)1,0C. [)()+∞,11,0D.()+∞,17. 若点P 在角32π的终边上,且4=OP ,则P 的坐标为 ( ) A.)22,2( B.)2,32(- C.)32,2(- D. )2,32(8. 已知数列{}n a 是等差数列,n S 是等差数列的前n 项和,若2432π=++a a a ,则5co s S 的值为 ( ) A.6π B.4π C.3π D.65π 9. 已知直线过两点)3,1(A ,)1,3(--B ,则该直线的倾斜角为 ( ) A.6π B.4π C.3π D.65π 10. 函数⎪⎭⎫ ⎝⎛-=32sin 3πx y 的图像只需将函数x y 2sin 3=的图像 ( ) A.向左平移3π个单位 B. 向右平移3π个单位C. 向左平移6π个单位D. 向右平移6π个单位 11. 若平面α与平面β相交,直线α//a ,β⊂b ,则 ( ) A.a 与b 异面 B. a 与b 相交 C. a 与b 平行 D.以上都有可能12. 已知ABC ∆内角A 、B 、C 的对边分别为a ,b ,c ,若︒=∠60A ,︒=∠45B ,22=b ,则a 为 ( )A.2B.62C.32D.83 13. 顶点在原点,准线方程为41=x 的抛物线方程是 ( ) A.x y =2 B. x y -=2 C. x y 212= D.y x =2 14. 已知点)3,1(-A ,)1,5(B ,则线段AB 的中点坐标是 ( )A.)2,2(B.)1,3(-C.)0,4(D.)4,0(15. 已知320220C C n =-,则n 是 ( )A.5B.15C.19D.5或1916. 若以双曲线的顶点1A 、2A 为直径两端点的圆恰好经过虚轴的两个端点,则双曲线的渐近线和离心率e 分别为 ( )A.x y ±=,2B. x y 2±=,2C. x y ±=,22 D. x y 2±=,22 17. 求值:154cos 1514cos 154sin 15sin ππππ+等于 ( ) A.21 B.23 C.21- D.23- 18. 正方形ABCD 的中心为)2,1(,AB 所在直线的方程为022=--y x ,则正方形的外接圆的标准方程为 ( )A.5)2()1(22=-+-y xB. 5)2()1(22=+++y xC. 10)2()1(22=-+-y xD. 10)2()1(22=+++y x二、填空题19. 若1>x ,则11-+x x 的最小值为 ; 20. 已知)4,2(-a ,),1(m b ,若b a //,则b 的模为 ;21. 已知数列{}n a 是等比数列,它的前n 项和a S n n +=2,则=a ;22. 已知31cos sin =+αα,则=α2sin ; 23. 对于函数)(x f ,若存在R x ∈0,使成立00)(x x f =,则称0x 为)(x f 的不动点,则函数42)(2--=x x x f 的不动点是 ;24. 小明和小红玩飞行棋,轮流抛掷一枚骰子,规定骰子只有投到6点,玩家的棋子才能起飞,并且投到6点后,还可以再投一次,小明的一枚棋子刚好走到小红的基地附近,此时小红没有可飞的棋子,接下去如果小红能抛出可以起飞的棋子,那么只要抛出不小于4点就可以把小明的棋子逐回他自己的基地,小红能驱逐成功的概率是 ;25. 已知点)0,4(-M ,)0,4(N ,则以MN 为斜边的直角三角形的直角顶点P 的轨迹方程是 ;26. 若正方体的棱长为1,则其外接球的表面积为 ;三、解答题27. 平面内,求过点)3,2(-A ,且垂直于直线012=-+y x 的直线方程;28. 在ABC ∆中,设内角A ,B ,C 对应的边分别是a ,b ,c ,若有bc c b a 3222++=,(1)求角A 的大小;(2)若3=b ,4=c ,求ABC ∆的面积;29. 某学校组织三个班级学生参加一项活动,其中一班5人,二班6人,三班7人,(1)选出其中1人为负责人,有多少种选法?(2)每班选一名组长,有多少种选法?(3)推选二人作中心发言,这二人必须来自不同的班级,有多少种选法? 30. 已知函数⎩⎨⎧-≥+--<+=1,31,2)(2x mx x x x x f ,求:(1))3(-f 的值;(2)[])2(-f f 的值;(3)若)(x f 在[]+∞,1上是增函数,求m 的取值范围;31. 已知三角函数m x m x x x f +-=2cos 2cos sin 2)(的最大值是2,(1)求m 的值;(2)将三角函数化为()ϕω+=x A x f sin )(的形式,其中⎪⎭⎫ ⎝⎛<>2,0πϕω,并求出其最小正周期;32. 已知等差数列{}n a 中82=a ,前8项和1248=S ,(1)求数列{}n a 的通项公式;(2)将数列{}n a 中的第2项,第4项,…,第n 2项按原来的顺序排成一个新数列{}n b ,求数列{}n a 的前n 项和n T ;33. 如图所示的平面图形由4个腰长为4的等腰三角形和一个边长为2的正方形组成,(1)请画出沿虚线折起拼接后的多面体图形,并写出它的名称;(2)求该多面体中侧面与底面所成的二面角的余弦值;(3)求该多面体的体积;34. 点M 到椭圆1316422=+y x 右焦点2F 的距离和它到经过左焦点1F 且与x 轴垂直的直线距离相等,(1)求点M 的轨迹方程;(2)若正方形ABCD 的顶点A 、B 在点M 的轨迹上,顶点C ,D 在直线4+=x y 上,求正方形的边长;。
2018年浙江省高职考数学模拟试卷3

2018年浙江省高职考数学模拟试卷(三) 一、选择题 1. 已知{}c b a M ,,⊆,则满足该条件的集合M 有 ( )A. 5个B.6个C.7个D.8个2. “92=x ”是“3=x ”的 ( )A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件3. 函数)34(log 5.0-=x y 的定义域是 ( ) A.⎥⎦⎤ ⎝⎛1,43 B.]1,(-∞ C.)1,(-∞ D.⎪⎭⎫ ⎝⎛1,43 4. 下列函数在定义域内为单调递增函数的是 ( )A.121)(-⎪⎭⎫ ⎝⎛=xx f B.x x f lg )(= C.x x y 32+= D.x y cos = 5. 设0<a ,01<<-b ,那么下列各式中正确的是 ( )A.2ab ab a >>B.a ab ab >>2C.2ab a ab >>D.a ab ab >>2 6. 已知32)2(2-=x x f ,则)2(f 等于 ( ) A.0 B.1- C.21- D.3 7. 双曲线8422=-x y 的两条渐近线方程为 ( )A.x y 2±=B. x y 2±=C.y x 2±=D. y x 2±=8. 下列四个命题中,正确的一个命题是 ( )A.若a 、b 是异面直线,b 、c 是相交直线,则a 、c 是异面直线B.若两条直线与同一平面所成的角相等,则该两条直线平行C.若两个平行平面与第三个平面相交,则交线平行D.三个平面两两相交,有三条交线,则这三条交线互相平行9. 运用空间想象力判定下列四个图中不能折成正方体的是 ( )10. 已知直线的方程为)1(33+-=-x y ,则此直线的倾斜角α和必定经过的点的坐标分别是 ( )A.32πα=,)1,3(-PB. 32πα=,)3,1(-PC. 3πα-=,)1,3(-PD. 3πα-=,)3,1(-P 11. 在ABC ∆中,若B A B A sin sin cos cos >,则此三角形形状为 ( )A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形12. 已知α为第二象限角,则)cos(απ-等于 ( )A.αsinB.αsin -C.αcosD.αcos -13. 在三角形ABC 中,点D 为BC 的中点,若a AB =,b BC =,则AD 等于 ( )A.)(21b a +B. )(21b a -C. b a 21+D. b a 21- 14. 直线01=++y x 与圆2)1()1(22=++-y x 的位置关系是 ( )A.相切B.相离C. 相交但不过圆D.相交且过圆心15. 不等式132>-x 的解集为 ( )A. (]),2(1,+∞∞-YB. )2,1(C. ),2()1,(+∞-∞YD.),2[]1,(+∞-∞Y16. 等比数列的前四项依次为a ,x 2,b ,x 3,则a 与b 的比是 ( ) A. 2:3 B. 3:2 C. 3:5 D.5:317. 若0<x ,要使xx 94+取得最大值,则x 必须等于 ( ) A.23 B.23- C.12 D.12- 18. 如图所示,函数)sin(ϕω+=x A y 的一部分图像,A 、B 是图像上的一个最高点和最低点,O 为坐标原点,则OB 为 ( )A.⎪⎭⎫ ⎝⎛1,2π B. ⎪⎭⎫ ⎝⎛-1,2π C. ⎪⎭⎫ ⎝⎛1,23π D. ⎪⎭⎫ ⎝⎛-1,23π二、填空题 19. 不等式01242≥--x x 的解集为 ;20. 如右图所示,用火柴摆成正方形图形,则第50个图形需用火柴棒 根; 21. 若函数⎪⎪⎩⎪⎪⎨⎧<+-=>-=0,430,20,43)(22x x x x x x f ,则[]=)1(f f ;22. 若椭圆1422=+m y x 的焦点在x 轴上,离心率为21,则=m ; 23. 已知3tan -=α,则=+-+ααααcos sin 3cos 2sin ; 24. 两直线03134=+-y x ,0768=+-y x 之间的距离为 ;25. 若nx x ⎪⎪⎭⎫ ⎝⎛-2的展开式中,第4项为常数项,则=n ; 26. 函数4)(2++=bx x x f 在[)+∞,1上递增,则b 的取值范围是 ; 三、解答题27. 计算:()314cos 231log 064.0412273121π+-+⎪⎭⎫ ⎝⎛; 28. 在ABC ∆中,︒=∠60A ,6=AC ,3220=∆ABC S ,求边BC 的长;29. 在等差数列{}n a 中,公差0≠d ,是1a ,7a 的等比中项,且28731=++a a a ,求此数列前10项的和;30. 求与直线0443=+-y x 垂直,且与圆03222=--+x y x 相切的直线方程;31. 已知函数x x x x f 2sin 2cos sin 32)(-=,求函数)(x f 的最值和最小正周期; 32. 如图所示,底面边长为a 的正四棱锥ABCD S -的各侧面均为正三角形,SO 是正四棱锥的高,求:(1)异面直线SA 与BD 的夹角;(2)侧面SBC 与底面ABCD 所成角的正切值;33. 蒙牛公司为促销,推出免费抽奖活动,每位顾客凭超市购物小票,抽奖次,抽奖箱内有十个黄球(每个10分)和十个白球(每个5分),随机抽出十个球计算总分,(1)共有多少种不同的结果?(2)摸到100分有多少种可能?(3)摸到75分的概率是多少?34. 已知抛物线的顶点在原点,对称轴是x 轴,抛物线上点),3(m M 到焦点的距离等于4,(1)求抛物线的方程;(2)设直线b x y +=2与抛物线相交于A 、B 两点,弦AB 的长为53,求ABO ∆的面积;。
(完整word版)2018年高职高考数学模拟试卷(一)

试卷类型:A2018年高职高考第一次模拟考试数 学 试 题注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。
用2B 铅笔将试卷类型填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的,答案无效。
4.考生必须保持答题卡的整洁。
考试结束后,将答题卡交回。
一、选择题:本大题共15小题,每小题5分,满分75分.在每小题给出的四个选项中,只有一项符合题目要求.1.已知集合{}2,A a =,{}4B =,且{}1,2,4A B =U 则a =( )A .4B .3C .2D .12.函数0.2log (1)x -的定义域为( )A (1,2)B ](1,2C []1,2D )1,2⎡⎣3.已知,a b 是实数,则“0a =”是“()30a b -=”的( )A .充分非必要条件B .必要非充分条件C .充分必要条件D .非充分非必要条件4.不等式2560x x --≤的解集是( )A . {}23x x -≤≤B .{}61x x -≤≤C . {}16x x -≤≤D .{}16x x x ≥≤或5.下列函数中,在区间(0,+∞)上为增函数的是( )A .y =x +1B .y =(x -1)2C .y =2-xD .y =log 0.5(x +1)6.函数cos 2y x ⎛⎫=- ⎪⎝⎭π在区间,43ππ⎡⎤⎢⎥⎣⎦上的最大值是( ) A .1 B .3 C .2 D .127.已知向量a r =(3,1),b r =(-2,1),则2a b -r r =( )。
2018年高职高考数学模拟试卷(一)

试卷类型:A2018年高职高考第一次模拟考试数 学 试 题注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。
用2B 铅笔将试卷类型填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的,答案无效。
4.考生必须保持答题卡的整洁。
考试结束后,将答题卡交回。
一、选择题:本大题共15小题,每小题5分,满分75分.在每小题给出的四个选项中,只有一项符合题目要求.1.已知集合{}2,A a =,{}4B =,且{}1,2,4A B =U 则a =( )A .4B .3C .2D .12.函数0.2log (1)x -的定义域为( )A (1,2)B ](1,2C []1,2D )1,2⎡⎣3.已知,a b 是实数,则“0a =”是“()30a b -=”的( )A .充分非必要条件B .必要非充分条件C .充分必要条件D .非充分非必要条件4.不等式2560x x --≤的解集是( )A . {}23x x -≤≤B .{}61x x -≤≤C . {}16x x -≤≤D .{}16x x x ≥≤或5.下列函数中,在区间(0,+∞)上为增函数的是( )A .y =x +1B .y =(x -1)2C .y =2-xD .y =log 0.5(x +1)6.函数cos 2y x ⎛⎫=- ⎪⎝⎭π在区间,43ππ⎡⎤⎢⎥⎣⎦上的最大值是( ) A .1 B .3 C .2 D .127.已知向量a r =(3,1),b r =(-2,1),则2a b -r r =( )。
最新高职高考数学模拟试卷

2018高职高考数学模拟试卷本试题卷共24小题,满分150分。
考试时间120分钟。
注意事项:1、答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填定在答题卡上。
用2B 铅笔将试卷类型填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴除”2、选择题每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
3、非选择题用黑色字迹的签字笔或钢笔将答案写在答题纸上。
4、考生必须保持答题卡的整洁。
不能使用涂改液。
试卷类型:A一、单项选择题(本大题共15小题,每小题5分,共75分)在每小题列出的四个备选答案中,只有一个是符合题目要求的。
错涂、多涂或未涂均无分。
1.已知集合{}4,3,2,1,0=M ,{}5,4,3=N ,则下列结论正确的是( )A. N M ⊆B. M N ⊆C. {}4,3=⋂N MD. {}5,2,1,0=⋃N M2、函数x x x f --=2)1(log )(2的定义域是( )A )0,(-∞B )2,1(C ]2,1(D ),2(+∞3.“01a <<”是“log 2log 3a a >”的( )A.必要非充分条件B.充分非必要条件C.充分必要条件D.非充分非必要条件4. 下列等式正确的是( ) .A. lg 7lg31+=B. 7lg 7lg 3lg 3= C. 3lg 3lg 7lg 7= D. 7lg 37lg 3= 5. 设向量()4,5a =,()1,0b =,()2,c x =,且满足→→+b a 与→c 垂直,则x = ( ).A. 2-B. 12-C. 12D. 2 6.不等式312x -<的解集是( )A.113⎛⎫- ⎪⎝⎭,B.113⎛⎫ ⎪⎝⎭, C.(-1,3) D.(1,3) 7、过点A (2,3),且垂直于直线2x +y -5=0的直线方程是( ).A 、 x -2y +4=0B 、y -2 x +4=0C 、2x -y -1=0D 、 2x +y -7=08. 函数()4sin cos ()f x x x x R =∈的最大值是( ).A. 1B. 2C. 4D. 89.已知角α终边上的一点4cos ),4,3(k P =-α,则k 的值是( ) A .516- B .512 C .4- D .3- 10、函数sin 2y x =的图象按向量(,1)6a=π-平移后的图象对应的函数为( ).A 、sin(2)13y x π=--B 、sin(2)16y x π=++ C 、sin(2)16y x π=-- D 、sin(2)13y x π=++ 11. 已知数列{}n a 的前n 项和1n n S n =+,则5a = ( ). A. 142 B. 130C. 45D. 56 12. 在样本12345x x x x x ,,,,若1x ,2x ,3x 的均值为80,4x ,5x 均值为90,则1x ,2x ,3x ,4x ,5x 均值( ). A. 80 B. 84 C. 85 D. 9013、双曲线192522=-y x 上的一点到左焦点的距离是6,则它到右焦点的距离( ). A 、16 B 、4或-16 C 、4 D 、-4或1614.等差数列}{n a 中,,105=a 且3321=++a a a ,则有( )A .3,21=-=d a B .3,21==d a C .2,31=-=d a D .2,31-==d a 15.一个容量为40的样本数据,分组后组距与频数如下表:则样本在区间[60,100]的频率为( )A.0.6B.0.7C.0.8D.0.9二、填空题(本大题共5小题,每小题5分,共25分)16. 已知等比数列{}n a ,满足0n a >()*n N ∈且579a a =,则6a =.17. 已知向量a 和b 的夹角为34π,且|||3==a b ,则⋅=a b . 18.从1,2,3,4,5五个数中任取一个数,则这个数是偶数的概率是 。
208年高职高考数学模拟试卷(一)

试卷类型: A2018年高职高考第一次模拟考试数 学 试 题注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。
用2B 铅笔将试卷类型填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的,答案无效。
4.考生必须保持答题卡的整洁。
考试结束后,将答题卡交回。
一、选择题:本大题共15小题,每小题5分,满分75分.在每小题给出的四个选项中,只有一项符合题目要求.1.已知集合{}2,A a =,{}4B =,且{}1,2,4A B =U 则a =( )A .4B .3C .2D .12.函数0.2log (1)x -的定义域为( )A (1,2)B ](1,2C []1,2D )1,2⎡⎣3.已知,a b 是实数,则“0a =”是“()30a b -=”的( )A .充分非必要条件B .必要非充分条件C .充分必要条件D .非充分非必要条件4.不等式2560x x --≤的解集是( )A . {}23x x -≤≤B .{}61x x -≤≤C . {}16x x -≤≤D .{}16x x x ≥≤或5.下列函数中,在区间(0,+∞)上为增函数的是( )A .y =x +1B .y =(x -1)2C .y =2-xD .y =log 0.5(x +1)6.函数cos 2y x ⎛⎫=- ⎪⎝⎭π在区间,43ππ⎡⎤⎢⎥⎣⎦上的最大值是( )A .1BCD .127.已知向量a r =(3,1),b r =(-2,1),则2a b -r r =( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
页脚内容1
2018高职高考数学模拟试卷
本试题卷共24小题,满分150分。
考试时间120分钟。
注意事项:
1、答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填定在答题卡上。
用2B 铅笔将试卷类型填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴除”
2、选择题每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
3、非选择题用黑色字迹的签字笔或钢笔将答案写在答题纸上。
4、考生必须保持答题卡的整洁。
不能使用涂改液。
试卷类型:A
一、单项选择题(本大题共15小题,每小题5分,共75分)
在每小题列出的四个备选答案中,只有一个是符合题目要求的。
错涂、多涂或未涂均无分。
1.已知集合{}4,3,2,1,0=M ,{}5,4,3=N ,则下列结论正确的是( )
A. N M ⊆
B. M N ⊆
C. {}4,3=⋂N M
D. {}5,2,1,0=⋃N M
2、函数x x x f --=2)
1(log )(2的定义域是( )
A )0,(-∞
B )2,1(
C ]2,1(
D ),2(+∞
页脚内容2 3.“01a <<”是“log 2log 3a a >”的( )
A.必要非充分条件
B.充分非必要条件
C.充分必要条件
D.非充分非必要条件
4. 下列等式正确的是( ) .
A. lg 7lg31+=
B. 7
lg 7
lg 3lg 3= C. 3lg 3
lg 7lg 7= D. 7
lg 37lg 3=
5. 设向量()4,5a =,()1,0b =,()2,c x =,且满足→→+b a 与→c 垂直,则x = (
).
A. 2-
B. 1
2- C. 1
2 D. 2
6.不等式312x -<的解集是( ) A.1
13⎛⎫- ⎪⎝⎭, B.1
13⎛⎫ ⎪⎝⎭, C.(-1,3) D.(1,3)
7、过点A (2,3),且垂直于直线2x +y -5=0的直线方程是( ).
A 、 x -2y +4=0
B 、y -2 x +4=0
C 、2x -y -1=0
D 、 2x +y -7=0
8. 函数()4sin cos ()f x x x x R =∈的最大值是( ).
A. 1
B. 2
C. 4
D. 8
页脚内容3
9.已知角α终边上的一点4cos ),4,3(k P =
-α,则k 的值是( ) A .5
16- B .512 C .4- D .3- 10、函数sin 2y x =的图象按向量(,1)6a=π-平移后的图象对应的函数为( ).
A 、sin(2)13y x π=--
B 、sin(2)16
y x π=++ C 、sin(2)16y x π=-- D 、sin(2)13
y x π=++ 11. 已知数列{}n a 的前n 项和1n n S n =
+,则5a = ( ). A. 142 B. 130
C. 45
D. 56 12. 在样本12345x x x x x ,,,,若1x ,2x ,3x 的均值为80,4x ,5x 均值为90,则1x ,2x ,3x ,4x ,5x 均值( ).
A. 80
B. 84
C. 85
D. 90
13、双曲线19
252
2=-y x 上的一点到左焦点的距离是6,则它到右焦点的距离( ). A 、16 B 、4或-16 C 、4 D 、-4或16
14.等差数列}{n a 中,,105=a 且3321=++a a a ,则有( )
A .3,21=-=d a
B .3,21==d a
C .2,31=-=d a
D .2,31-==d a
15.一个容量为40的样本数据,分组后组距与频数如下表:
页脚内容4
则样本在区间[60,100]的频率为( )
A.0.6
B.0.7
C.0.8
D.0.9
二、填空题(本大题共5小题,每小题5分,共25分)
16. 已知等比数列{}n a ,满足0n a >()*n N ∈且57
9a a =,则6a =
. 17. 已知向量a 和b 的夹角为34
π,且|||3==a b ,则⋅=a b . 18.从1,2,3,4,5五个数中任取一个数,则这个数是偶数的概率是 。
19.圆224
0x x y -+=的圆心到直线40x -=的距离是 。
20.()f x 是定义在(0,+∞)上的增函数,则不等式()(23)f x f x >-的解集
是 。
三、解答题:(本大题共4小题,满分50分。
解答应写出文字说明、证明过程和演算步骤。
)
21、(本小题满分12分)已知三角形ABC 中,2,60ABC S c A ∆=
=∠=︒, (1)求b 的值. (2)求a 的值
页脚内容5 22、(本小题满分12分)B 船位于A 船正东26公里处,现A 、B 两船同时出发,A 船以每小时12公里的速度朝正北方向行驶,B 船以每小时5公里的速度朝正西方向行驶,那么何时两船相距最近,最近距离是多少
23、(本题满分12分)已知椭圆12222=+b
y a x 的左、右两个焦点21,F F 为双曲线1342
2=-y x 的顶点,且双曲线的离心率是椭圆的离心率的7倍。
(1)求椭圆的方程;
(2)过1F 的直线l 与椭圆的两个交点),(11y x A 和),(22y x B 且321=-y y ,若圆C 的周长与2ABF ∆的周长相等,求圆C 的面积及2ABF ∆的面积。
24. (本小题满分14分)在等差数列{}n a 中,已知4679,28a a a =+=.
(1)求数列{}n a 的通项公式;
(2)求数列{}n a 的前n 项和n S ;
(3)若()211n n b n a *=
∈-N ,数列{}n b 的前n 项和为n T ,证明:14n T <.。