浙江省2023年中考数学真题分类汇编 代数式

合集下载

浙江省金华市2021-2023三年中考数学真题分类汇编-01选择题知识点分类

浙江省金华市2021-2023三年中考数学真题分类汇编-01选择题知识点分类

浙江省金华市2021-2023三年中考数学真题分类汇编-01选择题知识点分类一.正数和负数(共1小题)1.(2023•金华)某一天,哈尔滨、北京、杭州、金华四个城市的最低气温分别是﹣20℃,﹣10℃,0℃,2℃,其中最低气温是( )A.﹣20℃B.﹣10℃C.0℃D.2℃二.科学记数法—表示较大的数(共3小题)2.(2023•金华)在2023年金华市政府工作报告中提到,2022年全市共引进大学生约123000人,其中数123000用科学记数法表示为( )A.1.23×103B.123×103C.12.3×104D.1.23×105 3.(2022•金华)体现我国先进核电技术的“华龙一号”,年发电能力相当于减少二氧化碳排放16320000吨,数16320000用科学记数法表示为( )A.1632×104B.1.632×107C.1.632×106D.16.32×105 4.(2021•金华)太阳与地球的平均距离大约是150000000千米,其中数150000000用科学记数法表示为( )A.1.5×108B.15×107C.1.5×107D.0.15×109三.无理数(共1小题)5.(2022•金华)在﹣2,,,2中,是无理数的是( )A.﹣2B.C.D.2四.实数(共1小题)6.(2021•金华)实数﹣,﹣,2,﹣3中,为负整数的是( )A.﹣B.﹣C.2D.﹣3五.列代数式(共1小题)7.(2021•金华)某超市出售一商品,有如下四种在原标价基础上调价的方案,其中调价后售价最低的是( )A.先打九五折,再打九五折B.先提价50%,再打六折C.先提价30%,再降价30%D.先提价25%,再降价25%六.同底数幂的乘法(共1小题)8.(2022•金华)计算a3•a2的结果是( )A.a B.a6C.6a D.a5七.分式的加减法(共1小题)9.(2021•金华)+=( )A.3B.C.D.八.二次根式有意义的条件(共1小题)10.(2023•金华)要使有意义,则x的值可以是( )A.0B.﹣1C.﹣2D.2九.解一元一次不等式(共1小题)11.(2021•金华)一个不等式的解集在数轴上表示如图,则这个不等式可以是( )A.x+2>0B.x﹣2<0C.2x≥4D.2﹣x<0一十.一次函数的应用(共1小题)12.(2023•金华)如图,两盏灯笼的位置A,B的坐标分别是(﹣3,3),(1,2),将点B 向右平移2个单位,再向上平移1个单位得到点B′,则关于点A,B′的位置描述正确的是( )A.关于x轴对称B.关于y轴对称C.关于原点O对称D.关于直线y=x对称一十一.反比例函数图象上点的坐标特征(共1小题)13.(2021•金华)已知点A(x1,y1),B(x2,y2)在反比例函数y=﹣的图象上.若x1<0<x2,则( )A.y1<0<y2B.y2<0<y1C.y1<y2<0D.y2<y1<0一十二.反比例函数与一次函数的交点问题(共1小题)14.(2023•金华)如图,一次函数y=ax+b的图象与反比例函数的图象交于点A(2,3),B(m,﹣2),则不等式ax+b的解是( )A.﹣3<x<0或x>2B.x<﹣3或0<x<2C.﹣2<x<0或x>2D.﹣3<x<0或x>3一十三.几何体的展开图(共1小题)15.(2021•金华)将如图所示的直棱柱展开,下列各示意图中不可能是它的表面展开图的是( )A.B.C.D.一十四.平行线的判定与性质(共2小题)16.(2023•金华)如图,已知∠1=∠2=∠3=50°,则∠4的度数是( )A.120°B.125°C.130°D.135°17.(2021•金华)某同学的作业如下框,其中※处填的依据是( )如图,已知直线l1,l2,l3,l4.若∠1=∠2,则∠3=∠4.请完成下面的说理过程.解:已知∠1=∠2,根据(内错角相等,两直线平行),得l1∥l2.再根据(※),得∠3=∠4.A.两直线平行,内错角相等B.内错角相等,两直线平行C.两直线平行,同位角相等D.两直线平行,同旁内角互补一十五.三角形三边关系(共2小题)18.(2023•金华)在下列长度的四条线段中,能与长6cm,8cm的两条线段围成一个三角形的是( )A.1cm B.2cm C.13cm D.14cm 19.(2022•金华)已知三角形的两边长分别为5cm和8cm,则第三边的长可以是( )A.2cm B.3cm C.6cm D.13cm一十六.全等三角形的判定(共1小题)20.(2022•金华)如图,AC与BD相交于点O,OA=OD,OB=OC,不添加辅助线,判定△ABO≌△DCO的依据是( )A.SSS B.SAS C.AAS D.HL一十七.勾股定理(共2小题)21.(2022•金华)如图是城市某区域的示意图,建立平面直角坐标系后,学校和体育场的坐标分别是(3,1),(4,﹣2),下列各地点中,离原点最近的是( )A .超市B .医院C .体育场D .学校22.(2021•金华)如图,在Rt △ABC 中,∠ACB =90°,以该三角形的三条边为边向外作正方形,正方形的顶点E ,F ,G ,H ,M ,N 都在同一个圆上.记该圆面积为S 1,△ABC 面积为S 2,则的值是( )A .B .3πC .5πD .一十八.平面展开-最短路径问题(共1小题)23.(2022•金华)如图,圆柱的底面直径为AB ,高为AC ,一只蚂蚁在C 处,沿圆柱的侧面爬到B 处,现将圆柱侧面沿AC “剪开”,在侧面展开图上画出蚂蚁爬行的最近路线,正确的是( )A .B .C .D .一十九.正方形的性质(共1小题)24.(2023•金华)如图,在Rt△ABC中,∠ACB=90°,以其三边为边在AB的同侧作三个正方形,点F在GH上,CG与EF交于点P,CM与BE交于点Q,若HF=FG,则的值是( )A.B.C.D.二十.相似三角形的判定与性质(共1小题)25.(2022•金华)如图是一张矩形纸片ABCD,点E为AD中点,点F在BC上,把该纸片沿EF折叠,点A,B的对应点分别为A′,B′,A′E与BC相交于点G,B′A′的延长线过点C.若=,则的值为( )A.2B.C.D.二十一.解直角三角形的应用(共1小题)26.(2022•金华)一配电房示意图如图所示,它是一个轴对称图形.已知BC=6m,∠ABC =α,则房顶A离地面EF的高度为( )A.(4+3sinα)m B.(4+3tanα)m C.(4+)m D.(4+)m 二十二.解直角三角形的应用-坡度坡角问题(共1小题)27.(2021•金华)如图是一架人字梯,已知AB=AC=2米,AC与地面BC的夹角为α,则两梯脚之间的距离BC为( )A.4cosα米B.4sinα米C.4tanα米D.米二十三.简单组合体的三视图(共1小题)28.(2023•金华)某物体如图所示,其俯视图是( )A.B.C.D.二十四.频数(率)分布直方图(共1小题)29.(2022•金华)观察如图所示的频数分布直方图,其中组界为99.5~124.5这一组的频数为( )A.5B.6C.7D.8二十五.众数(共1小题)30.(2023•金华)上周双休日,某班8名同学课外阅读的时间如下(单位:时):1,4,2,4,3,3,4,5,这组数据的众数是( )A.1时B.2时C.3时D.4时浙江省金华市2021-2023三年中考数学真题分类汇编-01选择题知识点分类参考答案与试题解析一.正数和负数(共1小题)1.(2023•金华)某一天,哈尔滨、北京、杭州、金华四个城市的最低气温分别是﹣20℃,﹣10℃,0℃,2℃,其中最低气温是( )A.﹣20℃B.﹣10℃C.0℃D.2℃【答案】A【解答】解:由题可知:﹣20<﹣10<0<2,所以最低气温是﹣20℃.故选:A.二.科学记数法—表示较大的数(共3小题)2.(2023•金华)在2023年金华市政府工作报告中提到,2022年全市共引进大学生约123000人,其中数123000用科学记数法表示为( )A.1.23×103B.123×103C.12.3×104D.1.23×105【答案】D【解答】解:123000=1.23×105.故选:D.3.(2022•金华)体现我国先进核电技术的“华龙一号”,年发电能力相当于减少二氧化碳排放16320000吨,数16320000用科学记数法表示为( )A.1632×104B.1.632×107C.1.632×106D.16.32×105【答案】B【解答】解:16320000=1.632×107,故选:B.4.(2021•金华)太阳与地球的平均距离大约是150000000千米,其中数150000000用科学记数法表示为( )A.1.5×108B.15×107C.1.5×107D.0.15×109【答案】A【解答】解:150 000 000=1.5×108,故选:A.三.无理数(共1小题)5.(2022•金华)在﹣2,,,2中,是无理数的是( )A.﹣2B.C.D.2【答案】C【解答】解:﹣2,,2是有理数,是无理数,故选:C.四.实数(共1小题)6.(2021•金华)实数﹣,﹣,2,﹣3中,为负整数的是( )A.﹣B.﹣C.2D.﹣3【答案】D【解答】解:A选项是负分数,不符合题意;B选项是无理数,不符合题意;C选项是正整数,不符合题意;D选项是负整数,符合题意;故选:D.五.列代数式(共1小题)7.(2021•金华)某超市出售一商品,有如下四种在原标价基础上调价的方案,其中调价后售价最低的是( )A.先打九五折,再打九五折B.先提价50%,再打六折C.先提价30%,再降价30%D.先提价25%,再降价25%【答案】B【解答】解:设商品原标价为a元,A.先打九五折,再打九五折的售价为:0.95×0.95a=0.9025a(元);B.先提价50%,再打六折的售价为:(1+50%)×0.6a=0.9a(元);C.先提价30%,再降价30%的售价为:(1+30%)(1﹣30%)a=0.91a(元);D.先提价25%,再降价25%的售价为:(1+25%)(1﹣25%)a=0.9375a(元);∵0.9a<0.9025a<0.91a<0.9375a,∴B选项的调价方案调价后售价最低,故选:B.六.同底数幂的乘法(共1小题)8.(2022•金华)计算a3•a2的结果是( )A.a B.a6C.6a D.a5【答案】D【解答】解:a3•a2=a5.故选:D.七.分式的加减法(共1小题)9.(2021•金华)+=( )A.3B.C.D.【答案】D【解答】解:+==,故选:D.八.二次根式有意义的条件(共1小题)10.(2023•金华)要使有意义,则x的值可以是( )A.0B.﹣1C.﹣2D.2【答案】D【解答】解:由题意得:x﹣2≥0,解得:x≥2,则x的值可以是2,故选:D.九.解一元一次不等式(共1小题)11.(2021•金华)一个不等式的解集在数轴上表示如图,则这个不等式可以是( )A.x+2>0B.x﹣2<0C.2x≥4D.2﹣x<0【答案】B【解答】解:A、x>﹣2,故A不符合题意;B、x<2,故B符合题意;C、x≥2,故C不符合题意;D、x>2,故D不符合题意.故选:B.一十.一次函数的应用(共1小题)12.(2023•金华)如图,两盏灯笼的位置A,B的坐标分别是(﹣3,3),(1,2),将点B 向右平移2个单位,再向上平移1个单位得到点B′,则关于点A,B′的位置描述正确的是( )A.关于x轴对称B.关于y轴对称C.关于原点O对称D.关于直线y=x对称【答案】B【解答】解:∵点B′由点B(1,2)向右平移2个单位,再向上平移1个单位得到∴此时B′坐标为(3,3).∴A与B′关于y轴对称.故选:B.一十一.反比例函数图象上点的坐标特征(共1小题)13.(2021•金华)已知点A(x1,y1),B(x2,y2)在反比例函数y=﹣的图象上.若x1<0<x2,则( )A.y1<0<y2B.y2<0<y1C.y1<y2<0D.y2<y1<0【答案】B【解答】解:∵k=﹣12<0,∴双曲线在第二,四象限,∵x1<0<x2,∴点A在第二象限,点B在第四象限,∴y2<0<y1;故选:B.一十二.反比例函数与一次函数的交点问题(共1小题)14.(2023•金华)如图,一次函数y=ax+b的图象与反比例函数的图象交于点A(2,3),B(m,﹣2),则不等式ax+b的解是( )A.﹣3<x<0或x>2B.x<﹣3或0<x<2C.﹣2<x<0或x>2D.﹣3<x<0或x>3【答案】A【解答】解:∵A(2,3)在反比例函数上,∴k=6.又B(m,﹣2)在反比例函数上,∴m=﹣3.∴B(﹣3,﹣2).结合图象,∴当ax+b>时,﹣3<x<0或x>2.故选:A.一十三.几何体的展开图(共1小题)15.(2021•金华)将如图所示的直棱柱展开,下列各示意图中不可能是它的表面展开图的是( )A.B.C.D.【答案】D【解答】解:选项A、B、C均可能是该直棱柱展开图,不符合题意,而选项D中的两个底面会重叠,不可能是它的表面展开图,符合题意,故选:D.一十四.平行线的判定与性质(共2小题)16.(2023•金华)如图,已知∠1=∠2=∠3=50°,则∠4的度数是( )A.120°B.125°C.130°D.135°【答案】C【解答】解:∵∠1=∠3=50°,∴a∥b,∴∠5+∠2=180°,∵∠2=50°,∴∠5=130°,∴∠4=∠5=130°.故选:C.17.(2021•金华)某同学的作业如下框,其中※处填的依据是( )如图,已知直线l1,l2,l3,l4.若∠1=∠2,则∠3=∠4.请完成下面的说理过程.解:已知∠1=∠2,根据(内错角相等,两直线平行),得l1∥l2.再根据(※),得∠3=∠4.A.两直线平行,内错角相等B.内错角相等,两直线平行C.两直线平行,同位角相等D.两直线平行,同旁内角互补【答案】C【解答】解:已知∠1=∠2,根据内错角相等,两直线平行,得l1∥l2,再根据两直线平行,同位角相等,得∠3=∠4.故选:C.一十五.三角形三边关系(共2小题)18.(2023•金华)在下列长度的四条线段中,能与长6cm,8cm的两条线段围成一个三角形的是( )A.1cm B.2cm C.13cm D.14cm【答案】C【解答】解:设第三条线段长为xcm,由题意得:8﹣6<x<8+6,解得:2<x<14,只有13cm适合,故选:C.19.(2022•金华)已知三角形的两边长分别为5cm和8cm,则第三边的长可以是( )A.2cm B.3cm C.6cm D.13cm【答案】C【解答】解:∵三角形的两边长分别为5cm和8cm,∴第三边x的长度范围为:3cm<x<13cm,∴第三边的长度可能是:6cm.故选:C.一十六.全等三角形的判定(共1小题)20.(2022•金华)如图,AC与BD相交于点O,OA=OD,OB=OC,不添加辅助线,判定△ABO≌△DCO的依据是( )A.SSS B.SAS C.AAS D.HL【答案】B【解答】解:在△AOB和△DOC中,,∴△AOB≌△DOC(SAS),故选:B.一十七.勾股定理(共2小题)21.(2022•金华)如图是城市某区域的示意图,建立平面直角坐标系后,学校和体育场的坐标分别是(3,1),(4,﹣2),下列各地点中,离原点最近的是( )A.超市B.医院C.体育场D.学校【答案】A【解答】解:如右图所示,点O到超市的距离为:=,点O到学校的距离为:=,点O到体育场的距离为:=,点O到医院的距离为:=,∵<=<,∴点O到超市的距离最近,故选:A.22.(2021•金华)如图,在Rt△ABC中,∠ACB=90°,以该三角形的三条边为边向外作正方形,正方形的顶点E,F,G,H,M,N都在同一个圆上.记该圆面积为S1,△ABC 面积为S2,则的值是( )A.B.3πC.5πD.【答案】C【解答】解:如图,取AB的中点为O,AC的中点为D,连接OE,OG,OD,OC,设AB=c,AC=b,BC=a,则a2+b2=c2,①取AB的中点为O,∵△ABC是直角三角形,∴OA=OB=OC,∵圆心在MN和HG的垂直平分线上,∴O为圆心,由勾股定理得:,②由①②得a=b,∴,∴,,∴,故选:C.一十八.平面展开-最短路径问题(共1小题)23.(2022•金华)如图,圆柱的底面直径为AB,高为AC,一只蚂蚁在C处,沿圆柱的侧面爬到B处,现将圆柱侧面沿AC“剪开”,在侧面展开图上画出蚂蚁爬行的最近路线,正确的是( )A.B.C.D.【答案】C【解答】解:将圆柱侧面沿AC“剪开”,侧面展开图为矩形,∵圆柱的底面直径为AB,∴点B是展开图的一边的中点,∵蚂蚁爬行的最近路线为线段,∴C选项符合题意,故选:C.一十九.正方形的性质(共1小题)24.(2023•金华)如图,在Rt△ABC中,∠ACB=90°,以其三边为边在AB的同侧作三个正方形,点F在GH上,CG与EF交于点P,CM与BE交于点Q,若HF=FG,则的值是( )A.B.C.D.【答案】B【解答】解:∵四边形ABEF、四边形ADGH、四边形BDMN都是正方形,∴AB=AF,AC=AH,∠BAF=∠CAH=90°,∴∠BAC=∠FAH=90°﹣∠CAF,∴△ABC≌△AFH(SAS),∴BC=HF,∵HF=FG,∴BC=FG,∵∠ACG=∠ACB=∠BCM=90°,∴∠ADB+∠ACB=180°,∠ACB+∠BCM=180°,∴B、C、G三点在同一条直线上,A、C、M三点在同一条直线上,∵∠BCQ=∠G=∠E=90°,∠BPE=∠FPG,∴∠CBQ=90°﹣∠BPE=90°﹣∠FPG=∠GFP,∴△BCQ≌△FGP(ASA),∴CQ=GP,设AC=AH=GH=2m,则HF=FG=BC=m,∴BE=AF==m,∵∠G=∠H=∠AFE=90°,∴∠GFP=∠HAF=90°﹣∠AFH,∴==tan∠GFP=tan∠HAF==,∴CQ=BC=m,∵∠E=∠BCQ=90°,∴===tan∠PBE,∴PE=BE=×m=m,∴S四边形PCQE=m×m﹣m×m=m2,∵S正方形ABEF=(m)2=5m2,∴==,故选:B.二十.相似三角形的判定与性质(共1小题)25.(2022•金华)如图是一张矩形纸片ABCD,点E为AD中点,点F在BC上,把该纸片沿EF折叠,点A,B的对应点分别为A′,B′,A′E与BC相交于点G,B′A′的延长线过点C.若=,则的值为( )A.2B.C.D.【答案】A【解答】解:连接FG,CA′,过点G作GT⊥AD于点T.设AB=x,AD=y.∵=,∴可以假设BF=2k,CG=3k.∵AE=DE=y,由翻折的性质可知EA=EA′=y,BF=FB′=2k,∠AEF=∠GEF,∵AD∥CB,∴∠AEF=∠EFG,∴∠GEF=∠GFE,∴EG=FG=y﹣5k,∴GA′=y﹣(y﹣5k)=5k﹣y,∵C,A′,B′共线,GA′∥FB′,∴=,∴=,∴y2﹣12ky+32k2=0,∴y=8k或y=4k(舍去),∴AE=DE=4k,∵四边形CDTG是矩形,∴CG=DT=3k,∴ET=k,∵EG=8k﹣5k=3k,∴AB=CD=GT==2k,∴==2.解法二:不妨设BF=2,CG=3,连接CE,则Rt△CA'E≌Rt△CDE,推出A'C=CD=AB=A'B',==1,推出GF=CG=3,BC=8,在Rt△CB'F,勾股得CB'=4则A'B'=2,故选:A.二十一.解直角三角形的应用(共1小题)26.(2022•金华)一配电房示意图如图所示,它是一个轴对称图形.已知BC=6m,∠ABC =α,则房顶A离地面EF的高度为( )A.(4+3sinα)m B.(4+3tanα)m C.(4+)m D.(4+)m 【答案】B【解答】解:过点A作AD⊥BC于点D,如图,∵它是一个轴对称图形,∴AB=AC,∵AD⊥BC,∴BD=BC=3m,在Rt△ADB中,∵tan∠ABC=,∴AD=BD•tanα=3tanαm.∴房顶A离地面EF的高度=AD+BE=(4+3tanα)m,故选:B.二十二.解直角三角形的应用-坡度坡角问题(共1小题)27.(2021•金华)如图是一架人字梯,已知AB=AC=2米,AC与地面BC的夹角为α,则两梯脚之间的距离BC为( )A.4cosα米B.4sinα米C.4tanα米D.米【答案】A【解答】解:过点A作AD⊥BC于点D,∵AB=AC=2米,AD⊥BC,∴BD=DC,∴cosα==,∴DC=2cosα(米),∴BC=2DC=2×2cosα=4cosα(米).故选:A.二十三.简单组合体的三视图(共1小题)28.(2023•金华)某物体如图所示,其俯视图是( )A.B.C.D.【答案】B【解答】解:该物体的俯视图是:B.故选:B.二十四.频数(率)分布直方图(共1小题)29.(2022•金华)观察如图所示的频数分布直方图,其中组界为99.5~124.5这一组的频数为( )A.5B.6C.7D.8【答案】D【解答】解:由直方图可得,组界为99.5~124.5这一组的频数是20﹣3﹣5﹣4=8,故选:D.二十五.众数(共1小题)30.(2023•金华)上周双休日,某班8名同学课外阅读的时间如下(单位:时):1,4,2,4,3,3,4,5,这组数据的众数是( )A.1时B.2时C.3时D.4时【答案】D【解答】解:这组数据4出现的次数最多,故众数为4,故选:D.。

浙江省各地市2023-中考数学真题分类汇编-01选择题(提升题)知识点分类

浙江省各地市2023-中考数学真题分类汇编-01选择题(提升题)知识点分类

浙江省各地市2023-中考数学真题分类汇编-01选择题(提升题)知识点分类一.实数大小比较(共1小题)1.(2023•浙江)下面四个数中,比1小的正无理数是( )A.B.﹣C.D.二.同底数幂的乘法(共1小题)2.(2023•温州)化简a4•(﹣a)3的结果是( )A.a12B.﹣a12C.a7D.﹣a7三.由实际问题抽象出二元一次方程组(共1小题)3.(2023•宁波)茶叶作为浙江省农业十大主导产业之一,是助力乡村振兴的民生产业.某村有土地60公顷,计划将其中10%的土地种植蔬菜,其余的土地开辟为茶园和种植粮食,已知茶园的面积比种粮食面积的2倍少3公顷,问茶园和种粮食的面积各多少公顷?设茶园的面积为x公顷,种粮食的面积为y公顷,可列方程组为( )A.B.C.D.四.坐标确定位置(共1小题)4.(2023•台州)如图是中国象棋棋盘的一部分,建立如图所示的平面直角坐标系,已知“車”所在位置的坐标为(﹣2,2),则“炮”所在位置的坐标为( )A.(3,1)B.(1,3)C.(4,1)D.(3,2)五.函数的图象(共2小题)5.(2023•温州)【素材1】某景区游览路线及方向如图1所示,①④⑥各路段路程相等,⑤⑦⑧各路段路程相等,②③两路段路程相等.【素材2】设游玩行走速度恒定,经过每个景点都停留20分钟,小温游路线①④⑤⑥⑦⑧用时3小时25分钟;小州游路线①②⑧,他离入口的路程s与时间t的关系(部分数据)如图2所示,在2100米处,他到出口还要走10分钟.【问题】路线①③⑥⑦⑧各路段路程之和为( )A.4200米B.4800米C.5200米D.5400米6.(2023•浙江)如图是底部放有一个实心铁球的长方体水槽轴截面示意图,现向水槽匀速注水,下列图象中能大致反映水槽中水的深度(y)与注水时间(x)关系的是( )A.B.C.D.六.反比例函数与一次函数的交点问题(共2小题)7.(2023•金华)如图,一次函数y=ax+b的图象与反比例函数的图象交于点A(2,3),B(m,﹣2),则不等式ax+b的解是( )A.﹣3<x<0或x>2B.x<﹣3或0<x<2C.﹣2<x<0或x>2D.﹣3<x<0或x>38.(2023•宁波)如图,一次函数y1=k1x+b(k1>0)的图象与反比例函数y2=(k2>0)的图象相交于A,B两点,点A的横坐标为1,点B的横坐标为﹣2,当y1<y2时,x的取值范围是( )A.x<﹣2或x>1B.x<﹣2或0<x<1C.﹣2<x<0或x>1D.﹣2<x<0或0<x<1七.反比例函数的应用(共1小题)9.(2023•丽水)如果100N的压力F作用于物体上,产生的压强p要大于1000Pa,则下列关于物体受力面积S(m2)的说法正确的是( )A.S小于0.1m2B.S大于0.1m2C.S小于10m2D.S大于10m2八.二次函数的性质(共1小题)10.(2023•台州)抛物线y=ax2﹣a(a≠0)与直线y=kx交于A(x1,y1),B(x2,y2)两点,若x1+x2<0,则直线y=ax+k一定经过( )A.第一、二象限B.第二、三象限C.第三、四象限D.第一、四象限九.抛物线与x轴的交点(共1小题)11.(2023•宁波)已知二次函数y=ax2﹣(3a+1)x+3(a≠0),下列说法正确的是( )A.点(1,2)在该函数的图象上B.当a=1且﹣1≤x≤3时,0≤y≤8C.该函数的图象与x轴一定有交点D.当a>0时,该函数图象的对称轴一定在直线x=的左侧一十.三角形的重心(共1小题)12.(2023•浙江)如图,点P是△ABC的重心,点D是边AC的中点,PE∥AC交BC于点E,DF∥BC交EP于点F.若四边形CDFE的面积为6,则△ABC的面积为( )A.12B.14C.18D.24一十一.等腰直角三角形(共1小题)13.(2023•丽水)如图,在四边形ABCD中,AD∥BC,∠C=45°,以AB为腰作等腰直角三角形BAE,顶点E恰好落在CD边上,若AD=1,则CE的长是( )A.B.C.2D.1一十二.菱形的性质(共2小题)14.(2023•温州)图1是第七届国际数学教育大会(ICME)的会徽,图2由其主体图案中相邻两个直角三角形组合而成.作菱形CDEF,使点D,E,F分别在边OC,OB,BC 上,过点E作EH⊥AB于点H.当AB=BC,∠BOC=30°,DE=2时,EH的长为( )A.B.C.D.15.(2023•丽水)如图,在菱形ABCD中,AB=1,∠DAB=60°,则AC的长为( )A.B.1C.D.一十三.矩形的性质(共1小题)16.(2023•宁波)如图,以钝角三角形ABC的最长边BC为边向外作矩形BCDE,连结AE,AD,设△AED,△ABE,△ACD的面积分别为S,S1,S2,若要求出S﹣S1﹣S2的值,只需知道( )A.△ABE的面积B.△ACD的面积C.△ABC的面积D.矩形BCDE的面积一十四.正方形的性质(共1小题)17.(2023•绍兴)如图,在矩形ABCD中,O为对角线BD的中点,∠ABD=60°,动点E 在线段OB上,动点F在线段OD上,点E,F同时从点O出发,分别向终点B,D运动,且始终保持OE=OF.点E关于AD,AB的对称点为E1,E2;点F关于BC,CD的对称点为F1,F2在整个过程中,四边形E1E2F1F2形状的变化依次是( )A.菱形→平行四边形→矩形→平行四边形→菱形B.菱形→正方形→平行四边形→菱形→平行四边形C.平行四边形→矩形→平行四边形→菱形→平行四边形D.平行四边形→菱形→正方形→平行四边形→菱形一十五.圆周角定理(共1小题)18.(2023•杭州)如图,在⊙O中,半径OA,OB互相垂直,点C在劣弧AB上.若∠ABC =19°,则∠BAC=( )A.23°B.24°C.25°D.26°一十六.圆内接四边形的性质(共1小题)19.(2023•温州)如图,四边形ABCD内接于⊙O,BC∥AD,AC⊥BD.若∠AOD=120°,AD=,则∠CAO的度数与BC的长分别为( )A.10°,1B.10°,C.15°,1D.15°,一十七.关于x轴、y轴对称的点的坐标(共1小题)20.(2023•金华)如图,两盏灯笼的位置A,B的坐标分别是(﹣3,3),(1,2),将点B 向右平移2个单位,再向上平移1个单位得到点B′,则关于点A,B′的位置描述正确的是( )A.关于x轴对称B.关于y轴对称C.关于原点O对称D.关于直线y=x对称一十八.翻折变换(折叠问题)(共1小题)21.(2023•浙江)如图,已知矩形纸片ABCD,其中AB=3,BC=4,现将纸片进行如下操作:第一步,如图①将纸片对折,使AB与DC重合,折痕为EF,展开后如图②;第二步,再将图②中的纸片沿对角线BD折叠,展开后如图③;第三步,将图③中的纸片沿过点E的直线折叠,使点C落在对角线BD上的点H处,如图④.则DH的长为( )A.B.C.D.一十九.相似三角形的判定与性质(共1小题)22.(2023•绍兴)如图,在△ABC中,D是边BC上的点(不与点B,C重合).过点D作DE∥AB交AC于点E;过点D作DF∥AC交AB于点F、N是线段BF上的点,BN=2NF:M是线段DE上的点,DM=2ME.若已知△CMN的面积,则一定能求出( )A.△AFE的面积B.△BDF的面积C.△BCN的面积D.△DCE的面积二十.解直角三角形的应用(共1小题)23.(2023•杭州)第二十四届国际数学家大会会徽的设计基础是1700多年前中国古代数学家赵爽的“弦图”.如图,在由四个全等的直角三角形(△DAE,△ABF,△BCG,△CDH)和中间一个小正方形EFGH拼成的大正方形ABCD中,∠ABF>∠BAF,连接BE.设∠BAF=α,∠BEF=β,若正方形EFGH与正方形ABCD的面积之比为1:n,tanα=tan2β,则n=( )A.5B.4C.3D.2二十一.简单组合体的三视图(共1小题)24.(2023•丽水)如图,箭头所指的是某陶艺工作室用于垫放陶器的5块相同的耐火砖搭成的几何体,它的主视图是( )A.B.C.D.浙江省各地市2023-中考数学真题分类汇编-01选择题(提升题)知识点分类参考答案与试题解析一.实数大小比较(共1小题)1.(2023•浙江)下面四个数中,比1小的正无理数是( )A.B.﹣C.D.【答案】A【解答】解:A.∵1>,∴>,即1>,且是正无理数,则A符合题意;B.﹣是负数,则B不符合题意;C.是分数,不是无理数,则C不符合题意;D.∵π>3,∴>1,则D不符合题意;故选:A.二.同底数幂的乘法(共1小题)2.(2023•温州)化简a4•(﹣a)3的结果是( )A.a12B.﹣a12C.a7D.﹣a7【答案】D【解答】解:a4•(﹣a)3=﹣a7.故选:D.三.由实际问题抽象出二元一次方程组(共1小题)3.(2023•宁波)茶叶作为浙江省农业十大主导产业之一,是助力乡村振兴的民生产业.某村有土地60公顷,计划将其中10%的土地种植蔬菜,其余的土地开辟为茶园和种植粮食,已知茶园的面积比种粮食面积的2倍少3公顷,问茶园和种粮食的面积各多少公顷?设茶园的面积为x公顷,种粮食的面积为y公顷,可列方程组为( )A.B.C.D.【答案】B【解答】解:设茶园的面积为x公顷,种粮食的面积为y公顷,由题意得:,故选:B.四.坐标确定位置(共1小题)4.(2023•台州)如图是中国象棋棋盘的一部分,建立如图所示的平面直角坐标系,已知“車”所在位置的坐标为(﹣2,2),则“炮”所在位置的坐标为( )A.(3,1)B.(1,3)C.(4,1)D.(3,2)【答案】A【解答】解:如图所示:“炮”所在位置的坐标为:(3,1).故选:A.五.函数的图象(共2小题)5.(2023•温州)【素材1】某景区游览路线及方向如图1所示,①④⑥各路段路程相等,⑤⑦⑧各路段路程相等,②③两路段路程相等.【素材2】设游玩行走速度恒定,经过每个景点都停留20分钟,小温游路线①④⑤⑥⑦⑧用时3小时25分钟;小州游路线①②⑧,他离入口的路程s与时间t的关系(部分数据)如图2所示,在2100米处,他到出口还要走10分钟.【问题】路线①③⑥⑦⑧各路段路程之和为( )A.4200米B.4800米C.5200米D.5400米【答案】B【解答】解:由图象可知:小州游玩行走的时间为75+10﹣40=45(分钟),小温游玩行走的时间为205﹣100=105(分钟),设①④⑥各路段路程为x米,⑤⑦⑧各路段路程为y米,②③各路段路程为z米由图象可得:,解得:x+y+z=2700,∴游玩行走的速度为:(2700﹣2100)÷10=60 (米/分),由于游玩行走速度恒定,则小温游路线①④⑤⑥⑦⑧的路程为:3x+3y=105×60=6300,∴x+y=2100,∴路线①③⑥⑦⑧各路段路程之和为:2x+2y+z=x+y+z+x+y=2700+2100=4800(米).故选:B.6.(2023•浙江)如图是底部放有一个实心铁球的长方体水槽轴截面示意图,现向水槽匀速注水,下列图象中能大致反映水槽中水的深度(y)与注水时间(x)关系的是( )A .B .C .D .【答案】D【解答】解:当水的深度未超过球顶时,水槽中能装水的部分的宽度由下到上由宽逐渐变窄,再变宽,所以在匀速注水过程中,水的深度变化先从上升较慢变为较快,再变为较慢;当水的深度超过球顶时,水槽中能装水的部分宽度不再变化,所以在匀速注水过程中,水的深度的上升速度不会发生变化.综上,水的深度先上升较慢,再变快,然后变慢,最后匀速上升.故选:D .六.反比例函数与一次函数的交点问题(共2小题)7.(2023•金华)如图,一次函数y =ax +b 的图象与反比例函数的图象交于点A (2,3),B (m ,﹣2),则不等式ax +b 的解是( )A .﹣3<x <0或x >2B .x <﹣3或0<x <2C .﹣2<x <0或x >2D .﹣3<x <0或x >3【答案】A【解答】解:∵A (2,3)在反比例函数上,∴k =6.又B (m ,﹣2)在反比例函数上,∴m =﹣3.∴B(﹣3,﹣2).结合图象,∴当ax+b>时,﹣3<x<0或x>2.故选:A.8.(2023•宁波)如图,一次函数y1=k1x+b(k1>0)的图象与反比例函数y2=(k2>0)的图象相交于A,B两点,点A的横坐标为1,点B的横坐标为﹣2,当y1<y2时,x的取值范围是( )A.x<﹣2或x>1B.x<﹣2或0<x<1C.﹣2<x<0或x>1D.﹣2<x<0或0<x<1【答案】B【解答】解:由图象可知,当y1<y2时,x的取值范围是x<﹣2或0<x<1,故选:B.七.反比例函数的应用(共1小题)9.(2023•丽水)如果100N的压力F作用于物体上,产生的压强p要大于1000Pa,则下列关于物体受力面积S(m2)的说法正确的是( )A.S小于0.1m2B.S大于0.1m2C.S小于10m2D.S大于10m2【答案】A【解答】解:∵,F=100,∴,∵产生的压强p要大于1000Pa,∴,∴S<0.1,故选:A.八.二次函数的性质(共1小题)10.(2023•台州)抛物线y=ax2﹣a(a≠0)与直线y=kx交于A(x1,y1),B(x2,y2)两点,若x1+x2<0,则直线y=ax+k一定经过( )A.第一、二象限B.第二、三象限C.第三、四象限D.第一、四象限【答案】D【解答】解:∵抛物线y=ax2﹣a(a≠0)与直线y=kx交于A(x1,y1),B(x2,y2)两点,∴kx=ax2﹣a,∴ax2﹣kx﹣a=0,∴,∴,当a>0,k<0时,直线y=ax+k经过第一、三、四象限,当a<0,k>0时,直线y=ax+k经过第一、二、四象限,综上,直线y=ax+k一定经过一、四象限.故选:D.九.抛物线与x轴的交点(共1小题)11.(2023•宁波)已知二次函数y=ax2﹣(3a+1)x+3(a≠0),下列说法正确的是( )A.点(1,2)在该函数的图象上B.当a=1且﹣1≤x≤3时,0≤y≤8C.该函数的图象与x轴一定有交点D.当a>0时,该函数图象的对称轴一定在直线x=的左侧【答案】C【解答】解:①对于y=ax2﹣(3a+1)x+3,当x=1时,y=a×12﹣(3a+1)×1+3=2﹣2a∵a≠0,∴y=2﹣2a≠2,∴点A(1,2)不在该函数的图象上,故选项A不正确;②当x=1时,抛物线的解析式为:y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的顶点坐标为(2,﹣1),即当x=2时,y=﹣1<0,故得选项B不正确;③令y=0,则ax2﹣(3a+1)x+3=0,∵Δ=[﹣(3a+1)]2﹣4a×3=(3a﹣1)2≥0,∴该函数的图象与x轴一定有交点,故选项C正确;④∵该抛物线的对称轴为:,又∵a>0,∴,∴该抛物线的对称轴一定在直线的右侧,故选项D不正确.故选:C.一十.三角形的重心(共1小题)12.(2023•浙江)如图,点P是△ABC的重心,点D是边AC的中点,PE∥AC交BC于点E,DF∥BC交EP于点F.若四边形CDFE的面积为6,则△ABC的面积为( )A.12B.14C.18D.24【答案】C【解答】解:如图,连接BD.∵点P是△ABC的重心,点D是边AC的中点,∴P在BD上,S△ABC=2S△BDC,∴BP:PD=2:1,∵DF∥BC,∴△DFP∽△BEP,∴=,∵EF∥AC,∴△BEP∽△BCD,∴=()2=()2=,设△DFP的面积为m,则△BEP的面积为4m,△BCD的面积为9m,∵四边形CDFE的面积为6,∴m+9m﹣4m=6,∴m=1,∴△BCD的面积为9,∴△ABC的面积是18.故选:C.一十一.等腰直角三角形(共1小题)13.(2023•丽水)如图,在四边形ABCD中,AD∥BC,∠C=45°,以AB为腰作等腰直角三角形BAE,顶点E恰好落在CD边上,若AD=1,则CE的长是( )A.B.C.2D.1【答案】A【解答】解:如图,过点A作AF⊥BC于F,过点E作GH⊥BC于H,交AD的延长线于G,则∠AFB=∠CHE=90°,∴AF∥GH,∵AD∥BC,∠AFH=90°,∴四边形AFHG是矩形,∴∠G=∠AFH=∠FHG=∠FAG=90°,∵△ABE是等腰直角三角形,∴AB=AE,∠BAE=90°,∵∠FAG=∠BAE,∴∠BAF=∠EAG,∵∠AFB=∠G=90°,∴△AFB≌△AGE(AAS),∴AF=AG,∴矩形AFHG是正方形,∴AG=GH,∵AG∥BC,∴∠C=∠EDG=45°,∴△CHE和△DGE是等腰直角三角形,∴DG=EG,CH=EH,∴AD=EH=1,∴CH=1,由勾股定理得:CE==.解法二:如图2,过点E作EF⊥CD,交BC于F,∵∠C=45°,∴△EFC是等腰直角三角形,∴EF=CE,∠CFE=45°,∴∠BFE=180°﹣45°=135°,∵∠CFE=∠FBE+∠BEF=45°,∠AED+∠BEF=90°﹣45°=45°,∴∠AED=∠FBE,∵△ABE是等腰直角三角形,∴=,∵AD∥BC,∴∠C+∠D=180°,∴∠D=180°﹣45°=135°,∴∠D=∠BFE,∴△ADE∽△EFB,∴==,∵AD=1,∴EF=,∴CE=EF=.故选:A.一十二.菱形的性质(共2小题)14.(2023•温州)图1是第七届国际数学教育大会(ICME)的会徽,图2由其主体图案中相邻两个直角三角形组合而成.作菱形CDEF,使点D,E,F分别在边OC,OB,BC 上,过点E作EH⊥AB于点H.当AB=BC,∠BOC=30°,DE=2时,EH的长为( )A.B.C.D.【答案】C【解答】解:∵四边形CDEF是菱形,DE=2,∴CD=DE=CF=EF=2,CF∥DE,CD∥EF,∵∠CBO=90°,∠BOC=30°,∴OD=2DE=4,OE=DE=2,∴CO=CD+DO=6,∴BC=AB=CD=3,OB=BC=3,∵∠A=90°,∴==3,∵EF∥CD,∴∠BEF=∠BOC=30°,∴,∵EH⊥AB,∴EH∥OA,∴△BHE∽△BAO,∴,∴,∴EH=,故选:C.15.(2023•丽水)如图,在菱形ABCD中,AB=1,∠DAB=60°,则AC的长为( )A.B.1C.D.【答案】D【解答】解:如图,连接BD交AC于点O,∵四边形ABCD是菱形,∠DAB=60°,∴OA=OC,∠BAO=∠DAB=30°,AC⊥BD,∴∠AOB=90°,∴OB=AB=,∴OA===,∴AC=2OA=,故选:D.一十三.矩形的性质(共1小题)16.(2023•宁波)如图,以钝角三角形ABC的最长边BC为边向外作矩形BCDE,连结AE,AD,设△AED,△ABE,△ACD的面积分别为S,S1,S2,若要求出S﹣S1﹣S2的值,只需知道( )A.△ABE的面积B.△ACD的面积C.△ABC的面积D.矩形BCDE的面积【解答】解:作AG⊥ED于点G,交BC于点F,∵四边形BCDE是矩形,∴∠FBE=∠BEG=∠FGE=90°,BC∥ED,BC=ED,BE=CD,∴四边形BFGE是矩形,∠AFB=∠FGE=90°,∴FG=BE=CD,AF⊥BC,∴S﹣S1﹣S2=ED•AG﹣BE•EG﹣CD•DG=ED•AG﹣FG•ED=BC•AF=S△ABC,∴只需知道S△ABC,就可求出S﹣S1﹣S2的值,故选:C.一十四.正方形的性质(共1小题)17.(2023•绍兴)如图,在矩形ABCD中,O为对角线BD的中点,∠ABD=60°,动点E 在线段OB上,动点F在线段OD上,点E,F同时从点O出发,分别向终点B,D运动,且始终保持OE=OF.点E关于AD,AB的对称点为E1,E2;点F关于BC,CD的对称点为F1,F2在整个过程中,四边形E1E2F1F2形状的变化依次是( )A.菱形→平行四边形→矩形→平行四边形→菱形B.菱形→正方形→平行四边形→菱形→平行四边形C.平行四边形→矩形→平行四边形→菱形→平行四边形D.平行四边形→菱形→正方形→平行四边形→菱形【解答】解:如图1中,∵四边形ABCD是矩形,∴AB∥CD,∠BAD=∠ABC=90°,∴∠BDC=∠ABD=60°,∠ADB=∠CBD=90°﹣60°=30°,∵OE=OF、OB=OD,∴DF=EB,∵对称,∴DF=DF2,BF=BF1,BE=BE2,DE=DE1,E1F2=E2F1.∵对称∴∠F2DC=∠CDF=60°,∴∠EDA=∠E1DA=30°,∴∠E1DB=60°,同理∠F1BD=60°,∴DE1∥BF1,∵E1F2=E2F1,∴四边形E1E2F1F2是平行四边形,如图2所示,当E,F,O三点重合时,DO=OB,∴DE1=DF2=AE1=AE2,即E1E2=E1F2,∴四边形E1E2F1F2是菱形.如图3所示,当E,F分别为OD,OB的中点时,设DB=4,则DF2=DF=1,DE1=DE=3,在Rt△ABD中,AB=2,AD=2,连接AE,AO,∵∠ABO=60°,BO=2=AB,∴△ABO是等边三角形,∵E为OB中点,∴AE⊥OB,BE=1,∴.根据对称性可得.∴AD2=12,=9,=3,∴,∴ΔDE1A是直角三角形,且∠E1=90°,四边形E1E2F1F2是矩形.当F,E分别与D,B重合时,△BE1D,△BDF1都是等边三角形,则四边形E1E2F2F2是菱形,∴在整个过程中,四边形E1E2F1F2形状的变化依次是菱形→平行四边形→矩形→平行四边形→菱形,故选:A.一十五.圆周角定理(共1小题)18.(2023•杭州)如图,在⊙O中,半径OA,OB互相垂直,点C在劣弧AB上.若∠ABC =19°,则∠BAC=( )A.23°B.24°C.25°D.26°【答案】D【解答】解:连接OC,∵∠ABC=19°,∴∠AOC=2∠ABC=38°,∵半径OA,OB互相垂直,∴∠AOB=90°,∴∠BOC=90°﹣38°=52°,∴∠BAC=∠BOC=26°,故选:D.一十六.圆内接四边形的性质(共1小题)19.(2023•温州)如图,四边形ABCD内接于⊙O,BC∥AD,AC⊥BD.若∠AOD=120°,AD=,则∠CAO的度数与BC的长分别为( )A.10°,1B.10°,C.15°,1D.15°,【答案】C【解答】解:∵BC∥AD,∴∠DBC=∠ADB,∴=,∴∠AOB=∠COD,∠CAD=∠BDA,∵DB⊥AC,∴∠AED=90°,∴∠CAD=∠BDA=45°,∴∠AOB=2∠ADB=90°,∠COD=2∠CAD=90°,∵∠AOD=120°,∴∠BOC=360°﹣90°﹣90°﹣120°=60°,∵OB=OC,∴△OBC是等边三角形,∴BC=OB,∵OA=OD,∠AOD=120°,∴∠OAD=∠ODA=30°,∴AD=OA=,∴OA=1,∴BC=1,∴∠CAO=∠CAD﹣∠OAD=45°﹣30°=15°.故选:C.一十七.关于x轴、y轴对称的点的坐标(共1小题)20.(2023•金华)如图,两盏灯笼的位置A,B的坐标分别是(﹣3,3),(1,2),将点B 向右平移2个单位,再向上平移1个单位得到点B′,则关于点A,B′的位置描述正确的是( )A.关于x轴对称B.关于y轴对称C.关于原点O对称D.关于直线y=x对称【答案】B【解答】解:∵点B′由点B(1,2)向右平移2个单位,再向上平移1个单位得到∴此时B′坐标为(3,3).∴A与B′关于y轴对称.故选:B.一十八.翻折变换(折叠问题)(共1小题)21.(2023•浙江)如图,已知矩形纸片ABCD,其中AB=3,BC=4,现将纸片进行如下操作:第一步,如图①将纸片对折,使AB与DC重合,折痕为EF,展开后如图②;第二步,再将图②中的纸片沿对角线BD折叠,展开后如图③;第三步,将图③中的纸片沿过点E的直线折叠,使点C落在对角线BD上的点H处,如图④.则DH的长为( )A.B.C.D.【答案】D【解答】解:如图,过点M作MG⊥BD于点G,∵四边形ABCD为矩形,AB=3,BC=4,∴AB=CD=3,∠C=90°,在Rt△BCD中,BD===5,根据折叠的性质可得,BE=CE=BC=2,∠C=∠EHM=90°,CE=EH=2,CM=HM,∴BE=EH=2,∴△BEH为等腰三角形,∠EBH=∠EHB,∵∠EBH+∠HDM=90°,∠EHB+∠DHM=90°,∴∠HDM=∠DHM,∴△DHM为等腰三角形,DM=HM,∴DM=HM=CM=CD=,∵MG⊥BD,∴DH=2DG,∠MGD=∠BCD=90°,∵∠MDG=∠BDC,∴△MGD∽△BCD,∴,即,∴DG=,∴DH=2DG=.故选:D.一十九.相似三角形的判定与性质(共1小题)22.(2023•绍兴)如图,在△ABC中,D是边BC上的点(不与点B,C重合).过点D作DE∥AB交AC于点E;过点D作DF∥AC交AB于点F、N是线段BF上的点,BN=2NF:M是线段DE上的点,DM=2ME.若已知△CMN的面积,则一定能求出( )A.△AFE的面积B.△BDF的面积C.△BCN的面积D.△DCE的面积【答案】D【解答】解:如图所示,连接ND,∵DE∥AB,DF∥AC,∴∠ECD=∠FDB,∠FBD=∠EDC,∠BFD=∠A,∠A=DEC.∴△FBD∽△EDC,∠NFD=∠MEC.∴=,∵DM=2ME,BN=2NF,∴,.∴∴,又∵∠NFD=∠MEC,∴△NFD∽△MEC.∴∠ECM=∠FDN.∵∠FDB=∠ECD,∴∠MCD=∠NDB.∴MC∥ND.∴S△MNC=S△MDC.∵DM=2ME,∴.故选:D.二十.解直角三角形的应用(共1小题)23.(2023•杭州)第二十四届国际数学家大会会徽的设计基础是1700多年前中国古代数学家赵爽的“弦图”.如图,在由四个全等的直角三角形(△DAE,△ABF,△BCG,△CDH)和中间一个小正方形EFGH拼成的大正方形ABCD中,∠ABF>∠BAF,连接BE.设∠BAF=α,∠BEF=β,若正方形EFGH与正方形ABCD的面积之比为1:n,tanα=tan2β,则n=( )A.5B.4C.3D.2【答案】C【解答】解:设AE=a,DE=b,则BF=a,AF=b,∵tanα=,tanβ=,tanα=tan2β,∴,∴(b﹣a)2=ab,∴a2+b2=3ab,∵a2+b2=AD2=S正方形ABCD,(b﹣a)2=S正方形EFGH,∴S正方形EFGH:S正方形ABCD=ab:3ab=1:3,∵S正方形EFGH:S正方形ABCD=1:n,∴n=3.故选:C.二十一.简单组合体的三视图(共1小题)24.(2023•丽水)如图,箭头所指的是某陶艺工作室用于垫放陶器的5块相同的耐火砖搭成的几何体,它的主视图是( )A.B.C.D.【答案】D【解答】解:观察图形可知,几何体的主视图是.故选:D.。

备战2023年杭州中考数学真题分类汇编(5年中考1年模拟)6选择压轴题含详解

备战2023年杭州中考数学真题分类汇编(5年中考1年模拟)6选择压轴题含详解

专题06选择压轴题1.(2022•杭州)如图,已知ABC ∆内接于半径为1的O ,(BAC θθ∠=是锐角),则ABC ∆的面积的最大值为()A .cos (1cos )θθ+B .cos (1sin )θθ+C .sin (1sin )θθ+D .sin (1cos )θθ+2.(2021•杭州)已知1y 和2y 均是以x 为自变量的函数,当x m =时,函数值分别是1M 和2M ,若存在实数m ,使得120M M +=,则称函数1y 和2y 具有性质P .以下函数1y 和2y 具有性质P 的是()A .212y x x =+和21y x =--B .212y x x =+和21y x =-+C .11y x=-和21y x =--D .11y x=-和21y x =-+3.(2020•杭州)在平面直角坐标系中,已知函数211y x ax =++,222y x bx =++,234y x cx =++,其中a ,b ,c 是正实数,且满足2b ac =.设函数1y ,2y ,3y 的图象与x 轴的交点个数分别为1M ,2M ,3M ,()A .若12M =,22M =,则30M =B .若11M =,20M =,则30M =C .若10M =,22M =,则30M =D .若10M =,20M =,则30M =4.(2019•杭州)在平面直角坐标系中,已知a b ≠,设函数()()y x a x b =++的图象与x 轴有M 个交点,函数(1)(1)y ax bx =++的图象与x 轴有N 个交点,则()A .1M N =-或1M N =+B .1M N =-或2M N =+C .M N =或1M N =+D .M N =或1M N =-5.(2018•杭州)如图,在ABC ∆中,点D 在AB 边上,//DE BC ,与边AC 交于点E ,连接BE .记ADE ∆,BCE ∆的面积分别为1S ,2S ,()A .若2AD AB >,则1232S S >B .若2AD AB >,则1232S S <C .若2AD AB <,则1232S S >D .若2AD AB <,则1232S S <6.(2022•上城区一模)在直角坐标系中,一次函数12(0)y kx k k =+-≠的图象记作G ,以原点O 为圆心,作半径为1的圆,有以下几种说法:①当G 与O 相交时,y 随x 增大而增大;②当G 与O 相切时,54k =;③当G 与O 相离时,43k >或0k <.其中正确的说法是()A .①B .①②C .①③D .②③7.(2022•拱墅区一模)设函数(1)(1)(y x a x a a =-+--是实数),当1x =,2,3时,对应的函数值分别为r ,s ,(t )A .若52a >,则1r ss t -<-B .若522a <<,则01r ss t-<<-C .若52a <,则1r s s t-<--D .若322a <<,则10r s s t--<<-8.(2022•西湖区一模)已知1y ,2y 均为关于x 的函数,当x a =时,函数值分别为1A ,2A ,若对于实数a ,当01a <<时,都有1211A A -<-<,则称1y ,2y 为亲函数,则以下函数1y 和2y 是亲函数的是()A .211y x =+,21y x =-B .211y x =+,221y x =-C .211y x =-,21y x=-D .211y x =-,221y x =-9.(2022•钱塘区一模)在菱形ABCD 中,已知30A ∠=︒,点E ,F ,G ,H 分别在边AB ,BC ,CD ,DA 上,且AE BF CG DH ===.若线段AE 与AB 的比值为(01)k k <<,则四边形EFGH 与菱形ABCD 的面积比可表示为()A .2221k k -+B .2221k k ++C .222k k -+D .2221k k -++10.(2022•淳安县一模)已知二次函数2(0)y ax bx a =-≠,经过点(,2)P m .当1y - 时,x 的取值范围为1x t - 或3x t -- .则如下四个值中有可能为m 的是()A .1B .2C .3D .411.(2022•富阳区一模)已知二次函数2()(0)y a x h k a =-+≠的图象与一次函数(0)y mx n m =+≠的图象交于1(x ,1)y 和2(x ,2)y 两点,()A .若0a <,0m <,则122x x h +>B .若0a >,0m <,则122x x h +>C .若122x x h +>,则0a >,0m >D .若122x x h +<,则0a >,0m <12.(2022•临安区一模)已知点11(P x ,1)y ,22(P x ,2)y 为抛物线24(0)y ax ax c a =-++≠上两点,且12x x <,则下列说法正确的是()A .若124x x +<,则12y y <B .若124x x +>,则12y y <C .若12(4)0a x x +->,则12y y >D .若12(4)0a x x +-<,则12y y >13.(2022•钱塘区二模)如图,已知Rt ABC ∆,2AC BC ==,将ABC ∆绕点A 沿逆时针方向旋转后得到ADE ∆,直线BD 、CE 相交于点F ,连接AF ,则下列结论中:①AB =;②ABD ACE ∆∆∽;③45BFC ∠=︒;④F 为BD 的中点,其中正确的有()A .①②③B .①②④C .①②③④D .②③④14.(2022•西湖区校级一模)12()()(0)y a x x x x t a =--+>,点0(x ,0)y 是函数图象上任意一点,()A .若0t <,则2012()4ay x x <--B .若0t,则2012()4ay x x >--C .若0t <,则2012()4ay x x -- D .若0t,则2012()4ay x x -- 15.(2022•萧山区校级一模)已知代数式12()()x x x x mx n --++化简后为一个完全平方式,且当1x x =时此代数式的值为0,则下列式子中正确的是()A .12x x m-=B .21x x m-=C .12()m x x n -=D .12mx n x +=16.(2022•萧山区一模)已知二次函数1(1)(1)y ax bx =--和2()()(0)(y x a x b ab =--≠)A .若11x -<<,10a b>>,则12y y >B .若1x <,10a b>>,则12y y >C .若11x -<<,10a b <<,则12y y <D .若1x <-,10a b<<,则12y y <17.(2022•滨江区一模)在平面直角坐标系中,二次函数2(y ax bx c a =++,b ,c 是常数,0)a ≠的图象经过点(2,)A m ,当1x 时,1y m + ;当1x >时,y m,则(a =)A .1-B .14-C .14D .118.(2022•上城区二模)如图,四边形ABCD 内接于O ,AB 为O 的直径,延长BA 与弦CD 的延长线交于点P ,已知12PD AB =,下列结论:①若 CD AD BC=+,则2AB CD =;②若60B ∠=︒,则20P ∠=︒;③若30P ∠=︒,则31PA PD =-;④AD BC 的值可能等于13.其中正确的序号是()A .①②③B .①②④C .②③④D .①③④19.(2022•余杭区一模)关于函数(1)(1)y mx m x =+--.下列说法正确的是()A .无论m 取何值,函数图象总经过点(1,0)和(1,2)--B .当12m ≠时,函数图象与x 轴总有2个交点C .若12m >,则当1x <时,y 随x 的增大而减小D .若0m >时,函数有最小值是114m m--+20.(2022•富阳区二模)约定:若函数图象上至少存在不同的两点关于原点对称,则把该函数称为“黄金函数”,其图象上关于原点对称的两点叫做一对“黄金点”.若点(1,)A m ,(,4)B n -是关于x 的“黄金函数”2(0)y ax bx c a =++≠上的一对“黄金点”,且该函数的对称轴始终位于直线2x =的右侧,有结论①0a c +=;②4b =;③11042a b c ++<;④10a -<<.则下列结论正确的是()A .①②③B .①③④C .①②④D .②③④21.(2022•西湖区校级模拟)已知a ,b ,c 是互不相等的非零实数,有三条抛物线:22y ax bx c =++,22y bx cx a =++,22y cx ax b =++.则这三条抛物线与x 轴的交点个数情况是()A .三条抛物线中至少有一条与x 轴有两个交点B .三条抛物线中至多有一条与x 轴有两个交点C .三条抛物线与x 轴都只有一个交点D .三条抛物线与x 轴都没有交点22.(2022•富阳区一模)如图是二次函数2(0)y ax bx c a =++≠图象的一部分,图象过点(2,0)A -,对称轴为直线12x =,给出以下结论:①0abc <;②930a b c ++<;③若5(2-,1)y 、5(2,2)y 为函数图象上的两点,则12y y >;④111()()422a b m am b m +>+≠,其中正确的结论是()A .①②③④B .①②③C .①④D .①③④23.(2022•西湖区校级二模)已知直线12//l l ,直线34//l l ,且13l l ⊥,若以1l ,2l 中的一条直线为x 轴,3l ,4l 中的一条直线为y 轴,建立平面直角坐标系,设向右、向上为正方向,且抛物线212(0)2y ax ax a =-+>与这四条直线的位置如图所示,则所建立的平面直角坐标系中的x 轴、y 轴分别为()A .直线1l ,3lB .直线1l ,4lC .直线2l ,3lD .直线2l ,4l 24.(2022•西湖区校级模拟)已知函数1y 和2y 是关于x 的函数,点(,)m n 在函数1y 的图象上,点(,)p q 在函数2y 的图象上,规定:当n q =时,有0m p +=,那么称函数1y 和2y 具有“性质O ”,则下列函数具有“性质O ”的是()A .212y x x =-和21y x =-B .2121y x x =-+-和2y x =-C .212y x x =-和21y x =-+D .2121y x x =---和2y x=25.(2022•下城区校级二模)若二次函数的解析式为()(1)(15)y x m x m =-- .若函数过(,)p q 点和(5,)p q +点,则q 的取值范围为()A .92544qB .944q --C .2524qD .924q -- 26.(2022•杭州模拟)二次函数21y x =第一象限的图象上有两点(,)A a k ,(,1)B b k +,关于二次函数22(b my x x m a a=++为任意实数)与x 轴交点个数判断错误的是()A .若1m =,则2y 与x 轴可能没有交点B .若12m =,则2y 与x 轴必有2个交点C .若1m =-,则2y 与x 轴必有2个交点D .若14m =,则2y 与x 轴必有2个交点27.(2022•江干区校级模拟)二次函数2(0)y ax bx c a =++≠的图象的顶点为(,)A m k .且另有一点(,)B k m 也在该函数图象上,则下列结论一定正确的是()A .m k>B .m k<C .()0a m k -<D .()0a m k ->28.(2022•拱墅区模拟)已知二次函数(4)()y x k x k m =--+++,其中k ,m 为常数.下列说法正确的是()A .若2k >,0m <,则二次函数y 的最大值小于0B .若2k ≠,0m <,则二次函数y 的最大值大于0C .若2k <,0m ≠,则二次函数y 的最大值小于0D .若2k ≠,0m >,则二次函数y 的最大值大于029.(2022•拱墅区模拟)如图,点P 是矩形ABCD 内一点,连接PA 、PB 、PC 、PD ,已知3AB =,4BC =,设PAB ∆、PBC ∆、PCD ∆、PDA ∆的面积分别为1S 、2S 、3S 、4S ,下列判断,其中不正确的是()A .PA PB PC PD +++的最小值为10B .若PAB PCD ∆≅∆,则PAD PBC ∆≅∆C .若PAB PDA ∆∆∽,则2PA =D .若12S S =,则34S S =30.(2022•拱墅区模拟)已知抛物线22y x bx c =-++与x 轴只有一个交点,且过点(6,)A m n -,(2,)B m n +,则n 的值为()A .32-B .18-C .16-D .12-专题06选择压轴题1.(2022•杭州)如图,已知ABC ∆内接于半径为1的O ,(BAC θθ∠=是锐角),则ABC ∆的面积的最大值为()A .cos (1cos )θθ+B .cos (1sin )θθ+C .sin (1sin )θθ+D .sin (1cos )θθ+【答案】D【详解】当ABC ∆的高AD 经过圆的圆心时,此时ABC ∆的面积最大,如图所示,A D BC '⊥ ,2BC BD ∴=,BOD BA C θ∠=∠'=,在Rt BOD ∆中,sin 1BD BD OB θ==,cos 1OD ODOB θ==sin BD θ∴=,cos OD θ=,22sin BC BD θ∴==,1cos A D A O OD θ'='+=+,∴112sin (1cos )sin (1cos )22ABC S A D BC θθθθ∆='⋅=⋅+=+.故选:D .2.(2021•杭州)已知1y 和2y 均是以x 为自变量的函数,当x m =时,函数值分别是1M 和2M ,若存在实数m ,使得120M M +=,则称函数1y 和2y 具有性质P .以下函数1y 和2y 具有性质P 的是()A .212y x x =+和21y x =--B .212y x x =+和21y x =-+C .11y x=-和21y x =--D .11y x=-和21y x =-+【答案】A【详解】A .令120y y +=,则2210x x x +--=,解得x =或x =1y 和2y 具有性质P ,符合题意;B .令120y y +=,则2210x x x +-+=,整理得,210x x ++=,方程无解,即函数1y 和2y 不具有性质P ,不符合题意;C .令120y y +=,则110x x---=,整理得,210x x ++=,方程无解,即函数1y 和2y 不具有性质P ,不符合题意;D .令120y y +=,则110x x--+=,整理得,210x x -+=,方程无解,即函数1y 和2y 不具有性质P ,不符合题意;故选:A .3.(2020•杭州)在平面直角坐标系中,已知函数211y x ax =++,222y x bx =++,234y x cx =++,其中a ,b ,c 是正实数,且满足2b ac =.设函数1y ,2y ,3y 的图象与x 轴的交点个数分别为1M ,2M ,3M ,()A .若12M =,22M =,则30M =B .若11M =,20M =,则30M =C .若10M =,22M =,则30M =D .若10M =,20M =,则30M =【答案】B【详解】A 、错误.由12M =,22M =,可得240a ->,280b ->,取3a =,215b =,则25b c a==,此时2160c ->.故A 错误.B 、正确.理由:11M = ,20M =,240a ∴-=,280b -<,a ,b ,c 是正实数,2a ∴=,2b ac = ,212c b ∴=,对于234y x cx =++,则有△244221111616(64)(8)(8)0444c b b b b =-=-=-=+-<,30M ∴=,∴选项B 正确,C 、错误.由10M =,22M =,可得240a -<,280b ->,取1a =,218b =,则218b c a==,此时2160c ->.故C 错误.D 、由10M =,20M =,可得240a -<,280b -<,取1a =,24b =,则24b c a==,此时2160c -=.故D 错误.故选:B .4.(2019•杭州)在平面直角坐标系中,已知a b ≠,设函数()()y x a x b =++的图象与x 轴有M 个交点,函数(1)(1)y ax bx =++的图象与x 轴有N 个交点,则()A .1M N =-或1M N =+B .1M N =-或2M N =+C .M N =或1M N =+D .M N =或1M N =-【答案】C【详解】()()y x a x b =++ ,a b ≠,∴函数()()y x a x b =++的图象与x 轴有2个交点,2M ∴=,函数2(1)(1)()1y ax bx abx a b x =++=+++,∴当0ab ≠时,△22()4()0a b ab a b =+-=->,函数(1)(1)y ax bx =++的图象与x 轴有2个交点,即2N =,此时M N =;当0ab =时,不妨令0a =,a b ≠ ,0b ∴≠,函数(1)(1)1y ax bx bx =++=+为一次函数,与x 轴有一个交点,即1N =,此时1M N =+;综上可知,M N =或1M N =+.故选:C .另一解法:a b ≠ ,∴抛物线()()y x a x b =++与x 轴有两个交点,2M ∴=,又 函数(1)(1)y ax bx =++的图象与x 轴有N 个交点,而2(1)(1)()1y ax bx abx a b x =++=+++,它至多是一个二次函数,至多与x 轴有两个交点,2N ∴ ,N M ∴ ,∴不可能有1M N =-,故排除A 、B 、D ,故选:C .5.(2018•杭州)如图,在ABC ∆中,点D 在AB 边上,//DE BC ,与边AC 交于点E ,连接BE .记ADE ∆,BCE∆的面积分别为1S ,2S ,()A .若2AD AB >,则1232S S >B .若2AD AB >,则1232S S <C .若2AD AB <,则1232S S >D .若2AD AB <,则1232S S <【答案】D【详解】 如图,在ABC ∆中,//DE BC ,ADE ABC ∴∆∆∽,∴2112(BDE S AD S S S AB∆=++,∴若2AD AB >,即12AD AB >时,11214BDE S S S S ∆>++,此时123BDE S S S ∆>+,而222BDE S S S ∆+<.但是不能确定13S 与22S 的大小,故选项A 不符合题意,选项B 不符合题意.若2AD AB <,即12AD AB <时,11214BDE S S S S ∆<++,此时12232BDE S S S S ∆<+<,故选项C 不符合题意,选项D 符合题意.故选:D.6.(2022•上城区一模)在直角坐标系中,一次函数12(0)y kx k k =+-≠的图象记作G ,以原点O 为圆心,作半径为1的圆,有以下几种说法:①当G 与O 相交时,y 随x 增大而增大;②当G 与O 相切时,54k =;③当G 与O 相离时,43k >或0k <.其中正确的说法是()A .①B .①②C .①③D .②③【答案】C【详解】12(0)y kx k k =+-≠ ,当2x =时,1y =,∴一次函数经过点(2,1),如图,(2,1)P ,A 、B 为直线与圆的切点,连接OB 、AB 、OP 交AB 于点C ,过B 作BE y ⊥轴于E ,(0,1)A ,//PA x ∴轴,2PA = ,1OA =,225OP PA OA ∴=+=Rt PAO ∆中,sin 5OPA ∠=cos 5OPA ∠=,由切线长定理得:PB PA =,PO AB ⊥,2AB AC ∴=,2sin 5AC AP OPA =∠=5AB ∴=,90AOP OPA ∠+∠=︒ ,90AOC OAC ∠+∠=︒,OAC OPA ∴∠=∠,Rt ABE ∆中,414sin 555BE AB EAB =∠=,428cos 555AE AB EAB =∠=,35OE AE OA ∴=-=,4(5B ∴,3)5-,代入12(0)y kx k k =+-≠可得:43k =, 直线12(0)y kx k k =+-≠与y 轴交点坐标为(0,12)k -,当43k =时,直线与圆相切,直线与y 轴交点5(0,3-,当43k >时,5123k -<-,直线与圆相离;当0k <时,121k ->,直线与圆相离;当403k <<时,51213k -<-<,直线与圆相交; 直线与圆相交时,403k <<,∴一次函数递增,故①正确;直线与圆相切时,43k =,故②错误; 直线与圆相离时,43k >或0k <,故③正确,①③正确,故选:C .7.(2022•拱墅区一模)设函数(1)(1)(y x a x a a =-+--是实数),当1x =,2,3时,对应的函数值分别为r ,s ,(t )A .若52a >,则1r s s t -<-B .若522a <<,则01r s s t -<<-C .若52a <,则1r s s t -<--D .若322a <<,则10r s s t--<<-【答案】D 【详解】将1x =,2,3分别代入(1)(1)y x a x a =-+--得22r a a =-,243s a a =-+,268t a a =-+,∴22222(43)232143(68)2525r s a a a a a s t a a a a a a ----+-===+--+--+--,当52a >时,2025a >-,∴1r s s t->-,选项A 不正确,当522a <<时,2225a <--,∴1r s s t-<--,选项B 不正确.当52a <时,2025a <-,∴1r s s t-<-,选项C 不正确.当322a <<时,22125a -<<--,10r s s t -∴-<<-,选项D 正确.故选:D .8.(2022•西湖区一模)已知1y ,2y 均为关于x 的函数,当x a =时,函数值分别为1A ,2A ,若对于实数a ,当01a <<时,都有1211A A -<-<,则称1y ,2y 为亲函数,则以下函数1y 和2y 是亲函数的是()A .211y x =+,21y x =-B .211y x =+,221y x =-C .211y x =-,21y x =-D .211y x =-,221y x =-【答案】D【详解】(1)A 选项,211y x =+ ,21y x =-,21211y y x x∴-=++,当01x <<时,11x>,且211x +>,212111y y x x ∴-=++>,即此选项不合题意;(2)B 选项,211y x =+ ,221y x =-,2121(21)y y x x ∴-=+--2(1)1x =-+,当01x <<时,2(1)11x -+>,即此选项不合题意;(3)C 选项,211y x =- ,21y x=-,21211()y y x x∴-=---211x x=+-,当12x =时,215114x x +-=>,即此选项不合题意;(4)D 选项,211y x =- ,221y x =-,2121(21)y y x x ∴-=---22x x =-,当01x <<时,2120x x -<-<,即此选项符合题意;故选:D .9.(2022•钱塘区一模)在菱形ABCD 中,已知30A ∠=︒,点E ,F ,G ,H 分别在边AB ,BC ,CD ,DA 上,且AE BF CG DH ===.若线段AE 与AB 的比值为(01)k k <<,则四边形EFGH 与菱形ABCD 的面积比可表示为()A .2221k k -+B .2221k k ++C .222k k -+D .2221k k -++【答案】A 【详解】设AB BC CD DA x ====,AE BF CG DH kx ====,则AH DG CF BE x kx ====-,过F 作MN CD ⊥于N ,交AB 延长线于点M,: 四边形ABCD 是菱形,30A C ∴∠=∠=︒,AB BC CD AD ===,AE BF CG DH === ,BE CF DG AH ∴===,在AEH ∆和CGF ∆中,AE CGA C AH CF=⎧⎪∠=∠⎨⎪=⎩,()AEH CGF SAS ∴∆≅∆,同理:()BEF DGH SAS ∆≅∆,30A ∠=︒ ,//AB BCD ,30C MBF ∴∠=∠=︒,122kx FM BF ∴==,122x kxFN CF -==,2xMN FM FN ∴=+=,∴菱形ABCD 的面积222xx x =⋅=,四边形EFGH 的面积=菱形ABCD 的面积2CGF-∆的面积2BEF -∆的面积22221122()222222x x kx kx x x kx x kx kx k x -=⋅-⨯⨯⋅-⨯⨯-=-+,∴四边形EFGH 与菱形ABCD 的面积比为22222222212x kx k x k k x -+=-+.故选:A .10.(2022•淳安县一模)已知二次函数2(0)y ax bx a =-≠,经过点(,2)P m .当1y - 时,x 的取值范围为1x t -或3x t -- .则如下四个值中有可能为m 的是()A .1B .2C .3D .4【答案】A 【详解】当1y - 时,21ax bx -- ,x 的取值范围为1x t -或3x t -- ,(1,1)t ∴--,(3,1)t ---为抛物线上的点,∴抛物线对称轴为直线1322t t x ---==-,∴22b a=-,4b a ∴=-,224(2)4y ax ax a x a ∴=+=+-,当0a >时,41a -- ,解得14a ,将(,2)m 代入解析式得242am am +=,22144a m m ∴=+ ,2048m m ∴<+ ,24(2)12m ∴<+ ,24m ∴--<-或02m <-+ ,故选:A .11.(2022•富阳区一模)已知二次函数2()(0)y a x h k a =-+≠的图象与一次函数(0)y mx n m =+≠的图象交于1(x ,1)y 和2(x ,2)y 两点,()A .若0a <,0m <,则122x x h+>B .若0a >,0m <,则122x x h +>C .若122x x h +>,则0a >,0m >D .若122x x h +<,则0a >,0m <【答案】A【详解】2()y a x h k =-+ ,∴抛物线对称轴为直线x h =,0a < ,0m <,∴抛物线开口向下,一次函数中y 随x 增大而减小,设12x x <,则12y y >,∴122x x h +>,122x x h ∴+>.故选:A .12.(2022•临安区一模)已知点11(P x ,1)y ,22(P x ,2)y 为抛物线24(0)y ax ax c a =-++≠上两点,且12x x <,则下列说法正确的是()A .若124x x +<,则12y y <B .若124x x +>,则12y y <C .若12(4)0a x x +->,则12y y >D .若12(4)0a x x +-<,则12y y >【答案】C【详解】24y ax ax c =-++ ,∴抛物线对称轴为直线422a x a=-=-,22(P x ,2)y 关于直线2x =的对称点为2(4P x -,2)y ,若124x x +<,由2244x x +-=,12x x <,可得124x x <-,当抛物线开口向上时,12y y >,∴选项A 错误.若124x x +>,由2244x x +-=,12x x <,可得2124x x x -<<,当抛物线开口向下时,12y y >,∴选项B 错误.若12(4)0a x x +->,当124x x +<时,则0a <,0a ->,抛物线开口向上,12y y ∴>,当124x x +>时,则0a >,0a -<,抛物线开口向下,12y y ∴>,选项C 正确.若12(4)0a x x +-<,当124x x +<时,0a >,0a -<,抛物线开口向下,12y y ∴<,选项D 错误.解法二:作差法,21114y ax ax c =-++ ,22224y ax ax c =-++,221211224(4)y y ax ax c ax ax c ∴-=-++--++221212()4()a x x a x x =--+-121212()()4()a x x x x a x x =-+-+-1212()(4)a x x x x =--+-12x x < ,120x x ∴-<,当12(4)0a x x +->时,则1212()(4)0a x x x x --+->,12y y ∴>,故选:C .13.(2022•钱塘区二模)如图,已知Rt ABC ∆,2AC BC ==,将ABC ∆绕点A 沿逆时针方向旋转后得到ADE ∆,直线BD 、CE 相交于点F ,连接AF ,则下列结论中:①22AB =;②ABD ACE ∆∆∽;③45BFC ∠=︒;④F 为BD 的中点,其中正确的有()A .①②③B .①②④C .①②③④D .②③④【答案】C【详解】在Rt ABC ∆,2AC BC ==,222222AB +=∴①正确;由旋转的性质可得:22AB AD ==,2AC AE ==,BAC DAE ∠=∠,∴AD ABAE AC =,且DAB EAC ∠=∠,ABD ACE ∴∆∆∽,∴②正确;ABD ACE ∆∆ ∽,DBA ECA ∴∠=∠,45BFC BAC ∴∠=∠=︒,∴③正确;45BFC BAC ∠=∠=︒ ,A ∴、B 、C 、F 四点共圆,90BFA ∴∠=︒,AB AD = ,BF DF ∴=,即F 为BD 的中点,∴④正确.故选:C .14.(2022•西湖区校级一模)12()()(0)y a x x x x t a =--+>,点0(x ,0)y 是函数图象上任意一点,()A .若0t <,则2012()4a y x x <--B .若0t ,则2012()4a y x x >--C .若0t <,则2012()4a y x x -- D .若0t ,则2012()4a y x x --【答案】D 【详解】对称轴公式为122x x x +=,将其代入12()()(0)y a x x x x t a =--+>,y ∴的最小值为212121212()()()224x x x x a a x x t x x t ++--+=--+,0a > ,∴顶点处为最小值, 点0(x ,0)y 是函数图象上任意一点.2012()4a y x x t ∴--+ ,即A 、B 选项都不对,若0t 时,2012()4a y x x -- ,故选:D .15.(2022•萧山区校级一模)已知代数式12()()x x x x mx n --++化简后为一个完全平方式,且当1x x =时此代数式的值为0,则下列式子中正确的是()A .12x x m-=B .21x x m -=C .12()m x x n -=D .12mx n x +=【答案】B【详解】1x x = ,0mx n ∴+=,12()()x x x x mx n --++ 21212()x x x m x x x n=-+-++21()x x =-22112x x x x =-+,1212x x m x ∴+-=,即21x x m -=.故选:B .16.(2022•萧山区一模)已知二次函数1(1)(1)y ax bx =--和2()()(0)(y x a x b ab =--≠)A .若11x -<<,10a b >>,则12y y >B .若1x <,10a b >>,则12y y >C .若11x -<<,10a b <<,则12y y <D .若1x <-,10a b <<,则12y y <【答案】D【详解】21(1)(1)()1y ax bx abx a b x =--=-++,22()()()(0)y x a x b x a b x ab ab =--=-++≠,2212(1)1(1)(1)(1)(1)(1)y y ab x ab ab x ab x x ∴-=-+-=--=-+-.对于A 选项,11x -<< ,(1)(1)0x x ∴+-<,10a b>> ,1ab ∴>,(1)(1)(1)0ab x x ∴-+-<,即12y y <,故A 选项错误;对于B 选项,1x < ,(1)(1)x x ∴+-不确定正负,1y ∴与2y 的大小无法确定,故B 选项错误;对于C 选项,11x -<< ,(1)(1)0x x ∴+-<, 10a b<<,01ab ∴<<,10ab ∴-<,(1)(1)(1)0ab x x ∴-+->,即12y y >,故C 选项错误;对于D 选项,1x <- ,(1)(1)0x x ∴+->, 10a b<<,01ab ∴<<,10ab ∴-<,(1)(1)(1)0ab x x ∴-+-<,即12y y <,故D 选项正确.故选:D .17.(2022•滨江区一模)在平面直角坐标系中,二次函数2(y ax bx c a =++,b ,c 是常数,0)a ≠的图象经过点(2,)A m ,当1x 时,1y m + ;当1x >时,y m,则(a =)A .1-B .14-C .14D .1【答案】D 【详解】 当1x 时,1y m + ,∴函数开口向上,且当1x =时,1y m =+,当1x >时,y m,∴函数的对称轴为2x =,将点(2,)m ,(1,1)m +代入函数2y ax bx c =++,得42122a b c m a b c m b a⎧⎪++=⎪++=+⎨⎪⎪-=⎩,解得:1a =,故选:D .18.(2022•上城区二模)如图,四边形ABCD 内接于O ,AB 为O 的直径,延长BA 与弦CD 的延长线交于点P ,已知12PD AB =,下列结论:①若 CD AD BC =+,则2AB CD =;②若60B ∠=︒,则20P ∠=︒;③若30P ∠=︒,则31PA PD =-;④AD BC的值可能等于13.其中正确的序号是()A .①②③B .①②④C .②③④D .①③④【答案】A 【详解】①连接OC ,OD ,CD 的度数 AD =的度数 BC +的度数, CD 的度数 AD +的度数 BC+的度数180=︒∴ CD的度数90=︒,90COD ∴∠=︒,CD ∴=,2AB OD ∴===,故①正确;②60B ∠=︒ ,OBC ∴∆是等边三角形,60COB ∴∠=︒,12PD AB = ,PD OD OC OB ∴===,P DOP ∴∠=∠,ODC OCD ∠=∠,2ODC OCD P ∴∠=∠=∠,2360P OCD P COB ∴∠+∠=∠=∠=︒,20P ∴∠=︒,故②正确;③30P ∠=︒ ,30ODP P ∴∠=∠=︒,120PDO ∴∠=︒,OP ∴=,∴1PA PA PD OD==-,故③正确;④若13AD BC =,PAD PCB ∠=∠ ,P P ∠=∠,PAD PCB ∴∆∆∽,∴13AD PD BC PB ==,13PD PB ∴=,12PD AB = ,PD PA ∴=,PD OD PA OA PO ∴+=+=,∴点D 与A 重合,与题目矛盾,故④错误,故选:A .19.(2022•余杭区一模)关于函数(1)(1)y mx m x =+--.下列说法正确的是()A .无论m 取何值,函数图象总经过点(1,0)和(1,2)--B .当12m ≠时,函数图象与x 轴总有2个交点C .若12m >,则当1x <时,y 随x 的增大而减小D .若0m >时,函数有最小值是114m m --+【答案】D【详解】A .当1x =时,(1)(1)0y mx m x =+--=,当1x =-时,(1)(1)2y mx m x =+--=,故图象过(1,0)和(1,2)-,故A 错误,不符合题意;B .当0m =时,(1)(1)1y mx m x x =+--=-,该函数与x 轴只有一个交点,故B 错误,不符合题意;C .12m >,则函数为开口向上的抛物线,则1(1)(1)(1)m y mx m x m x x m-=+--=+-,则该函数的对称轴为直线111(1122m x m m -=+=<,故1x <时,y 随x 的增大而即可能减小也可能增大,故C 错误,不符合题意;D .若0m >时,二次函数在顶点处取得最小值,当12x m =时,1(1)(1)14y mx m x m m-=+--=-+,故D 正确,符合题意;故选:D .20.(2022•富阳区二模)约定:若函数图象上至少存在不同的两点关于原点对称,则把该函数称为“黄金函数”,其图象上关于原点对称的两点叫做一对“黄金点”.若点(1,)A m ,(,4)B n -是关于x 的“黄金函数”2(0)y ax bx c a =++≠上的一对“黄金点”,且该函数的对称轴始终位于直线2x =的右侧,有结论①0a c +=;②4b =;③11042a b c ++<;④10a -<<.则下列结论正确的是()A .①②③B .①③④C .①②④D .②③④【答案】C【详解】 点(1,)A m ,(,4)B n -是关于x 的“黄金函数”2(0)y ax bx c a =++≠上的一对“黄金点”,A ∴,B 关于原点对称,4m ∴=,1n =-,(1,4)A ∴,(1,4)B --,代入2(0)y ax bx c a =++≠得4??4a b c a b c ++=⎧⎨+=⎩,∴40b a c =⎧⎨+=⎩,∴①②正确,该函数的对称轴始终位于直线2x =的右侧,22b a ∴->,422a∴->,10a ∴-<<,④正确,0a c += ,01c ∴<<,c a =-,当12x =时,21113224244y ax bx c a b c a a a =++=++=+-=-,10a -<< ,304a ∴->,∴11320424a b c a ++=->,③错误.综上所述,结论正确的是①②④.故选:C .21.(2022•西湖区校级模拟)已知a ,b ,c 是互不相等的非零实数,有三条抛物线:22y ax bx c =++,22y bx cx a =++,22y cx ax b =++.则这三条抛物线与x 轴的交点个数情况是()A .三条抛物线中至少有一条与x 轴有两个交点B .三条抛物线中至多有一条与x 轴有两个交点C .三条抛物线与x 轴都只有一个交点D .三条抛物线与x 轴都没有交点【答案】A【详解】证明:假设这三条抛物线全部与x 轴只有一个交点或没有交点,则有212223440440440b ac c ab a bc ⎧=-⎪=-⎨⎪=-⎩ ,三式相加,整理、化简得:2220a b c ab ac bc ++--- ,222()()()0a b b c c a ∴-+-+- ,a b c ∴==与a ,b ,c 是互不相等的实数矛盾,∴这三条抛物线至少有一条与x 轴有两个交点.故选:A .22.(2022•富阳区一模)如图是二次函数2(0)y ax bx c a =++≠图象的一部分,图象过点(2,0)A -,对称轴为直线12x =,给出以下结论:①0abc <;②930a b c ++<;③若5(2-,1)y 、5(2,2)y 为函数图象上的两点,则12y y >;④111()()422a b m am b m +>+≠,其中正确的结论是()A .①②③④B .①②③C .①④D .①③④【答案】C 【详解】 抛物线开口向下,0a ∴<,抛物线与y 轴正半轴相交,0c ∴>,对称轴在y 轴右侧,a ∴,b 异号,0b ∴>,0abc ∴<,故①正确;图象过点(2,0)A -,对称轴为直线12x =,∴抛物线与x 轴的另一个交点为(3,0),3x ∴=时,930y a b c =++=,故②错误;5(2- ,1)y 、5(2,2)y 为函数图象上的两点,对称轴为12x =,12y y ∴<,故③错误;12x =时,函数有最大值,∴21142a b c am bm c ++>++,即111()()422a b m am b m +>+≠,故④正确.故选:C .23.(2022•西湖区校级二模)已知直线12//l l ,直线34//l l ,且13l l ⊥,若以1l ,2l 中的一条直线为x 轴,3l ,4l 中的一条直线为y 轴,建立平面直角坐标系,设向右、向上为正方向,且抛物线212(0)2y ax ax a =-+>与这四条直线的位置如图所示,则所建立的平面直角坐标系中的x 轴、y 轴分别为()A .直线1l ,3l B .直线1l ,4l C .直线2l ,3l D .直线2l ,4l 【答案】C 【详解】2122y ax ax =-+ ,∴抛物线对称轴为直线212a x a -=-=,3l ∴为y 轴,将0x =代入2122y ax ax =-+得12y =,∴抛物线经过1(0,)2,2l ∴为x 轴,故选:C .24.(2022•西湖区校级模拟)已知函数1y 和2y 是关于x 的函数,点(,)m n 在函数1y 的图象上,点(,)p q 在函数2y 的图象上,规定:当n q =时,有0m p +=,那么称函数1y 和2y 具有“性质O ”,则下列函数具有“性质O ”的是()A .212y x x =-和21y x =-B .2121y x x =-+-和2y x =-C .212y x x =-和21y x =-+D .2121y x x =---和2y x =【答案】C【详解】 点(,)m n 在函数1y 的图象上,点(,)p q 在函数2y 的图象上,A 选项:将x m =代入212y x x =-,得:22n m m =-,将x p =代入21y x =-,得:1q p =-,n q = ,221m m p ∴-=-,221p m m ∴=-+,0m p += ,2210m m m ∴+-+=,210m m ∴-+=,△2(1)41130=--⨯⨯=-<,m ∴无解,∴不存在这样的点使得函数1y 和2y 具有“性质O ”,A ∴选项不符合题意,错误;B 选项:将x m =代入2121y x x =-+-,得:221n m m =-+-,将x p =代入2y x =-,得:q p =-,n q = ,221m m p ∴-+-=-,221p m m ∴=-+,0m p += ,2210m m m ∴+-+=,210m m ∴-+=,△2(1)41130=--⨯⨯=-<,m ∴无解,∴不存在这样的点使得函数1y 和2y 具有“性质O ”,将x m =代入212y x x =-,得:22n m m =-,将x p =代入21y x =-+,得:1q p =-+,n q = ,221m m p ∴-=-+,221p m m ∴=-++,0m p += ,2210m m m ∴-++=,2310m m ∴--=,△2(3)41(1)130=--⨯⨯-=>,∴存在不相等的两个m 使得方程成立,∴存在这样的点使得函数1y 和2y 具有“性质O ”,C ∴选项符合题意,正确;D 选项:将x m =代入2121y x x =---,得:221n m m =---,将x p =代入2y x =,得:q p =,n q = ,221m m p ∴---=,221p m m ∴=---,0m p += ,2210m m m ∴---=,210m m ∴++=,△2141130=-⨯⨯=-<,m ∴无解,∴不存在这样的点使得函数1y 和2y 具有“性质O ”,25.(2022•下城区校级二模)若二次函数的解析式为()(1)(15)y x m x m =-- .若函数过(,)p q 点和(5,)p q +点,则q 的取值范围为()A .92544q B .944q -- C .2524q D .924q -- 【答案】A【详解】 二次函数的解析式为()(1)(15)y x m x m =-- ,∴该函数的对称轴为直线12m x +=,函数过(,)p q 点和(5,)p q +点,∴5122p p m +++=,42m p -∴=,244125()(1)(1)2244m m q m m --∴=--=--+,15m ,∴当1m =时,q 取得最大值254;当5m =时,q 取得最小值94,q ∴的取值范围是92544q ,故选:A .26.(2022•杭州模拟)二次函数21y x =第一象限的图象上有两点(,)A a k ,(,1)B b k +,关于二次函数22(bmy x x m a a =++为任意实数)与x 轴交点个数判断错误的是()A .若1m =,则2y 与x 轴可能没有交点B .若12m =,则2y 与x 轴必有2个交点C .若1m =-,则2y 与x 轴必有2个交点D .若14m =,则2y 与x 轴必有2个交点【答案】B【详解】点A 、B 在二次函数21y x =第一象限的图象上,则2k a =且21k b +=,即221b a =+,对于函数函数2y ,△2224()4b m b ama a a -=-⨯=,当14m =时,△222213()4240a b am a a -+-==>,故14m =,则2y 与x 轴必有2个交点正确,故D 正确,不符合题意;当1m =-时,同理可得:△2241a a a ++=,2241(2)3a a a ++=+- ,0a >,2(2)4a ∴+>,∴△0,故C 正确,不符合题意;当12m =时,同理可得:△22(1)0a a -= ,故B 错误,符合题意;同理可得:A 正确,不符合题意;故选:B .27.(2022•江干区校级模拟)二次函数2(0)y ax bx c a =++≠的图象的顶点为(,)A m k .且另有一点(,)B k m 也在该函数图象上,则下列结论一定正确的是()A .m k>B .m k <C .()0a m k -<D .()0a m k ->【答案】D【详解】 二次函数2(0)y ax bx c a =++≠的图象的顶点为(,)A m k ,2()y a x m k ∴=-+,整理得:222y ax amx m k =-++,2b am ∴=-,(,)A m k 和(,)B k m 都在抛物线上,可得:2am bm c k ++=①,2ak bk c m ++=②,②-①得:22m k ak bk am bm-=---22()()a m kb m k =----()()()a m k m k b m k =-+---,()()()()0a m k m k b m k m k ∴+-+-+-=,()[()1]0m k a m k b -+++=,()[()21]0m k a m k am -+-+=,()(1)0m k ak am --+=,0m k ∴-=或10ak am -+=,0m k ∴-=或()1a m k -=,()0a m k ∴->,故选:D .28.(2022•拱墅区模拟)已知二次函数(4)()y x k x k m =--+++,其中k ,m 为常数.下列说法正确的是()A .若2k >,0m <,则二次函数y 的最大值小于0B .若2k ≠,0m <,则二次函数y 的最大值大于0C .若2k <,0m ≠,则二次函数y 的最大值小于0D .若2k ≠,0m >,则二次函数y 的最大值大于0【答案】D【详解】(4)()y x k x k m =--+++ ,∴抛物线对称轴为直线422k k x --==-,∴当2x =-时,函数最大值为2(2)y k m =-+,故选:D .29.(2022•拱墅区模拟)如图,点P 是矩形ABCD 内一点,连接PA 、PB 、PC 、PD ,已知3AB =,4BC =,设PAB ∆、PBC ∆、PCD ∆、PDA ∆的面积分别为1S 、2S 、3S 、4S ,下列判断,其中不正确的是()A .PA PB PC PD +++的最小值为10B .若PAB PCD ∆≅∆,则PAD PBC ∆≅∆C .若PAB PDA ∆∆∽,则2PA =D .若12S S =,则34S S =【答案】C 【详解】A .当点P 是矩形ABCD 两对角线的交点时,PA PB PC PD +++的值最小,根据勾股定理得,5AC BD ==,所以PA PB PC PD +++的最小值为10,故此选项正确,不符合题意;B .若PAB PCD ∆≅∆,则PA PC =,PB PD =,所以P 在线段AC 、BD 的垂直平分线上,即P 是矩形ABCD 两对角线的交点,所以PAD PBC ∆≅∆,故此选项正确正确,不符合题意;C .若PAB PDA ∆∆∽,则PAB PDA ∠=∠,90PAB PAD PDA PAD ∠+∠=∠+∠=︒,180()90APD PDA PAD ∠=︒-∠+∠=︒,同理可得90APB ∠=︒,那么180BPD ∠=︒,B 、P 、D 三点共线,P 是直角BAD ∆斜边上的高,根据面积公式可得345 2.4PA =⨯÷=,故此选项不正确,符合题意;D .如图,若12S S =,过点P 作PH BC ⊥于H ,HP 的延长线交AD 于G ,则PG AD ⊥.∴四边形ABHG 是矩形,GH AB ∴=,2411111()22222S S AD PG BC PH BC PH PG BC GH BC AB ∴+=⋅+⋅=⋅+=⋅=⋅,过点P 作PM AB ⊥于M ,MP 的延长线交CD 于N ,同理1312S S BC AB +=⋅,1324S S S S ∴+=+,则34S S =,故此选项正确,不符合题意.故选:C .30.(2022•拱墅区模拟)已知抛物线22y x bx c =-++与x 轴只有一个交点,且过点(6,)A m n -,(2,)B m n +,则n的值为()A .32-B .18-C .16-D .12-【答案】A 【详解】 抛物线22y x bx c =-++过点(6,)A m n -,(2,)B m n +,∴对称轴是直线2x m =-.又 抛物线22y x bx c =-++与x 轴只有一个交点,∴设抛物线解析式为22(2)y x m =--+,把(6,)A m n -代入,得22(62)32n m m =---+=-,即32n =-.故选:A .。

浙江省杭州市2021-2023三年中考数学真题分类汇编-02填空题知识点分类

浙江省杭州市2021-2023三年中考数学真题分类汇编-02填空题知识点分类

浙江省杭州市2021-2023三年中考数学真题分类汇编-02填空题知识点分类一.合并同类项(共1小题)1.(2022•连云港)计算:2a+3a= .二.最简二次根式(共1小题)2.(2022•杭州)计算:= ;(﹣2)2= .三.二次根式的加减法(共1小题)3.(2023•杭州)计算:= .四.一元二次方程的应用(共1小题)4.(2022•杭州)某网络学习平台2019年的新注册用户数为100万,2021年的新注册用户数为169万,设新注册用户数的年平均增长率为x(x>0),则x= (用百分数表示).五.坐标与图形性质(共1小题)5.(2021•杭州)如图,在直角坐标系中,以点A(3,1)为端点的四条射线AB,AC,AD,AE分别过点B(1,1),点C(1,3),点D(4,4),点E(5,2),则∠BAC ∠DAE(填“>”、“=”、“<”中的一个).六.一次函数图象上点的坐标特征(共1小题)6.(2023•杭州)在“探索一次函数y=kx+b的系数k,b与图象的关系”活动中,老师给出了直角坐标系中的三个点:A(0,2),B(2,3),C(3,1).同学们画出了经过这三个点中每两个点的一次函数的图象,并得到对应的函数表达式y1=k1x+b1,y2=k2x+b2,y3=k3x+b3.分别计算k1+b1,k2+b2,k3+b3的值,其中最大的值等于 .七.一次函数与二元一次方程(组)(共1小题)7.(2022•杭州)已知一次函数y=3x﹣1与y=kx(k是常数,k≠0)的图象的交点坐标是(1,2),则方程组的解是 .八.平行线的性质(共1小题)8.(2023•杭州)如图,点D,E分别在△ABC的边AB,AC上,且DE∥BC,点F在线段BC 的延长线上.若∠ADE=28°,∠ACF=118°,则∠A= .九.切线的性质(共1小题)9.(2021•杭州)如图,已知⊙O的半径为1,点P是⊙O外一点,且OP=2.若PT是⊙O 的切线,T为切点,连结OT,则PT= .一十.正多边形和圆(共1小题)10.(2023•杭州)如图,六边形ABCDEF是⊙O的内接正六边形,设正六边形ABCDEF的面积为S1,△ACE的面积为S2,则= .一十一.圆的综合题(共1小题)11.(2022•杭州)如图是以点O为圆心,AB为直径的圆形纸片,点C在⊙O上,将该圆形纸片沿直线CO对折,点B落在⊙O上的点D处(不与点A重合),连接CB,CD,AD.设CD与直径AB交于点E.若AD=ED,则∠B= 度;的值等于 .一十二.翻折变换(折叠问题)(共1小题)12.(2021•杭州)如图是一张矩形纸片ABCD,点M是对角线AC的中点,点E在BC边上,把△DCE沿直线DE折叠,使点C落在对角线AC上的点F处,连接DF,EF.若MF=AB,则∠DAF= 度.一十三.相似三角形的判定与性质(共1小题)13.(2023•杭州)如图,在△ABC中,AB=AC,∠A<90°,点D,E,F分别在边AB,BC,CA上,连接DE,EF,FD,已知点B和点F关于直线DE对称.设=k,若AD =DF,则= (结果用含k的代数式表示).一十四.相似三角形的应用(共1小题)14.(2022•杭州)某项目学习小组为了测量直立在水平地面上的旗杆AB的高度,把标杆DE 直立在同一水平地面上(如图).同一时刻测得旗杆和标杆在太阳光下的影长分别是BC=8.72m,EF=2.18m.已知B,C,E,F在同一直线上,AB⊥BC,DE⊥EF,DE=2.47m,则AB= m.一十五.特殊角的三角函数值(共1小题)15.(2021•杭州)计算:sin30°= .一十六.加权平均数(共1小题)16.(2021•杭州)现有甲、乙两种糖果的单价与千克数如下表所示.甲种糖果乙种糖果单价(元/千克)3020千克数23将这2千克甲种糖果和3千克乙种糖果混合成5千克什锦糖果,若商家用加权平均数来确定什锦糖果的单价,则这5千克什锦糖果的单价为 元/千克.一十七.概率公式(共2小题)17.(2023•杭州)一个仅装有球的不透明布袋里只有6个红球和n个白球(仅有颜色不同).若从中任意摸出一个球是红球的概率为,则n= .18.(2022•杭州)有5张仅有编号不同的卡片,编号分别是1,2,3,4,5.从中随机抽取一张,编号是偶数的概率等于 .浙江省杭州市2021-2023三年中考数学真题分类汇编-02填空题知识点分类参考答案与试题解析一.合并同类项(共1小题)1.(2022•连云港)计算:2a+3a= 5a .【答案】5a.【解答】解:2a+3a=5a,故答案为:5a.二.最简二次根式(共1小题)2.(2022•杭州)计算:= 2 ;(﹣2)2= 4 .【答案】2,4.【解答】解:=2,(﹣2)2=4,故答案为:2,4.三.二次根式的加减法(共1小题)3.(2023•杭州)计算:= ﹣ .【答案】﹣.【解答】解:原式=﹣2=﹣.故答案为:﹣.四.一元二次方程的应用(共1小题)4.(2022•杭州)某网络学习平台2019年的新注册用户数为100万,2021年的新注册用户数为169万,设新注册用户数的年平均增长率为x(x>0),则x= 30% (用百分数表示).【答案】30%.【解答】解:新注册用户数的年平均增长率为x(x>0),依题意得:100(1+x)2=169,解得:x1=0.3,x2=﹣2.3(不合题意,舍去).0.3=30%,∴新注册用户数的年平均增长率为30%.故答案为:30%.五.坐标与图形性质(共1小题)5.(2021•杭州)如图,在直角坐标系中,以点A(3,1)为端点的四条射线AB,AC,AD,AE分别过点B(1,1),点C(1,3),点D(4,4),点E(5,2),则∠BAC = ∠DAE (填“>”、“=”、“<”中的一个).【答案】=.【解答】解:连接DE,由上图可知AB=2,BC=2,∴△ABC是等腰直角三角形,∴∠BAC=45°,又∵AE===,同理可得DE==,AD==,则在△ADE中,有AE2+DE2=AD2,∴△ADE是等腰直角三角形,∴∠DAE=45°,∴∠BAC=∠DAE,故答案为:=.六.一次函数图象上点的坐标特征(共1小题)6.(2023•杭州)在“探索一次函数y=kx+b的系数k,b与图象的关系”活动中,老师给出了直角坐标系中的三个点:A(0,2),B(2,3),C(3,1).同学们画出了经过这三个点中每两个点的一次函数的图象,并得到对应的函数表达式y1=k1x+b1,y2=k2x+b2,y3=k3x+b3.分别计算k1+b1,k2+b2,k3+b3的值,其中最大的值等于 5 .【答案】5.【解答】解:解法一:设直线AB的解析式为y1=k1x+b1,将点A(0,2),B(2,3)代入得,,解得:,∴k1+b1=,设直线AC的解析式为y2=k2x+b2,将点A(0,2),C(3,1)代入得,,解得:,∴k2+b2=,设直线BC的解析式为y3=k3x+b3,将点B(2,3),C(3,1)代入得,,解得:,∴k3+b3=5,∴k1+b1=,k2+b2=,k3+b3=5,其中最大的值为5.解法二:如图,作直线AB、AC、BC,作直线x=1,设直线AB的解析式为y1=k1x+b1,直线AC的解析式为y2=k2x+b2,直线BC的解析式为y3=k3x+b3,由图象可知,直线x=1与直线BC的交点最高,即当x=1时,k1+b1,k2+b2,k3+b3其中最大的值为k3+b3,将点B(2,3),C(3,1)代入得,,解得:,∴k3+b3=5,k1+b1,k2+b2,k3+b3其中最大的值为k3+b3=5.故答案为:5.七.一次函数与二元一次方程(组)(共1小题)7.(2022•杭州)已知一次函数y=3x﹣1与y=kx(k是常数,k≠0)的图象的交点坐标是(1,2),则方程组的解是 .【答案】.【解答】解:∵一次函数y=3x﹣1与y=kx(k是常数,k≠0)的图象的交点坐标是(1,2),∴联立y=3x﹣1与y=kx的方程组的解为:,故答案为:.八.平行线的性质(共1小题)8.(2023•杭州)如图,点D,E分别在△ABC的边AB,AC上,且DE∥BC,点F在线段BC 的延长线上.若∠ADE=28°,∠ACF=118°,则∠A= 90° .【答案】90°.【解答】解:∵DE∥BC,∴∠B=∠ADE=28°,∵∠ACF=∠A+∠B,∴∠A=∠ACF﹣∠B=118°﹣28°=90°.故答案为:90°.九.切线的性质(共1小题)9.(2021•杭州)如图,已知⊙O的半径为1,点P是⊙O外一点,且OP=2.若PT是⊙O 的切线,T为切点,连结OT,则PT= .【答案】.【解答】解:∵PT是⊙O的切线,T为切点,∴OT⊥PT,在Rt△OPT中,OT=1,OP=2,∴PT===,故:PT=.一十.正多边形和圆(共1小题)10.(2023•杭州)如图,六边形ABCDEF是⊙O的内接正六边形,设正六边形ABCDEF的面积为S1,△ACE的面积为S2,则= 2 .【答案】2.【解答】解:如图所示,连接OA,OC,OE.∵六边形ABCDEF是⊙O的内接正六边形,∴AC=AE=CE,∴△ACE是⊙O的内接正三角形,∵∠B=120°,AB=BC,∴∠BAC=∠BCA=(180°﹣∠B)=30°,∵∠CAE=60°,∴∠OAC=∠OAE=30°,∴∠BAC=∠OAC=30°,同理可得,∠BCA=∠OCA=30°,∴△BAC≌△OAC(ASA),∴S△BAC=S△AOC,圆和正六边形的性质可得,S△BAC=S△AFE=S△CDE,由圆和正三角形的性质可得,S△OAC=S△OAE=S△OCE,∵S1=S△BAC+S△AEF+S△CDE+S△OAC+S△OAE+S△OCE=2(S△OAC+S△OAE+S△OCE)=2S2,∴,故答案为:2一十一.圆的综合题(共1小题)11.(2022•杭州)如图是以点O为圆心,AB为直径的圆形纸片,点C在⊙O上,将该圆形纸片沿直线CO对折,点B落在⊙O上的点D处(不与点A重合),连接CB,CD,AD.设CD与直径AB交于点E.若AD=ED,则∠B= 36 度;的值等于 .【答案】36,.【解答】解:∵AD=DE,∴∠DAE=∠DEA,∵∠DEA=∠BEC,∠DAE=∠BCE,∴∠BEC=∠BCE,∵将该圆形纸片沿直线CO对折,∴∠ECO=∠BCO,又∵OB=OC,∴∠OCB=∠B,设∠ECO=∠OCB=∠B=x,∴∠BCE=∠ECO+∠BCO=2x,∵∠BEC+∠BCE+∠B=180°,∴x+2x+2x=180°,∴x=36°,∴∠B=36°;∵∠ECO=∠B,∠CEO=∠CEB,∴△CEO∽△BEC,∴,∴CE2=EO•BE,设EO=x,EC=OC=OB=a,∴a2=x(x+a),解得,x=a(负值舍去),∴OE=a,∴AE=OA﹣OE=a﹣a=a,∵∠AED=∠BEC,∠DAE=∠BCE,∴△BCE∽△DAE,∴,∴=.故答案为:36,.一十二.翻折变换(折叠问题)(共1小题)12.(2021•杭州)如图是一张矩形纸片ABCD,点M是对角线AC的中点,点E在BC边上,把△DCE沿直线DE折叠,使点C落在对角线AC上的点F处,连接DF,EF.若MF=AB,则∠DAF= 18 度.【答案】18.【解答】解:连接DM,如图:∵四边形ABCD是矩形,∴∠ADC=90°.∵M是AC的中点,∴DM=AM=CM,∴∠FAD=∠MDA,∠MDC=∠MCD.∵DC,DF关于DE对称,∴DF=DC,∴∠DFC=∠DCF.∵MF=AB,AB=CD,DF=DC,∴MF=FD.∴∠FMD=∠FDM.∵∠DFC=∠FMD+∠FDM,∴∠DFC=2∠FMD.∵∠DMC=∠FAD+∠ADM,∴∠DMC=2∠FAD.设∠FAD=x°,则∠DFC=4x°,∴∠MCD=∠MDC=4x°.∵∠DMC+∠MCD+∠MDC=180°,∴2x+4x+4x=180.∴x=18.故答案为:18.一十三.相似三角形的判定与性质(共1小题)13.(2023•杭州)如图,在△ABC中,AB=AC,∠A<90°,点D,E,F分别在边AB,BC,CA上,连接DE,EF,FD,已知点B和点F关于直线DE对称.设=k,若AD =DF,则= (结果用含k的代数式表示).【答案】.【解答】解:方法一:∵点B和点F关于直线DE对称,∴DB=DF,∵AD=DF,∴AD=DB,∵AD=DF,∴∠A=∠DFA,∵点B和点F关于直线DE对称,∴∠BDE=∠FDE,∵∠BDE+∠FDE=∠BDF=∠A+∠DFA,∴∠FDE=∠DFA,∴DE∥AC,∴∠C=∠DEB,∠DEF=∠EFC,∵点B和点F关于直线DE对称,∴∠DEB=∠DEF,∴∠C=∠EFC,∵AB=AC,∴∠C=∠B,∵∠ACB=∠EFC,∴△ABC∽△ECF,∴=,∵DE∥AC,∴∠BDE=∠A,∠BED=∠C,∴△BDE∽△BAC,∴==,∴EC=BC,∵=k,∴BC=k•AB,∴EC=k•AB,∴=,∴CF=k2•AB,∴====.方法二:如图,连接BF,∵点B和点F关于直线DE对称,∴DB=DF,∵AD=DF,∴AD=DB=DF,∴BF⊥AC,设AB=AC=1,则BC=k,设CF=x,则AF=1﹣x,由勾股定理得,AB2﹣AF2=BC2﹣CF2,∴12﹣(1﹣x)2=k2﹣x2,∴x=,∴AF=1﹣x=,∴=.故答案为:.一十四.相似三角形的应用(共1小题)14.(2022•杭州)某项目学习小组为了测量直立在水平地面上的旗杆AB的高度,把标杆DE 直立在同一水平地面上(如图).同一时刻测得旗杆和标杆在太阳光下的影长分别是BC=8.72m,EF=2.18m.已知B,C,E,F在同一直线上,AB⊥BC,DE⊥EF,DE=2.47m,则AB= 9.88 m.【答案】9.88.【解答】解:∵同一时刻测得旗杆和标杆在太阳光下的影长分别是BC=8.72m,EF=2.18m.∴AC∥DF,∴∠ACB=∠DFE,∵AB⊥BC,DE⊥EF,∴∠ABC=∠DEF=90°,∴Rt△ABC∽△Rt△DEF,∴,即,解得AB=9.88,∴旗杆的高度为9.88m.故答案为:9.88.一十五.特殊角的三角函数值(共1小题)15.(2021•杭州)计算:sin30°= .【答案】见试题解答内容【解答】解:sin30°=.一十六.加权平均数(共1小题)16.(2021•杭州)现有甲、乙两种糖果的单价与千克数如下表所示.甲种糖果乙种糖果单价(元/千克)3020千克数23将这2千克甲种糖果和3千克乙种糖果混合成5千克什锦糖果,若商家用加权平均数来确定什锦糖果的单价,则这5千克什锦糖果的单价为 24 元/千克.【答案】24.【解答】解:这5千克什锦糖果的单价为:(30×2+20×3)÷5=24(元/千克).故答案为:24.一十七.概率公式(共2小题)17.(2023•杭州)一个仅装有球的不透明布袋里只有6个红球和n个白球(仅有颜色不同).若从中任意摸出一个球是红球的概率为,则n= 9 .【答案】9.【解答】解:根据题意,=,解得n=9,经检验n=9是方程的解.∴n=9.故答案为:9.18.(2022•杭州)有5张仅有编号不同的卡片,编号分别是1,2,3,4,5.从中随机抽取一张,编号是偶数的概率等于 .【答案】.【解答】解:从编号分别是1,2,3,4,5的卡片中,随机抽取一张有5种可能性,其中编号是偶数的可能性有2种可能性,∴从中随机抽取一张,编号是偶数的概率等于,故答案为:.。

浙江省温州市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类

浙江省温州市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类

浙江省温州市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类一.分式的加减法(共1小题)1.(2023•温州)计算:(1)|﹣1|++()﹣2﹣(﹣4);(2)﹣.二.待定系数法求一次函数解析式(共1小题)2.(2023•温州)如图,在直角坐标系中,点A (2,m )在直线y =2x ﹣上,过点A 的直线交y 轴于点B (0,3).(1)求m 的值和直线AB 的函数表达式;(2)若点P (t ,y 1)在线段AB 上,点Q (t ﹣1,y 2)在直线y =2x ﹣上,求y 1﹣y 2的最大值.三.一次函数的应用(共1小题)3.(2021•温州)某公司生产的一种营养品信息如表.已知甲食材每千克的进价是乙食材的2倍,用80元购买的甲食材比用20元购买的乙食材多1千克.营养品信息表营养成分每千克含铁42毫克原料每千克含铁甲食材50毫克配料表乙食材10毫克规格每包食材含量每包单价A 包装1千克45元B 包装0.25千克12元(1)问甲、乙两种食材每千克进价分别是多少元?(2)该公司每日用18000元购进甲、乙两种食材并恰好全部用完.①问每日购进甲、乙两种食材各多少千克?②已知每日其他费用为2000元,且生产的营养品当日全部售出.若A的数量不低于B的数量,则A为多少包时,每日所获总利润最大?最大总利润为多少元?四.待定系数法求二次函数解析式(共1小题)4.(2021•温州)已知抛物线y=ax2﹣2ax﹣8(a≠0)经过点(﹣2,0).(1)求抛物线的函数表达式和顶点坐标.(2)直线l交抛物线于点A(﹣4,m),B(n,7),n为正数.若点P在抛物线上且在直线l下方(不与点A,B重合),分别求出点P横坐标与纵坐标的取值范围.五.二次函数的应用(共1小题)5.(2022•温州)根据以下素材,探索完成任务.如何设计拱桥景观灯的悬挂方案?素材1图1中有一座拱桥,图2是其抛物线形桥拱的示意图,某时测得水面宽20m,拱顶离水面5m.据调查,该河段水位在此基础上再涨1.8m达到最高.素材2为迎佳节,拟在图1桥洞前面的桥拱上悬挂40cm长的灯笼,如图3.为了安全,灯笼底部距离水面不小于1m;为了实效,相邻两盏灯笼悬挂点的水平间距均为1.6m;为了美观,要求在符合条件处都挂上灯笼,且挂满后成轴对称分布.问题解决任务1确定桥拱形状在图2中建立合适的直角坐标系,求抛物线的函数表达式.任务2探究悬挂范围在你所建立的坐标系中,仅在安全的条件下,确定悬挂点的纵坐标的最小值和横坐标的取值范围.任务3拟定设计方案给出一种符合所有悬挂条件的灯笼数量,并根据你所建立的坐标系,求出最左边一盏灯笼悬挂点的横坐标.六.平行四边形的判定与性质(共2小题)6.(2022•温州)如图,在△ABC 中,AD ⊥BC 于点D ,E ,F 分别是AC ,AB 的中点,O 是DF 的中点,EO 的延长线交线段BD 于点G ,连结DE ,EF ,FG .(1)求证:四边形DEFG 是平行四边形.(2)当AD =5,tan ∠EDC =时,求FG 的长.7.(2021•温州)如图,在▱ABCD 中,E ,F 是对角线BD 上的两点(点E 在点F 左侧),且∠AEB =∠CFD =90°.(1)求证:四边形AECF 是平行四边形;(2)当AB =5,tan ∠ABE =,∠CBE =∠EAF 时,求BD 的长.七.圆的综合题(共2小题)8.(2022•温州)如图1,AB为半圆O的直径,C为BA延长线上一点,CD切半圆于点D,BE⊥CD,交CD延长线于点E,交半圆于点F,已知BC=5,BE=3,点P,Q分别在线段AB,BE上(不与端点重合),且满足=.设BQ=x,CP=y.(1)求半圆O的半径.(2)求y关于x的函数表达式.(3)如图2,过点P作PR⊥CE于点R,连结PQ,RQ.①当△PQR为直角三角形时,求x的值.②作点F关于QR的对称点F′,当点F′落在BC上时,求的值.9.(2021•温州)如图,在平面直角坐标系中,⊙M经过原点O,分别交x轴、y轴于点A (2,0),B(0,8),连结AB.直线CM分别交⊙M于点D,E(点D在左侧),交x轴于点C(17,0),连结AE.(1)求⊙M的半径和直线CM的函数表达式;(2)求点D,E的坐标;(3)点P在线段AC上,连结PE.当∠AEP与△OBD的一个内角相等时,求所有满足条件的OP的长.八.利用平移设计图案(共1小题)10.(2021•温州)如图中4×4与6×6的方格都是由边长为1的小正方形组成.图1是绘成的七巧板图案,它由7个图形组成,请按以下要求选择其中一个并在图2、图3中画出相应的格点图形(顶点均在格点上).(1)选一个四边形画在图2中,使点P为它的一个顶点,并画出将它向右平移3个单位后所得的图形.(2)选一个合适的三角形,将它的各边长扩大到原来的倍,画在图3中.九.作图-旋转变换(共1小题)11.(2023•温州)如图,在2×4的方格纸ABCD中,每个小方格的边长为1.已知格点P,请按要求画格点三角形(顶点均在格点上).(1)在图1中画一个等腰三角形PEF,使底边长为,点E在BC上,点F在AD上,再画出该三角形绕矩形ABCD的中心旋转180°后的图形;(2)在图2中画一个Rt△PQR,使∠P=45°,点Q在BC上,点R在AD上,再画出该三角形向右平移1个单位后的图形.一十.相似形综合题(共1小题)12.(2023•温州)如图1,AB 为半圆O 的直径,C 为BA 延长线上一点,CD 切半圆于点D ,BE ⊥CD ,交CD 延长线于点E ,交半圆于点F ,已知OA =,AC =1.如图2,连结AF ,P 为线段AF 上一点,过点P 作BC 的平行线分别交CE ,BE 于点M ,N ,过点P 作PH ⊥AB 于点H .设PH =x ,MN =y .(1)求CE 的长和y 关于x 的函数表达式;(2)当PH <PN ,且长度分别等于PH ,PN ,a 的三条线段组成的三角形与△BCE 相似时,求a 的值;(3)延长PN 交半圆O 于点Q ,当NQ =x ﹣3时,求MN 的长.一十一.解直角三角形的应用-仰角俯角问题(共1小题)13.(2023•温州)根据背景素材,探索解决问题.测算发射塔的高度背景素材某兴趣小组在一幢楼房窗口测算远处小山坡上发射塔的高度MN (如图1),他们通过自制的测倾仪(如图2)在A ,B ,C 三个位置观测,测倾仪上的示数如图3所示.经讨论,只需选择其中两个合适的位置,通过测量、换算就能计算发射塔的高度问题解决分析规划选择两个观测位置:点 和点  .任务1获取数据写出所选位置观测角的正切值,并量出观测点之间的图上距离.任务2推理计算计算发射塔的图上高度MN .任务3换算高度楼房实际宽度DE 为12米,请通过测量换算发射塔的实际高度.注:测量时,以答题纸上的图上距离为准,并精确到1mm .浙江省温州市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类参考答案与试题解析一.分式的加减法(共1小题)1.(2023•温州)计算:(1)|﹣1|++()﹣2﹣(﹣4);(2)﹣.【答案】(1)12;(2)a﹣1.【解答】解:(1)原式=1﹣2+9+4=12;(2)原式===a﹣1.二.待定系数法求一次函数解析式(共1小题)2.(2023•温州)如图,在直角坐标系中,点A(2,m)在直线y=2x﹣上,过点A的直线交y轴于点B(0,3).(1)求m的值和直线AB的函数表达式;(2)若点P(t,y1)在线段AB上,点Q(t﹣1,y2)在直线y=2x﹣上,求y1﹣y2的最大值.【答案】(1)m=;直线AB的函数表达式为y=﹣x+3.(2)当t =0,y 1﹣y 2的最大值为.【解答】解:(1)把点A (2,m )代入y =2x ﹣中,得m =;设直线AB 的函数表达式为:y =kx +b ,把A (2,),B (0,3)代入得:,解得,∴直线AB 的函数表达式为y =﹣x +3.(2)∵点P (t ,y 1)在线段AB 上,∴y 1=﹣t +3(0≤t ≤2),∵点Q (t ﹣1,y 2)在直线y =2x ﹣上,∴y 2=2(t ﹣1)﹣=2t ﹣,∴y 1﹣y 2=﹣t +3﹣(2t ﹣)=﹣t +,∵﹣<0,∴y 1﹣y 2随t 的增大而减小,∴当t =0,y 1﹣y 2的最大值为.三.一次函数的应用(共1小题)3.(2021•温州)某公司生产的一种营养品信息如表.已知甲食材每千克的进价是乙食材的2倍,用80元购买的甲食材比用20元购买的乙食材多1千克.营养品信息表营养成分每千克含铁42毫克原料每千克含铁甲食材50毫克配料表乙食材10毫克规格每包食材含量每包单价A 包装1千克45元B 包装0.25千克12元(1)问甲、乙两种食材每千克进价分别是多少元?(2)该公司每日用18000元购进甲、乙两种食材并恰好全部用完.①问每日购进甲、乙两种食材各多少千克?②已知每日其他费用为2000元,且生产的营养品当日全部售出.若A的数量不低于B的数量,则A为多少包时,每日所获总利润最大?最大总利润为多少元?【答案】(1)甲食材每千克进价为40元,乙食材每千克进价为20元;(2)①每日购进甲食材400千克,乙食材100千克;②当A为400包时,总利润最大,最大总利润为2800元.【解答】解:(1)设乙食材每千克进价为a元,则甲食材每千克进价为2a元,由题意得,解得a=20,经检验,a=20是所列方程的根,且符合题意,∴2a=40(元),答:甲食材每千克进价为40元,乙食材每千克进价为20元;(2)①设每日购进甲食材x千克,乙食材y千克,由题意得,解得,答:每日购进甲食材400千克,乙食材100千克;②设A为m包,则B为=(2000﹣4m)包,∵A的数量不低于B的数量,∴m≥2000﹣4m,∴m≥400,设总利润为W元,根据题意得:W=45m+12(2000﹣4m)﹣18000﹣2000=﹣3m+4000,∵k=﹣3<0,∴W随m的增大而减小,∴当m=400时,W的最大值为2800,答:当A为400包时,总利润最大,最大总利润为2800元.四.待定系数法求二次函数解析式(共1小题)4.(2021•温州)已知抛物线y=ax2﹣2ax﹣8(a≠0)经过点(﹣2,0).(1)求抛物线的函数表达式和顶点坐标.(2)直线l交抛物线于点A(﹣4,m),B(n,7),n为正数.若点P在抛物线上且在直线l下方(不与点A,B重合),分别求出点P横坐标与纵坐标的取值范围.【答案】(1)y=x2﹣2x﹣8;(1,﹣9).(2)﹣4<x P<5,﹣9≤y P<16.【解答】解:(1)把(﹣2,0)代入y=ax2﹣2ax﹣8得0=4a+4a﹣8,解得a=1,∴抛物线的函数表达式为y=x2﹣2x﹣8,∵y=x2﹣2x﹣8=(x﹣1)2﹣9,∴抛物线顶点坐标为(1,﹣9).(2)把x=﹣4代入y=x2﹣2x﹣8得y=(﹣4)2﹣2×(﹣4)﹣8=16,∴m=16,把y=7代入函数解析式得7=x2﹣2x﹣8,解得x=5或x=﹣3,∴n=5或n=﹣3,∵n为正数,∴n=5,∴点A坐标为(﹣4,16),点B坐标为(5,7).∵抛物线开口向上,顶点坐标为(1,﹣9),∴抛物线顶点在AB下方,∴﹣4<x P<5,﹣9≤y P<16.五.二次函数的应用(共1小题)5.(2022•温州)根据以下素材,探索完成任务.如何设计拱桥景观灯的悬挂方案?素材1图1中有一座拱桥,图2是其抛物线形桥拱的示意图,某时测得水面宽20m,拱顶离水面5m.据调查,该河段水位在此基础上再涨1.8m达到最高.素材2为迎佳节,拟在图1桥洞前面的桥拱上悬挂40cm长的灯笼,如图3.为了安全,灯笼底部距离水面不小于1m;为了实效,相邻两盏灯笼悬挂点的水平间距均为1.6m;为了美观,要求在符合条件处都挂上灯笼,且挂满后成轴对称分布.问题解决任务1确定桥拱形状在图2中建立合适的直角坐标系,求抛物线的函数表达式.任务2探究悬挂范围在你所建立的坐标系中,仅在安全的条件下,确定悬挂点的纵坐标的最小值和横坐标的取值范围.任务3拟定设计方案给出一种符合所有悬挂条件的灯笼数量,并根据你所建立的坐标系,求出最左边一盏灯笼悬挂点的横坐标.【答案】任务1:y=﹣x2;任务2:﹣1.8m,﹣6≤x≤6;任务3:挂7盏或8盏,横坐标分别为﹣4.8和﹣5.6,方案见解答.【解答】解:任务1:以拱顶为原点,建立如图1所示的直角坐标系,则顶点为(0,0),且过点B(10,﹣5),设抛物线的解析式为:y=ax2,把点B(10,﹣5)代入得:100a=﹣5,∴a=﹣,∴抛物线的函数表达式为:y=﹣x2;任务2:∵该河段水位再涨1.8m达到最高,灯笼底部距离水面不小于1m,灯笼长0.4m,∴当悬挂点的纵坐标y≥﹣5+1.8+1+0.4=﹣1.8,即悬挂点的纵坐标的最小值是﹣1.8m,当y=﹣1.8时,﹣x2=﹣1.8,∴x=±6,∴悬挂点的横坐标的取值范围是:﹣6≤x≤6;任务3:方案一:如图2(坐标轴的横轴),从顶点处开始悬挂灯笼,∵﹣6≤x≤6,相邻两盏灯笼悬挂点的水平间距均为1.6m,∴若顶点一侧悬挂4盏灯笼时,1.6×4>6,若顶点一侧悬挂3盏灯笼时,1.6×3<6,∴顶点一侧最多悬挂3盏灯笼,∵灯笼挂满后成轴对称分布,∴共可挂7盏灯笼,∴最左边一盏灯笼的横坐标为:﹣1.6×3=﹣4.8;方案二:如图3,∵若顶点一侧悬挂5盏灯笼时,0.8+1.6×(5﹣1)>6,若顶点一侧悬挂4盏灯笼时,0.8+1.6×(4﹣1)<6,∴顶点一侧最多悬挂4盏灯笼,∵灯笼挂满后成轴对称分布,∴共可挂8盏灯笼,∴最左边一盏灯笼的横坐标为:﹣0.8﹣1.6×3=﹣5.6.六.平行四边形的判定与性质(共2小题)6.(2022•温州)如图,在△ABC中,AD⊥BC于点D,E,F分别是AC,AB的中点,O 是DF的中点,EO的延长线交线段BD于点G,连结DE,EF,FG.(1)求证:四边形DEFG是平行四边形.(2)当AD=5,tan∠EDC=时,求FG的长.【答案】(1)证明见解析;(2),【解答】(1)证明:∵E,F分别是AC,AB的中点,∴EF是△ABC的中位线,∴EF∥BC,∴∠EFO=∠GDO,∵O是DF的中点,∴OF=OD,在△OEF和△OGD中,,∴△OEF≌△OGD(ASA),∴EF=GD,∴四边形DEFG是平行四边形.(2)解:∵AD⊥BC,∴∠ADC=90°,∵E是AC的中点,∴DE=AC=CE,∴∠C=∠EDC,∴tan C==tan∠EDC=,即=,∴CD=2,∴AC===,∴DE=AC=,由(1)可知,四边形DEFG是平行四边形,∴FG=DE=.7.(2021•温州)如图,在▱ABCD中,E,F是对角线BD上的两点(点E在点F左侧),且∠AEB=∠CFD=90°.(1)求证:四边形AECF是平行四边形;(2)当AB=5,tan∠ABE=,∠CBE=∠EAF时,求BD的长.【答案】见试题解答内容【解答】(1)证明:∵∠AEB=∠CFD=90°,∴AE⊥BD,CF⊥BD,∴AE∥CF,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABE=∠CDF,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),∴AE=CF,∴四边形AECF是平行四边形;(2)解:在Rt△ABE中,tan∠ABE==,设AE=3a,则BE=4a,由勾股定理得:(3a)2+(4a)2=52,解得:a=1或a=﹣1(舍去),∴AE=3,BE=4,由(1)得:四边形AECF是平行四边形,∴∠EAF=∠ECF,CF=AE=3,∵∠CBE=∠EAF,∴∠ECF=∠CBE,∴tan∠CBE=tan∠ECF,∴=,∴CF2=EF×BF,设EF=x,则BF=x+4,∴32=x(x+4),解得:x=﹣2或x=﹣﹣2,(舍去),即EF=﹣2,由(1)得:△ABE≌△CDF,∴BE=DF=4,∴BD=BE+EF+DF=4+﹣2+4=6+.七.圆的综合题(共2小题)8.(2022•温州)如图1,AB为半圆O的直径,C为BA延长线上一点,CD切半圆于点D,BE⊥CD,交CD延长线于点E,交半圆于点F,已知BC=5,BE=3,点P,Q分别在线段AB,BE上(不与端点重合),且满足=.设BQ=x,CP=y.(1)求半圆O的半径.(2)求y关于x的函数表达式.(3)如图2,过点P作PR⊥CE于点R,连结PQ,RQ.①当△PQR为直角三角形时,求x的值.②作点F关于QR的对称点F′,当点F′落在BC上时,求的值.【答案】(1);(2)y=;(3)①或;②.【解答】解:(1)如图1,连接OD,设半径为r,∵CD切半圆于点D,∴OD⊥CD,∵BE⊥CD,∴OD∥BE,∴△COD∽△CBE,∴,∴,解得r=,∴半圆O的半径为;(2)由(1)得,CA=CB﹣AB=5﹣2×=,∵=,BQ=x,∴AP=,∴CP=AP+AC,∴y=;(3)①显然∠PRQ<90°,所以分两种情形,当∠RPQ=90°时,则四边形RPQE是矩形,∴PR=QE,∵PR=PC×sin C=,∴,∴x=,当∠PQR=90°时,过点P作PH⊥BE于点H,如图,则四边形PHER是矩形,∴PH=RE,EH=PR,∵CR=CP•cos C=,∴PH=RE=3﹣x=EQ,∴∠EQR=∠ERQ=45°,∴∠PQH=45°=∠QPH,∴HQ=HP=3﹣x,由EH=PR得:(3﹣x)+(3﹣x)=,∴x=,综上,x的值为或;②如图,连接AF,QF',由对称可知QF=QF',∵CP=,∴CR=x+1,∴ER=3﹣x,∵BQ=x,∴EQ=3﹣x,∴ER=EQ,∴∠F'QR=∠EQR=45°,∴∠BQF'=90°,∴QF=QF'=BQ•tan B=,∵AB是半圆O的直径,∴∠AFB=90°,∴BF=AB•cos B=,∴,∴x=,∴.9.(2021•温州)如图,在平面直角坐标系中,⊙M经过原点O,分别交x轴、y轴于点A (2,0),B(0,8),连结AB.直线CM分别交⊙M于点D,E(点D在左侧),交x轴于点C(17,0),连结AE.(1)求⊙M的半径和直线CM的函数表达式;(2)求点D,E的坐标;(3)点P在线段AC上,连结PE.当∠AEP与△OBD的一个内角相等时,求所有满足条件的OP的长.【答案】见试题解答内容【解答】解:(1)∵∠AOB=90°,∴AB为⊙M的直径,∵点M是AB的中点,则点M(1,4),则圆的半径为AM==,设直线CM的表达式为y=kx+b,则,解得,故直线CM的表达式为y=﹣x+;(2)设点D的坐标为(x,﹣x+),由AM=得:(x﹣1)2+(﹣x+﹣4)2=()2,解得x=5或﹣3,故点D、E的坐标分别为(﹣3,5)、(5,3);(3)过点D作DH⊥OB于点H,则DH=3,BH=8﹣5=3=DH,故∠DBO=45°,由点A、E的坐标,同理可得∠EAP=45°;由点A、E、B、D的坐标得,AE==3,同理可得:BD=3,OB=8,①当∠AEP=∠DBO=45°时,则△AEP为等腰直角三角形,EP⊥AC,故点P的坐标为(5,0),故OP=5;②∠AEP=∠BDO时,∵∠EAP=∠DBO,∴△EAP∽△DBO,∴,即==,解得AP=8,故PO=10;③∠AEP=∠BOD时,∵∠EAP=∠DBO,∴△EAP∽△OBD,∴,即,解得AP=,则PO=2+=,综上所述,OP为5或10或.八.利用平移设计图案(共1小题)10.(2021•温州)如图中4×4与6×6的方格都是由边长为1的小正方形组成.图1是绘成的七巧板图案,它由7个图形组成,请按以下要求选择其中一个并在图2、图3中画出相应的格点图形(顶点均在格点上).(1)选一个四边形画在图2中,使点P为它的一个顶点,并画出将它向右平移3个单位后所得的图形.(2)选一个合适的三角形,将它的各边长扩大到原来的倍,画在图3中.【答案】见试题解答内容【解答】解:(1)如图2所示,即为所求;(2)如图3所示,即为所求.九.作图-旋转变换(共1小题)11.(2023•温州)如图,在2×4的方格纸ABCD中,每个小方格的边长为1.已知格点P,请按要求画格点三角形(顶点均在格点上).(1)在图1中画一个等腰三角形PEF,使底边长为,点E在BC上,点F在AD上,再画出该三角形绕矩形ABCD的中心旋转180°后的图形;(2)在图2中画一个Rt△PQR,使∠P=45°,点Q在BC上,点R在AD上,再画出该三角形向右平移1个单位后的图形.【答案】(1)(2)作图见解析部分.【解答】解:(1)图形如图1所示(答案不唯一);(2)图形如图2所示(答案不唯一).一十.相似形综合题(共1小题)12.(2023•温州)如图1,AB为半圆O的直径,C为BA延长线上一点,CD切半圆于点D,BE⊥CD,交CD延长线于点E,交半圆于点F,已知OA=,AC=1.如图2,连结AF,P为线段AF上一点,过点P作BC的平行线分别交CE,BE于点M,N,过点P 作PH⊥AB于点H.设PH=x,MN=y.(1)求CE的长和y关于x的函数表达式;(2)当PH<PN,且长度分别等于PH,PN,a的三条线段组成的三角形与△BCE相似时,求a的值;(3)延长PN交半圆O于点Q,当NQ=x﹣3时,求MN的长.【答案】(1)CE=,y=﹣x+4;(2)a的值为或或;(3)MN的长为.【解答】解:(1)如图1,连接OD,∵CD切半圆O于点D,∴OD⊥CE,∵OA=,AC=1,∴OC=,BC=4,∴CD==2,∵BE⊥CE,∴OD∥BE,∴,∴,∴CE=,如图2,∵∠AFB=∠E=90°,∴AF∥CE,∴MN∥CB,∴四边形APMC是平行四边形,∴CM=PA====x,∵NM∥BC,∴△BCE∽△NME,∴,∴=,∴y=﹣x+4;(2)∵PN=y﹣1=﹣x+4﹣1=﹣x+3,PH<PN,△BCE的三边之比为3:4:5,∴可分为三种情况,当PH:PN=3:5时,x=﹣x+3,解得:x=,∴a=x=,当PH:PN=4:5时,x=﹣x+3,解得:x=,∴a=x=,当PH:PN=3:4时,x=﹣x+3,解得:x=,∴a=x=,综上所述:a的值为或或;(3)如图3,连接AQ,BQ,过点Q作QG⊥AB于点G,则∠AQB =∠AGQ =90°,PH =QG =x ,∴∠QAB =∠BQG ,∵NQ =x ﹣3,PN =y ﹣1=﹣x +3,∴HG =PQ =NQ +PN =x ,∵AH =x ,∴AG =AH +HG =3x ,∴tan ∠BQG =tan ∠QAB ===,∴BG =QG =x ,∴AB =AG +BG =x =3,∴x =,∴y =﹣x +4=,∴MN 的长为.一十一.解直角三角形的应用-仰角俯角问题(共1小题)13.(2023•温州)根据背景素材,探索解决问题.测算发射塔的高度背景素材某兴趣小组在一幢楼房窗口测算远处小山坡上发射塔的高度MN (如图1),他们通过自制的测倾仪(如图2)在A ,B ,C 三个位置观测,测倾仪上的示数如图3所示.经讨论,只需选择其中两个合适的位置,通过测量、换算就能计算发射塔的高度问题解决分析规划选择两个观测位置:点 A 和点 B (答案不唯一) .任务1获取数据写出所选位置观测角的正切值,并量出观测点之间的图上距离.任务2推理计算计算发射塔的图上高度MN .任务3换算高度楼房实际宽度DE 为12米,请通过测量换算发射塔的实际高度.注:测量时,以答题纸上的图上距离为准,并精确到1mm .【答案】任务1:A 、B ;tan ∠1=,tan ∠2=,tan ∠3=,测得图上AB =4mm ,任务2:MN =18mm ;任务3:43.2m .【解答】解:任务1:【分析规划】选择点A 和点B(答案不唯一),故答案为:A 、B (答案不唯一);【获取数据】tan ∠1=,tan ∠2=,tan ∠3=,测得图上AB =4mm ;任务2:如图1,过点A 作AF ⊥MN 于点F ,过点B 作BG ⊥MN 于点G ,则FG =AB =4mm,设MF=xmm,则MG=(x+4)mm,∵tan∠MAF==,tan∠MBG==,∴AF=4x,BG=3x+12,∵AF=BG,即4x=3x+12,∴x=12,即MF=12mm,∴AF=BG=4x=48(mm),∵tan∠FAN==,∴FN=6mm,∴MN=MF+FN=12+6=18(mm),任务3:测得图上DE=5mm,设发射塔的实际高度为hm,由题意得,=,解得h=43.2(m),∴发射塔的实际高度为43.2m.。

浙江省绍兴市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类(含答案)

浙江省绍兴市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类(含答案)

浙江省绍兴市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类一.待定系数法求一次函数解析式(共1小题)1.(2023•绍兴)一条笔直的路上依次有M,P,N三地,其中M,N两地相距1000米.甲、乙两机器人分别从M,N两地同时出发,去目的地N,M,匀速而行.图中OA,BC分别表示甲、乙机器人离M地的距离y(米)与行走时间x(分钟)的函数关系图象.(1)求OA所在直线的表达式;(2)出发后甲机器人行走多少时间,与乙机器人相遇?(3)甲机器人到P地后,再经过1分钟乙机器人也到P地,求P,M两地间的距离.二.一次函数的应用(共2小题)2.(2022•绍兴)一个深为6米的水池积存着少量水,现在打开水阀进水,下表记录了2小时内5个时刻的水位高度,其中x表示进水用时(单位:小时),y表示水位高度(单位:米).x00.51 1.52y1 1.52 2.53为了描述水池水位高度与进水用时的关系,现有以下三种函数模型供选择:y=kx+b(k≠0),y=ax2+bx+c(a≠0),y=(k≠0).(1)在平面直角坐标系中描出表中数据对应的点,再选出最符合实际的函数模型,求出相应的函数表达式,并画出这个函数的图象.(2)当水位高度达到5米时,求进水用时x.3.(2021•绍兴)Ⅰ号无人机从海拔10m处出发,以10m/min的速度匀速上升,Ⅱ号无人机从海拔30m处同时出发,以a(m/min)的速度匀速上升,经过5min两架无人机位于同一海拔高度b(m).无人机海拔高度y(m)与时间x(min)的关系如图.两架无人机都上升了15min.(1)求b的值及Ⅱ号无人机海拔高度y(m)与时间x(min)的关系式;(2)问无人机上升了多少时间,Ⅰ号无人机比Ⅱ号无人机高28米.三.二次函数综合题(共1小题)4.(2021•绍兴)小聪设计奖杯,从抛物线形状上获得灵感,在平面直角坐标系中画出截面示意图,如图1,杯体ACB是抛物线的一部分,抛物线的顶点C在y轴上,杯口直径AB=4,且点A,B关于y轴对称,杯脚高CO=4,杯高DO=8,杯底MN在x轴上.(1)求杯体ACB所在抛物线的函数表达式(不必写出x的取值范围);(2)为使奖杯更加美观,小敏提出了改进方案,如图2,杯体A′CB′所在抛物线形状不变,杯口直径A′B′∥AB,杯脚高CO不变,杯深CD′与杯高OD′之比为0.6,求A′B′的长.四.等腰三角形的性质(共1小题)5.(2021•绍兴)如图,在△ABC中,∠A=40°,点D,E分别在边AB,AC上,BD=BC =CE,连结CD,BE.(1)若∠ABC=80°,求∠BDC,∠ABE的度数;(2)写出∠BEC与∠BDC之间的关系,并说明理由.五.平行四边形的性质(共1小题)6.(2021•绍兴)问题:如图,在▱ABCD中,AB=8,AD=5,∠DAB,∠ABC的平分线AE,BF分别与直线CD交于点E,F,求EF的长.答案:EF=2.探究:(1)把“问题”中的条件“AB=8”去掉,其余条件不变.①当点E与点F重合时,求AB的长;②当点E与点C重合时,求EF的长.(2)把“问题”中的条件“AB=8,AD=5”去掉,其余条件不变,当点C,D,E,F 相邻两点间的距离相等时,求的值.六.正方形的性质(共1小题)7.(2023•绍兴)如图,在正方形ABCD中,G是对角线BD上的一点(与点B,D不重合),GE⊥CD,GF⊥BC,E,F分别为垂足.连接EF,AG,并延长AG交EF于点H.(1)求证:∠DAG=∠EGH;(2)判断AH与EF是否垂直,并说明理由.七.四边形综合题(共3小题)8.(2023•绍兴)在平行四边形ABCD中(顶点A,B,C,D按逆时针方向排列),AB=12,AD=10,∠B为锐角,且sin B=.(1)如图1,求AB边上的高CH的长;(2)P是边AB上的一动点,点C,D同时绕点P按逆时针方向旋转90°得点C',D',①如图2,当C'落在射线CA上时,求BP的长;②当△AC'D'是直角三角形时,求BP的长.9.(2022•绍兴)如图,在矩形ABCD中,AB=6,BC=8,动点E从点A出发,沿边AD,DC向点C运动,A,D关于直线BE的对称点分别为M,N,连结MN.(1)如图,当E在边AD上且DE=2时,求∠AEM的度数.(2)当N在BC延长线上时,求DE的长,并判断直线MN与直线BD的位置关系,说明理由.(3)当直线MN恰好经过点C时,求DE的长.10.(2021•绍兴)如图,矩形ABCD中,AB=4,点E是边AD的中点,点F是对角线BD 上一动点,∠ADB=30°.连结EF,作点D关于直线EF的对称点P.(1)若EF⊥BD,求DF的长;(2)若PE⊥BD,求DF的长;(3)直线PE交BD于点Q,若△DEQ是锐角三角形,求DF长的取值范围.八.切线的性质(共1小题)11.(2023•绍兴)如图,AB是⊙O的直径,C是⊙O上一点,过点C作⊙O的切线CD,交AB的延长线于点D,过点A作AE⊥CD于点E.(1)若∠EAC=25°,求∠ACD的度数;(2)若OB=2,BD=1,求CE的长.九.解直角三角形的应用(共1小题)12.(2023•绍兴)图1是某款篮球架,图2是其示意图,立柱OA垂直地面OB,支架CD与OA交于点A,支架CG⊥CD交OA于点G,支架DE平行地面OB,篮筐EF与支架DE 在同一直线上,OA=2.5米,AD=0.8米.∠AGC=32°.(1)求∠GAC的度数;(2)某运动员准备给篮筐挂上篮网,如果他站在凳子上,最高可以把篮网挂到离地面3米处,那么他能挂上篮网吗?请通过计算说明理由.(参考数据:sin32°≈0.53,cos32°≈0.85,tan32°≈0.62)浙江省绍兴市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类参考答案与试题解析一.待定系数法求一次函数解析式(共1小题)1.(2023•绍兴)一条笔直的路上依次有M,P,N三地,其中M,N两地相距1000米.甲、乙两机器人分别从M,N两地同时出发,去目的地N,M,匀速而行.图中OA,BC分别表示甲、乙机器人离M地的距离y(米)与行走时间x(分钟)的函数关系图象.(1)求OA所在直线的表达式;(2)出发后甲机器人行走多少时间,与乙机器人相遇?(3)甲机器人到P地后,再经过1分钟乙机器人也到P地,求P,M两地间的距离.【答案】(1)OA所在直线的表达式为y=200x.(2)出发后甲机器人行走分钟,与乙机器人相遇.(3)P,M两地间的距离为600米.【解答】解:(1)由图象可知,OA所在直线为正比例函数,∴设y=kx,∵A(5,1000),1000=5k,k=200,∴OA所在直线的表达式为y=200x.(2)由图可知甲机器人速度为:1000÷5=200(米/分钟),乙机器人速度为:1000÷10=100(米/分钟),两人相遇时:=(分钟),答:出发后甲机器人行走分钟,与乙机器人相遇.(3)设甲机器人行走t分钟时到P地,P地与M地距离为200t,则乙机器人(t+1)分钟后到P地,P地与M地距离1000﹣100(t+1),由200t=1000﹣100(t+1),解得t=3,∴200t=600,答:P,M两地间的距离为600米.二.一次函数的应用(共2小题)2.(2022•绍兴)一个深为6米的水池积存着少量水,现在打开水阀进水,下表记录了2小时内5个时刻的水位高度,其中x表示进水用时(单位:小时),y表示水位高度(单位:米).x00.51 1.52y1 1.52 2.53为了描述水池水位高度与进水用时的关系,现有以下三种函数模型供选择:y=kx+b(k≠0),y=ax2+bx+c(a≠0),y=(k≠0).(1)在平面直角坐标系中描出表中数据对应的点,再选出最符合实际的函数模型,求出相应的函数表达式,并画出这个函数的图象.(2)当水位高度达到5米时,求进水用时x.【答案】(1)图形见解答;y=x+1(0≤x≤5);(2)4小时.【解答】解:(1)函数的图象如图所示:根据图象可知:选择函数y=kx+b,将(0,1),(1,2)代入,得解得∴函数表达式为:y=x+1(0≤x≤5);(2)当y=5时,x+1=5,∴x=4.答:当水位高度达到5米时,进水用时x为4小时.3.(2021•绍兴)Ⅰ号无人机从海拔10m处出发,以10m/min的速度匀速上升,Ⅱ号无人机从海拔30m处同时出发,以a(m/min)的速度匀速上升,经过5min两架无人机位于同一海拔高度b(m).无人机海拔高度y(m)与时间x(min)的关系如图.两架无人机都上升了15min.(1)求b的值及Ⅱ号无人机海拔高度y(m)与时间x(min)的关系式;(2)问无人机上升了多少时间,Ⅰ号无人机比Ⅱ号无人机高28米.【答案】(1)b=60,y=6x+30(0≤x≤15);(2)12min.【解答】解:(1)b=10+10×5=60,设函数的表达式为y=kx+t,将(0,30)、(5,60)代入上式得,解得,故函数表达式为y=6x+30(0≤x≤15);(2)由题意得:(10x+10)﹣(6x+30)=28,解得x=12<15,故无人机上升12min,Ⅰ号无人机比Ⅱ号无人机高28米.三.二次函数综合题(共1小题)4.(2021•绍兴)小聪设计奖杯,从抛物线形状上获得灵感,在平面直角坐标系中画出截面示意图,如图1,杯体ACB是抛物线的一部分,抛物线的顶点C在y轴上,杯口直径AB =4,且点A,B关于y轴对称,杯脚高CO=4,杯高DO=8,杯底MN在x轴上.(1)求杯体ACB所在抛物线的函数表达式(不必写出x的取值范围);(2)为使奖杯更加美观,小敏提出了改进方案,如图2,杯体A′CB′所在抛物线形状不变,杯口直径A′B′∥AB,杯脚高CO不变,杯深CD′与杯高OD′之比为0.6,求A′B′的长.【答案】(1)y=x2+4;(2)杯口直径A′B′的长为2.【解答】解:(1)∵CO=4,∴顶点C(0,4),∴设抛物线的函数表达式为y=ax2+4,∵AB=4,∴AD=DB=2,∵DO=8,∴A(﹣2,8),B(2,8),将B(2,8)代入y=ax2+4,得:8=a×22+4,解得:a=1,∴该抛物线的函数表达式为y=x2+4;(2)由题意得:=0.6,CO=4,∴=0.6,∴CD′=6,∴OD′=OC+CD′=4+6=10,又∵杯体A′CB′所在抛物线形状不变,杯口直径A′B′∥AB,∴设B′(x1,10),A′(x2,10),∴当y=10时,10=x2+4,解得:x1=,x2=﹣,∴A′B′=2,∴杯口直径A′B′的长为2.四.等腰三角形的性质(共1小题)5.(2021•绍兴)如图,在△ABC中,∠A=40°,点D,E分别在边AB,AC上,BD=BC =CE,连结CD,BE.(1)若∠ABC=80°,求∠BDC,∠ABE的度数;(2)写出∠BEC与∠BDC之间的关系,并说明理由.【答案】(1)50°,20°;(2)∠BEC+∠BDC=110°,理由见解析.【解答】解:(1)∵∠ABC=80°,BD=BC,∴∠BDC=∠BCD=(180°﹣80°)=50°,∵∠A+∠ABC+∠ACB=180°,∠A=40°,∴∠ACB=180°﹣40°﹣80°=60°,∵CE=BC,∴△BCE是等边三角形,∴∠EBC=60°,∴∠ABE=∠ABC﹣∠EBC=80°﹣60°=20°;(2)∠BEC与∠BDC之间的关系:∠BEC+∠BDC=110°,理由:设∠BEC=α,∠BDC=β,在△ABE中,α=∠A+∠ABE=40°+∠ABE,∵CE=BC,∴∠CBE=∠BEC=α,∴∠ABC=∠ABE+∠CBE=∠A+2∠ABE=40°+2∠ABE,在△BDC中,BD=BC,∴∠BDC+∠BCD+∠DBC=2β+40°+2∠ABE=180°,∴β=70°﹣∠ABE,∴α+β=40°+∠ABE+70°﹣∠ABE=110°,∴∠BEC+∠BDC=110°.五.平行四边形的性质(共1小题)6.(2021•绍兴)问题:如图,在▱ABCD中,AB=8,AD=5,∠DAB,∠ABC的平分线AE,BF分别与直线CD交于点E,F,求EF的长.答案:EF=2.探究:(1)把“问题”中的条件“AB=8”去掉,其余条件不变.①当点E与点F重合时,求AB的长;②当点E与点C重合时,求EF的长.(2)把“问题”中的条件“AB=8,AD=5”去掉,其余条件不变,当点C,D,E,F 相邻两点间的距离相等时,求的值.【答案】(1)①10;②5;(2)或或2.【解答】解:(1)①如图1所示:∵四边形ABCD是平行四边形,∴CD=AB,BC=AD=5,AB∥CD,∴∠DEA=∠BAE,∵AE平分∠DAB,∴∠DAE=∠BAE,∴∠DEA=∠DAE,∴DE=AD=5,同理:BC=CF=5,∵点E与点F重合,∴AB=CD=DE+CF=10;②如图2所示:∵点E与点C重合,∴DE=AD=5,∵CF=BC=5,∴点F与点D重合,∴EF=DC=5;(2)分三种情况:①如图3所示:同(1)得:AD=DE,∵点C,D,E,F相邻两点间的距离相等,∴AD=DE=EF=CF,∴=;②如图4所示:同(1)得:AD=DE=CF,∵DF=FE=CE,∴=;③如图5所示:同(1)得:AD=DE=CF,∵DF=DC=CE,∴=2;综上所述,的值为或或2.六.正方形的性质(共1小题)7.(2023•绍兴)如图,在正方形ABCD中,G是对角线BD上的一点(与点B,D不重合),GE⊥CD,GF⊥BC,E,F分别为垂足.连接EF,AG,并延长AG交EF于点H.(1)求证:∠DAG=∠EGH;(2)判断AH与EF是否垂直,并说明理由.【答案】见解答.【解答】(1)证明:在正方形ABCD中,AD⊥CD,GE⊥CD,∴∠ADE=∠GEC=90°,∴AD∥GE,∴∠DAG=∠EGH.(2)解:AH⊥EF,理由如下.连结GC交EF于点O,如图:∵BD为正方形ABCD的对角线,∴∠ADG=∠CDG=45°,又∵DG=DG,AD=CD,∴△ADG≌△CDG(SAS),∴∠DAG=∠DCG.在正方形ABCD中,∠ECF=90°,又∵GE⊥CD,GF⊥BC,∴四边形FCEG为矩形,∴OE=OC,∴∠OEC=∠OCE,∴∠DAG=∠OEC,由(1)得∠DAG=∠EGH,∴∠EGH=∠OEC,∴∠EGH+∠GEH=∠OEC+∠GEH=∠GEC=90°,∴∠GHE=90°,∴AH⊥EF.七.四边形综合题(共3小题)8.(2023•绍兴)在平行四边形ABCD中(顶点A,B,C,D按逆时针方向排列),AB=12,AD=10,∠B为锐角,且sin B=.(1)如图1,求AB边上的高CH的长;(2)P是边AB上的一动点,点C,D同时绕点P按逆时针方向旋转90°得点C',D',①如图2,当C'落在射线CA上时,求BP的长;②当△AC'D'是直角三角形时,求BP的长.【答案】(1)8;(2)①;(3)②6 或8±.【解答】解:(1)在▱ABCD中,BC=AD=10,在Rt△BCH中,HC=BC sin B=.(2)①如图,作CH⊥BA于点H,由(1)得,BH===6,作C'Q⊥BA交BA延长线于点Q,则∠CHP=∠PQC'=90°,∴∠C'PQ+∠PC'Q=90°,∵∠C'PQ+∠CPH=90°,∴∠PC'Q=∠CPH,由旋转知PC'=PC,∴△PQC′≌△CHP(AAS).设BP=x,则PQ=CH=8,C′Q=PH=6﹣x,QA=PQ﹣PA=x﹣4.∵C′Q⊥AB,CH⊥AB,∴C′Q∥CH,∴△AQC′∽△AHC,∴,∴,∴x=,∴BP=,②由旋转得△PCD≌△PC′D′,CD=C'D' CD⊥CD'又∵AB∥CD,∴C'D'⊥AB情况一:当以C′为直角顶点时,如图.∵C'D'⊥AB,∴C′落在线段BA延长线上.∵PC⊥PC',∴PC⊥AB,由(1)知,PC=8,∴BP=6.情况二:当以A为直角顶点时,如图,设C'D'与射线BA的交点为T,作CH⊥AB于点H.∵PC⊥PC',∴∠CPH+∠TPC'=90°,∵C'D'⊥AT,∴∠PC'T+∠TPC'=90°∴∠CPH=∠PC'T,∵∠CHP=∠PTC'=90°,PC=C′P,∴△CPH≌△PC′T(AAS),∴C′T=PH,PT=CH=8.设C′T=PH=t,则AP=6﹣t,∴AT=PT﹣PA=2+t.∵∠C'AD'=90°,C'D'⊥AB,∴△ATD′∽△C′TA,∴,∴AT2=C'T⋅TD,∴(2+t)2=t(12﹣t),化简得t2﹣4t+2=0,解得,∴BP=BH+HP=8±,情况三:当以D'为直角顶点时,点P落在BA的延长线上,不符合题意.综上所述,BP=6 或8±.9.(2022•绍兴)如图,在矩形ABCD中,AB=6,BC=8,动点E从点A出发,沿边AD,DC向点C运动,A,D关于直线BE的对称点分别为M,N,连结MN.(1)如图,当E在边AD上且DE=2时,求∠AEM的度数.(2)当N在BC延长线上时,求DE的长,并判断直线MN与直线BD的位置关系,说明理由.(3)当直线MN恰好经过点C时,求DE的长.【答案】(1)90°;(2)DE=.MN∥BD;(3)或.【解答】解:(1)∵DE=2,∴AE=AB=6,∵四边形ABCD是矩形,∴∠A=90°,∴∠AEB=∠ABE=45°.由对称性知∠BEM=45°,∴∠AEM=90°.(2)如图2,∵AB=6,AD=8,∴BD=10,∵当N落在BC延长线上时,BN=BD=10,∴CN=2.由对称性得,∠ENC=∠BDC,∴cos∠ENC=,得EN=,∴DE=EN=.∵BM=AB=CD,MN=AD=BC,∴Rt△BMN≌Rt△DCB(HL),∴∠DBC=∠BNM,∴MN∥BD.(3)如图3,当E在边AD上时,根据轴对称的性质知,点E在MN上,∴∠BMC=90°,∴MC=.∵BM=AB=CD,∠DEC=∠BCE,∴△BCM≌△CED(AAS),∴DE=MC=.如图4,点E在边CD上时,∵BM=6,BC=8,∴MC=,CN=8﹣.∵∠BMC=∠CNE=∠BCD=90°,∴△BMC∽△CNE,∴,∴EN=,∴DE=EN=.综上所述,DE的长为或.10.(2021•绍兴)如图,矩形ABCD中,AB=4,点E是边AD的中点,点F是对角线BD 上一动点,∠ADB=30°.连结EF,作点D关于直线EF的对称点P.(1)若EF⊥BD,求DF的长;(2)若PE⊥BD,求DF的长;(3)直线PE交BD于点Q,若△DEQ是锐角三角形,求DF长的取值范围.【答案】(1)DF=3;(2)DF的长为2或6;(3)DF长的取值范围为2<DF<6﹣2或6<DF≤8.【解答】解:(1)∵点D、点P关于直线EF的对称,EF⊥BD,∴点P在BD上,∵四边形ABCD是矩形,∴∠BAD=90°,∵AB=4,∠ADB=30°.∴AD=4,∵点E是边AD的中点,∴DE=2,∵EF⊥BD,∴DF=3;(2)①如图2,∵PE⊥BD,∠ADB=30°.∴∠PED=60°,由对称可得,EF平分∠PED,∴∠DEF=∠PEF=30°,∴△DEF是等腰三角形,∴DF=EF,∵PE⊥BD,∠ADB=30°.DE=2,∴QE=,∴EF=2,∴DF=EF=2;②如图3,∵PE⊥BD,∠ADB=30°.∴∠PED=120°,由对称可得,PF=DF,EP=ED,EF平分∠PED,∴∠DEF=∠PEF=120°,∴∠EFD=30°,∴△DEF是等腰三角形,∵PE⊥BD,∴QD=QF=DF,∵PE⊥BD,∠ADB=30°.DE=2,∴QE=,QD=3∴DF=2QD=6;∴DF的长为2或6;(3)①由(2)得,当∠DQE=90°时,DF=2,当∠DEQ=90°时,如图4,∴∠DEF=45°,过点F作FM⊥AD于点M,设EM=a,则FM=a,DM=a,∴a+a=2,∴a=3﹣,DF=6﹣2,∴2<DF<6﹣2.②由(2)得,当∠DQE=90°时,DF=6,当∠DEQ=90°时,如图5,∵EF平分∠PED,∴∠1=∠2=45°,过点F作FM⊥AD于点M,设EM=a,则FM=a,DM=2+a,∴2+a=a,∴a=3+,DF=6+2,∴6<DF<6+2.∵点F是对角线BD上一动点,∴6<DF≤8.综上,2<DF<6﹣2或6<DF≤8.八.切线的性质(共1小题)11.(2023•绍兴)如图,AB是⊙O的直径,C是⊙O上一点,过点C作⊙O的切线CD,交AB的延长线于点D,过点A作AE⊥CD于点E.(1)若∠EAC=25°,求∠ACD的度数;(2)若OB=2,BD=1,求CE的长.【答案】(1)115°;(2).【解答】解:(1)∵AE⊥CD于点E,∴∠AEC=90°∴∠ACD=∠AEC+∠EAC=90°+25°=115°;(2)∵CD是⊙O的切线,∴半径OC⊥DE,∴∠OCD=90°,∵OC=OB=2,BD=1,∴OD=OB+BD=3,∴CD==.∵∠OCD=∠AEC=90°,∴OC∥AE,∴,∴,∴CE=.九.解直角三角形的应用(共1小题)12.(2023•绍兴)图1是某款篮球架,图2是其示意图,立柱OA垂直地面OB,支架CD 与OA交于点A,支架CG⊥CD交OA于点G,支架DE平行地面OB,篮筐EF与支架DE 在同一直线上,OA=2.5米,AD=0.8米.∠AGC=32°.(1)求∠GAC的度数;(2)某运动员准备给篮筐挂上篮网,如果他站在凳子上,最高可以把篮网挂到离地面3米处,那么他能挂上篮网吗?请通过计算说明理由.(参考数据:sin32°≈0.53,cos32°≈0.85,tan32°≈0.62)【答案】(1)∠GAC的度数为58°;(2)该运动员能挂上篮网,理由见解答.【解答】解:(1)∵CG⊥CD,∴∠ACG=90°,∵∠AGC=32°,∴∠GAC=90°﹣∠AGC=90°﹣32°=58°,∴∠GAC的度数为58°;(2)该运动员能挂上篮网,理由如下:延长OA,ED交于点M,∵OA⊥OB,∴∠AOB=90°,∵DE∥OB,∴∠DMA=∠AOB=90°,∵∠GAC=58°,∴∠DAM=∠GAC=58°,∴∠ADM=90°﹣∠DAM=32°,在Rt△ADM中,AD=0.8米,∴AM=AD•sin32°≈0.8×0.53=0.42(米),∴OM=OA+AM=2.5+0.424=2.924(米),∵2.924米<3米,∴该运动员能挂上篮网.。

2023年浙江省杭州市中考数学真题(解析版)

2023年杭州市初中学业水平考试数学考生须知:1.本试卷满分120分,考试时间100分钟.2.答题前,在答题纸上写姓名和准考证号,并在试卷首页的指定位置写上姓名和座位号.3.必须在答题纸的对应答题位置上答题,写在其他地方无效.答题方式详见答题纸上的说明.4.如需画图作答,必须用黑色字迹的钢笔或签字笔将图形线条描黑.5.考试结束后,试题卷和答题纸一并上交.参考公式:二次函数()20y ax bx c a ++≠图象的顶点坐标公式:24,24b ac b a a −− .试题卷一、选择题:(本大题有10个小题,每小题3分,共30分)1. 杭州奥体中心体育场又称“大莲花”,里面有80800个座位.数据80800用科学记数法表示为( )A. 48.810×B. 48.0810×C. 58.810×D. 58.0810×【答案】B【解析】【分析】根据科学记数法的表示方法求解即可.【详解】4808008.0810=×.故选:B .【点睛】本题主要考查科学记数法.科学记数法的表示形式为10n a ×的形式,其中1<10a ≤,n 为整数.解题关键是正确确定a 的值以及n 的值.2. 22(2)2−+=( )A. 0B. 2C. 4D. 8【答案】D【解析】 【分析】先计算乘方,再计算加法即可求解.【详解】解:22(2)2448−+=+=,故选:D .【点睛】本题考查有理数度混合运算,熟练掌握有理数乘方运算法则是解题的关键.3 分解因式:241a −=( )A. ()()2121a a −+B. ()()22a a −+C. ()()41a a −+D. ()()411a a −+ 【答案】A【解析】【分析】利用平方差公式分解即可.【详解】()()()2241212121a a a a −=−=+−. 故选:A .【点睛】此题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法.因式分解的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.4. 如图,矩形ABCD 的对角线,AC BD 相交于点O .若60AOB ∠=°,则AB BC=( ) A. 12B.C.D. 【答案】D【解析】【分析】根据矩形性质得出1122OA OC AC OB OD BD AC BD =====,,,推出OA OB =则有等边三角形AOB ,即60BAO ∠=°,然后运用余切函数即可解答.【详解】解:∵四边形ABCD 是矩形,.∴1122OA OC AC OB OD BD AC BD =====,,, ∴OA OB =,∵60AOB ∠=°,∴AOB 是等边三角形,∴60BAO ∠=°,∴906030ACB ∠=°−°=°,∵tan tan 30AB ACB BC ∠==°=,故D 正确. 故选:D .【点睛】本题考查了等边三角形性质和判定、矩形的性质、余切的定义等知识点,求出60BAO ∠=°是解答本题的关键.5. 在直角坐标系中,把点(),2A m 先向右平移1个单位,再向上平移3个单位得到点B .若点B 的横坐标和纵坐标相等,则m =( )A. 2B. 3C. 4D. 5 【答案】C【解析】【分析】先根据平移方式确定点B B 的横坐标和纵坐标相等列方程,解方程即可.【详解】解: 点(),2A m 先向右平移1个单位,再向上平移3个单位得到点B , ∴()1,23B m ++,即()1,5B m +,点B 的横坐标和纵坐标相等,∴15m +=,∴4m =,故选C .【点睛】本题考查平面直角坐标系内点的平移,一元一次方程的应用等,解题的关键是掌握平面直角坐标系内点平移时坐标的变化规律:横坐标右加左减,纵坐标上加下减.6. 如图,在O 中,半径,OA OB 互相垂直,点C 在劣弧AB 上.若19ABC ∠=°,则BAC ∠=( )A. 23°B. 24°C. 25°D. 26°【答案】D【解析】 【分析】根据,OA OB 互相垂直可得 ADB 所对的圆心角为270°,根据圆周角定理可得12701352ACB ∠=×°=°,再根据三角形内角和定理即可求解. 【详解】解:如图,半径,OA OB 互相垂直,∴90AOB ∠=°,∴ ADB 所对的圆心角为270°,∴ ADB 所对的圆周角12701352ACB ∠=×°=°, 又 19ABC ∠=°, ∴18026BAC ACB ABC ∠=°−∠−∠=°,故选D .【点睛】本题考查圆周角定理、三角形内角和定理,解题的关键是掌握:同圆或等圆中,同弧所对的圆周角等于圆心角的一半.7. 已知数轴上的点,A B 分别表示数,a b ,其中10a −<<,01b <<.若a b c ×=,数c 在数轴上用点C 表示,则点,,A B C 在数轴上的位置可能是( )A. B.C.D.【答案】B【解析】 【分析】先由10a −<<,01b <<,a b c ×=,根据不等式性质得出0a c <<,再分别判定即可.【详解】解:∵10a −<<,01b <<,∴0a ab <<∵a b c ×=∴0a c <<A 、01b c <<<,故此选项不符合题意;B 、0a c <<,故此选项符合题意;C 、1c >,故此选项不符合题意;D 、1c <−,故此选项不符合题意;故选:B .【点睛】本题考查用数轴上的点表示数,不等式性质,由10a −<<,01b <<,a b c ×=得出0a c <<是解题的关键.8. 设二次函数()()(0,,y a x m x m k a m k =−−−>是实数),则( )A. 当2k =时,函数y 的最小值为a −B. 当2k =时,函数y 的最小值为2a −C. 当4k =时,函数y 的最小值为a −D. 当4k =时,函数y 的最小值为2a −【答案】A【解析】 【分析】令0y =,则()()0a x m x m k =−−−,解得:1x m =,2x m k =+,从而求得抛物线对称轴为直线222m m k m k x +++=,再分别求出当2k =或4k =时函数y 的最小值即可求解. 【详解】解:令0y =,则()()0a x m x m k =−−−,解得:1x m =,2x m k =+, ∴抛物线对称轴为直线222m m k m k x +++= 当2k =时, 抛物线对称轴为直线1x m =+,把1x m =+代入()()2y a x m x m =−−−,得y a =−,∵0a >∴当1x m =+,2k =时,y 有最小值,最小值为a −.故A 正确,B 错误;当4k =时, 抛物线对称轴为直线2x m =+,把2x m =+代入()()4y a x m x m =−−−,得4y a =−,∵0a >∴当2x m =+,4k =时,y 有最小值,最小值为4a −,故C 、D 错误,故选:A .【点睛】本题考查抛物线的最值,抛物线对称轴.利用抛物线的对称性求出抛物线对称轴是解题的关键. 9. 一枚质地均匀的正方体骰子(六个面分别标有数字1,2,3,4,5,6),投掷5次,分别记录每次骰子向上的一面出现的数字.根据下面的统计结果,能判断记录的这5个数字中一定没有..出现数字6的是( ) A. 中位数是3,众数是2B. 平均数是3,中位数是2C. 平均数是3,方差是2D. 平均数是3,众数是2【答案】C【解析】【分析】根据中位数、众数、平均数、方差的定义,结合选项中设定情况,逐项判断即可.【详解】解:当中位数是3,众数是2时,记录的5个数字可能为:2,2,3,4,5或2,2,3,4,6或2,2,3,5,6,故A 选项不合题意;当平均数是3,中位数是2时,5个数之和为15,记录的5个数字可能为1,1,2,5,6或1,2,2,5,5,故B 选项不合题意;当平均数是3,方差是2时,5个数之和为15,假设6出现了1次,方差最小的情况下另外4个数为:1,2,3,3,此时方差()()()()()2222211323333363 2.825s =×−+−+−+−+−=>, 因此假设不成立,即一定没有出现数字6,故C 选项符合题意;当平均数是3,众数是2时,5个数之和为15,2至少出现两次,记录的5个数字可能为1,2,2,4,6,故D 选项不合题意;故选:C .【点睛】本题考查中位数、众数、平均数、方差,解题的关键是根据每个选项中的设定情况,列出可能出现的5个数字.10. 第二十四届国际数学家大会会徽的设计基础是1700多年前中国古代数学家赵爽的“弦图”.如图,在由四个全等的直角三角形(,,,DAE ABF BCG CDH △△△△)和中间一个小正方形EFGH 拼成的大正方形ABCD 中,ABF BAF ∠>∠,连接BE .设,BAF BEF αβ∠=∠=,若正方形EFGH 与正方形ABCD 的面积之比为21:,tan tan n αβ=,则n =( )A. 5B. 4C. 3D. 2【答案】C【解析】 【分析】设BF AE a ==,EF b =,首先根据2tan tan αβ=得到22222a ab b +=,然后表示出正方形ABCD 的面积为223AB b =,正方形EFGH 的面积为22EF b =,最后利用正方形EFGH 与正方形ABCD 的面积之比为1:n 求解即可.【详解】设BF AE a ==,EF b =,∵2tan tan αβ=,90AFB ∠=°, ∴2BF BF AF EF = ,即2a a ab b = + , ∴22a a a b b=+,整理得22a ab b +=, ∴22222a ab b +=,∵90AFB ∠=°,∴()22222222223AB AF BF a b a a ab b b =+=++=++=,∴正方形ABCD 的面积为223AB b =,∵正方形EFGH 的面积为22EF b =,∵正方形EFGH 与正方形ABCD 的面积之比为1:n ,∴2213b b n=, ∴解得3n =.故选:C .【点睛】此题考查了勾股定理,解直角三角形,赵爽“弦图”等知识,解题的关键是熟练掌握以上知识点.二、填空题:(本大题有6个小题,每小题4分,共24分)11. 计算: =______【答案】【解析】12. 如图,点,D E 分别在ABC 的边,AB AC 上,且DE BC ∥,点F 在线段BC 的延长线上.若28ADE ∠=°,118ACF °∠=,则A ∠=_________.【答案】90°##90度【解析】【分析】首先根据平行线的性质得到28B ADE ∠=∠=°,然后根据三角形外角的性质求解即可. 【详解】∵DE BC ∥,28ADE ∠=°,∴28B ADE ∠=∠=°,∵118ACF °∠=,∴1182890A ACF B ∠=∠−∠=°−°=°.故答案为:90°.【点睛】此题考查了平行线的性质和三角形外角的性质,解题的关键是熟练掌握以上知识点. 13. 一个仅装有球的不透明布袋里只有6个红球和n 个白球(仅有颜色不同).若从中任意摸出一个球是红球的概率为25,则n =_________. 【答案】9【解析】【分析】根据概率公式列分式方程,解方程即可.【详解】解: 从中任意摸出一个球是红球的概率为25, ∴6265n =+, 去分母,得()6526n ×=+, 解得9n =,经检验9n =是所列分式方程的根,∴9n =,故答案为:9.【点睛】本题考查已知概率求数量、解分式方程,解题的关键是掌握概率公式.14. 如图,六边形ABCDEF 是O 的内接正六边形,设正六边形ABCDEF 的面积为1S ,ACE △的面积为2S ,则12S S =_________.【答案】2【解析】【分析】连接,,OA OC OE ,首先证明出ACE △是O 的内接正三角形,然后证明出()ASA BAC OAC ≌ ,得到BAC AFE CDE S S S == ,OAC OAEOCE S S S == ,进而求解即可. 【详解】如图所示,连接,,OA OC OE ,∵六边形ABCDEF 是O 的内接正六边形,∴AC AE CE ==,∴ACE △是O 的内接正三角形,∵120B ∠=°,AB BC =, ∴()1180302BAC BCA B ∠=∠=°−∠=°, ∵60CAE ∠=°,∴30OAC OAE ∠=∠=°, ∴30BAC OAC ∠=∠=°,同理可得,30BCA OCA ∠=∠=°,又∵AC AC =,∴()ASA BAC OAC ≌ ,∴BAC OAC S S = , 由圆和正六边形的性质可得,BAC AFECDE S S S == , 由圆和正三角形的性质可得,OAC OAEOCE S S S == , ∵()2122BAC AFE CDE OAC OAE OCE OAC OAE OCE S S S S S S S S S S S =+++++=++= , ∴122S S =. 故答案为:2.【点睛】此题考查了圆内接正多边形的性质,正六边形和正三角形的性质,全等三角形的性质和判定等知识,解题的关键是熟练掌握以上知识点.15. 在“ “探索一次函数y kx b =+的系数,k b 与图像的关系”活动中,老师给出了直角坐标系中的三个点:()()()0,2,2,3,3,1A B C .同学们画出了经过这三个点中每两个点的一次函数的图像,并得到对应的函数表达式111222333,,y k x b y k x b y k x b =+=+=+.分别计算11k b +,2233,k b k b ++的值,其中最大的值等于_________.【答案】5【解析】【分析】分别求出三个函数解析式,然后求出11k b +,2233,k b k b ++进行比较即可解答.【详解】解:设111y k x b =+过()()0,2,2,3A B ,则有: 111232b k b = =+ ,解得:11122k b = = ,则1115222k b +=+=; 同理:22275k b +=−+=,3315233k b +=−+= 则分别计算11k b +,2233,k b k b ++的最大值为值22275k b +=−+=. 故答案为5.【点睛】本题主要考查了求一次函数解析式,掌握待定系数法是解答本题的关键.16. 如图,在ABC 中,,90ABAC A =∠<°,点,,D E F 分别在边AB ,,BC CA 上,连接,,DE EF FD ,已知点B 和点F 关于直线DE 对称.设BC k AB=,若AD DF =,则CF FA =_________(结果用含k 的代数式表示). 【答案】222k k− 【解析】【分析】先根据轴对称的性质和已知条件证明DE AC ∥,再证BDE BAC ∽△△,推出12ECk AB =⋅,通过证明ABC ECF ∽,推出212CF k AB =⋅,即可求出CF FA 的值. 【详解】解: 点B 和点F 关于直线DE 对称,∴DB DF =,AD DF =,∴AD DB =.AD DF =,∴A DFA ∠=∠,点B 和点F 关于直线DE 对称,∴BDE FDE ∠=∠,又 BDE FDE BDF A DFA ∠+∠=∠=∠+∠,∴FDE DFA ∠=∠,∴DE AC ∥,∴C DEB ∠=∠,DEF EFC ∠=∠,点B 和点F 关于直线DE 对称,∴DEB DEF ∠=∠,∴C EFC ∠=∠,AB AC =,∴C B ∠=∠,在ABC 和ECF △中,B C ACB EFC ∠=∠ ∠=∠, ∴ABC ECF ∽.在ABC 中,DE AC ∥,∴BDE A ∠=∠,BED C ∠=∠, ∴BDE BAC ∽△△, ∴12BE BD BCBA ==, ∴12EC BC =, BC k AB =,∴BC k AB =⋅,12EC k AB =⋅, ABC ECF ∽. ∴AB BC EC CF=, ∴12AB k AB CF k AB ⋅=⋅, 解得212CF k AB =⋅, ∴222212122k AB CF CF CF k FA AC CF AB CF k AB k AB ⋅====−−−−⋅. 故答案为:222k k−. 【点睛】本题考查相似三角形的判定与性质,轴对称的性质,平行线的判定与性质,等腰三角形的性质,三角形外角的定义和性质等,有一定难度,解题的关键是证明ABC ECF ∽.三、解答题:(本大题有7个小题,共66分)17. 设一元二次方程20x bx c ++=.在下面的四组条件中选择其中一组..,b c 的值,使这个方程有两个不相等的实数根,并解这个方程.①2,1b c ==;②3,1b c ==3,1b c ==−;④2,2b c ==. 注:如果选择多组条件分别作答,按第一个解答计分.【答案】选②,1x =2x =1x =,2x =【解析】【分析】先根据判别式判断一元二次方程根的情况,再利用公式法解一元二次方程即可.【详解】解:20x bx c ++=中1a =, ①2,1b c ==时,22424110b ac ∆=−=−××=,方程有两个相等的实数根;②3,1b c ==时,224341150b ac ∆=−=−××=>,方程有两个不相等的实数根; ③3,1b c ==−时,()2243411130b ac ∆=−=−××−=>,方程有两个不相等的实数根; ④2,2b c ==时,224241240b ac ∆=−=−××=−<,方程没有实数根; 因此可选择②或③.选择②3,1b c ==时, 2310x x ++=,224341150b ac ∆=−=−××=>,x ,1x =2x = 选择③3,1b c ==−时,2310x x +−=,()2243411130b ac ∆=−=−××−=>,x ,1x =2x = 【点睛】本题考查根据判别式判断一元二次方程根的情况,解一元二次方程,解题的关键是掌握:对于一元二次方程20ax bx c ++=,当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个不相等的实数根;当Δ0<18. 某校为了了解家长和学生观看安全教育视频的情况,随机抽取本校部分学生作调查,把收集的数据按照A ,B ,C ,D 四类(A 表示仅学生参与;B 表示家长和学生一起参与;C 表示仅家长参与;D 表示其他)进行统计,得到每一类的学生人数,并把统计结果绘制成如图所示的未完成的条形统计图和扇形统计图.(1)在这次抽样调查中,共调查了多少名学生?(2)补全条形统计图.(3)已知该校共有1000名学生,估计B 类的学生人数.【答案】(1)200名(2)见解析 (3)600名【解析】【分析】(1)由A 类别人数及其所占百分比可得总人数;(2)先求出B 类学生人数为:200601010120−−−=(名),再补画长形图即可;(3)用该校学生总数1000乘以B 类的学生所占百分比即可求解.【小问1详解】解:6030%200÷=(名),答:这次抽样调查中,共调查了200名学生;小问2详解】解:B 类学生人数为:200601010120−−−=(名),补全条形统计图如图所示:【小问3详解】 解:1201000100%600200××=(名), 答:估计B 类的学生人数600名.【点睛】本题考查样本容量,条形统计图,扇形统计图,用样本估计总体,从条形统计图与扇形统计图获取到有用信息是解题的关键.19. 如图,平行四边形ABCD 的对角线,AC BD 相交于点O ,点,E F 在对角线BD 上,且BE EF FD ==,连接,AE EC ,,CF FA .(1)求证:四边形AECF 是平行四边形.(2)若ABE 的面积等于2,求CFO △的面积.【【答案】(1)见解析 (2)1【解析】【分析】(1)根据平行四边形对角线互相平分可得OA OC =,OB OD =,结合BE FD =可得OE OF =,即可证明四边形AECF 是平行四边形;(2)根据等底等高的三角形面积相等可得2AEF ABES S == ,再根据平行四边形的性质可得11121222CFO CEF AEF S S S ===×= . 【小问1详解】证明: 四边形ABCD 是平行四边形,∴OA OC =,OB OD =,BE FD =,∴OB BE OD FD −=−,∴OE OF =,又 OA OC =,∴四边形AECF 是平行四边形.【小问2详解】解: 2ABE S = ,BE EF =,∴2AEF ABES S == , 四边形AECF 是平行四边形, ∴11121222CFO CEF AEF S S S ===×= . 【点睛】本题考查平行四边形的判定与性质,解题的关键是掌握平行四边形的对角线互相平分. 20. 在直角坐标系中,已知120k k ≠,设函数11k y x=与函数()2225y k x =−+的图象交于点A 和点B .已知点A 的横坐标是2,点B 的纵坐标是4−.(1)求12,k k 的值.(2)过点A 作y 轴的垂线,过点B 作x 轴的垂线,在第二象限交于点C ;过点A 作x 轴的垂线,过点B 作y 轴的垂线,在第四象限交于点D .求证:直线CD 经过原点.【答案】(1)110k =,22k =(2)见解析【解析】【分析】(1)首先将点A 的横坐标代入()2225y k x =−+求出点A 的坐标,然后代入11k y x=求出110k =,然后将点B 的纵坐标代入110y x =求出5,42B −−,然后代入()2225y k x =−+即可求出22k =; (2)首先根据题意画出图形,然后求出点C 和点D 的坐标,然后利用待定系数法求出CD 所在直线的表达式,进而求解即可.小问1详解】∵点A 的横坐标是2,∴将2x =代入()22255y k x =−+= ∴()2,5A ,∴将()2,5A 代入11k y x =得,1k =, ∴110y x=, ∵点B 的纵坐标是4−,∴将4y =−代入110y x =得,52x =−, ∴5,42B −−, ∴将5,42B −− 代入()2225y k x =−+得,254252k −=−−+, ∴解得22k =,∴()222521y x x −++;【小问2详解】如图所示,【由题意可得,5,52C −,()2,4D −, ∴设CD 所在直线的表达式为y kx b =+, ∴55224k b k b −+= +=− ,解得20k b =− = , ∴2y x =−,∴当0x =时,0y =,∴直线CD 经过原点.【点睛】此题考查了反比例函数和一次函数综合,待定系数法求函数表达式等知识,解题关键是熟练掌握以上知识点.21. 在边长为1的正方形ABCD 中,点E 在边AD 上(不与点A ,D 重合),射线BE 与射线CD 交于点F .(1)若13ED =,求DF 的长. (2)求证:1AE CF ⋅=.(3)以点B 为圆心,BC 长为半径画弧,交线段BE 于点G .若EG ED =,求ED 的长.【答案】(1)12(2)见解析 (3)14的【解析】【分析】(1)证明AEB DEF △∽△,利用相似三角形的对应边成比例求解;(2)证明AEB CBF ∽,利用相似三角形的对应边成比例证明;(3)设EG ED x ==,则1AE x =−,1BE x =+,在Rt ABE △中,利用勾股定理求解.【小问1详解】解:由题知,1AB BC CD DA ====, 若13ED =,则23AE AD ED =−=. 四边形ABCD 是正方形,∴90A FDE ∠=∠=°,又 AEB FED ∠=∠,∴AEB DEF △∽△, ∴AB AE DF ED, 即21313DF =, ∴12DF =. 【小问2详解】证明: 四边形ABCD 是正方形,∴90A C ∠=∠=°,AB CD ∥,∴ABE F ∠=∠,∴ABE CFB ∽, ∴AB AE CF BC=, ∴111AE CF AB BC ⋅=⋅=×=.【小问3详解】解:设EG ED x ==,则1AE AD AE x =−=−,1BE BG GE BC GE x =+=+=+. 在Rt ABE △中,222AB AE BE +=,即2221(1)(1)x x +−=+,解得14x =. ∴14ED =. 【点睛】本题考查了相似三角形的性质与判定,勾股定理的应用,正方形的性质等,熟练掌握相关性质定理是解题的关键.22. 设二次函数21y ax bx ++,(0a ≠,b 是实数).已知函数值y 和自变量x 的部分对应取值如下表所示: x … 1− 0 1 2 3 …y …m 1 n 1 p …(1)若4m =,求二次函数的表达式;(2)写出一个符合条件的x 的取值范围,使得y 随x 的增大而减小.(3)若在m 、n 、p 这三个实数中,只有一个是正数,求a 的取值范围.【答案】(1)221y x x =−+(2)当0a >时,则1x <时,y 随x 的增大而减小;当a<0时,则1x >时,y 随x 的增大而减小 (3)13a ≤−【解析】【分析】(1)用待定系数法求解即可.(2)利用抛物线对称性质求得抛物线的对称轴为直线1x =;再根据抛物线的增减性求解即可.(3)先把()2,1代入21y ax bx ++,得2b a =−,从而得221y ax ax =−+,再求出31m a =+,1n a =−+,31p a =+,从而得m p =,然后m 、n 、p 这三个实数中,只有一个是正数,得10310a a −+> +≤ ,求解即可. 【小问1详解】解:把()1,4−,()2,1代入21y ax bx ++,得144211a b a b −+= ++= ,解得:12a b = =− , ∴221y x x =−+.【小问2详解】的解:∵()0,1,()2,1在21y ax bx ++图象上, ∴抛物线的对称轴为直线0212x +=, ∴当0a >时,则1x <时,y 随x 的增大而减小,当a<0时,则1x >时,y 随x 的增大而减小.【小问3详解】解:把()2,1代入21y ax bx ++,得1421a b =++,∴2b a =−∴22121y ax bx ax ax =++=−+把()1,m −代入221y ax ax =−+得,2131m a a a =++=+,把()1,n 代入221y ax ax =−+得,211n a a a =−+=−+,把()3,p 代入221y ax ax =−+得,96131p a a a =−+=+,∴m p =,∵m 、n 、p 这三个实数中,只有一个是正数,∴10310a a −+> +≤ ,解得:13a ≤−. 【点睛】本题考查用待定系数法求抛物线解析式,抛物线的图象性质,解不等式组,熟练掌握用待定系数法求抛物线解析式和抛物线的图象性质是解析的关键.23. 如图,在O 中,直径AB 垂直弦CD 于点E ,连接,,AC AD BC ,作CF AD ⊥于点F ,交线段OB 于点G (不与点,O B 重合),连接OF .(1)若1BE =,求GE 的长.(2)求证:2BC BG BO =⋅.(3)若FO FG =,猜想CAD ∠的度数,并证明你的结论.【答案】(1)1 (2)见解析(3)45CAD ∠=°,证明见解析【解析】【分析】(1)由垂径定理可得90AED ∠=°,结合CF AD ⊥可得DAE FCD ∠=∠,根据圆周角定理可得DAE BCD ∠=∠,进而可得BCD FCD ∠=∠,通过证明BCE GCE ≌可得1GE BE ==;(2)证明ACB △CEB ∽,根据对应边成比例可得2BC BA BE =⋅,再根据2AB BO =,12BE BG =,可证2BC BG BO =⋅;(3)设DAE CAE α∠=∠=,FOG FGO β∠=∠=,可证90αβ=°−,903OCF α∠=°−,通过SAS 证明COF AOF ≌,进而可得OCF OAF ∠=∠,即903αα°−=,则245CAD α∠==°.【小问1详解】解: 直径AB 垂直弦CD ,∴90AED ∠=°,∴90DAE D ∠+∠=°,CF AD ⊥,∴90FCD D ∠+∠=°,∴DAE FCD ∠=∠,由圆周角定理得DAE BCD ∠=∠,∴BCD FCD ∠=∠,在BCE 和GCE 中,BCE GCE CE CEBEC GEC ∠=∠ = ∠=∠, ∴BCE GCE≌()ASA ,∴1GE BE ==;【小问2详解】证明: AB 是O 的直径, ∴90ACB ∠=°,在ACB △和CEB 中,90ACB CEB ABC CBE ∠=∠=° ∠=∠ , ∴ACB △CEB ∽, ∴BC BA BE BC=, ∴2BC BA BE =⋅,由(1)知GE BE =, ∴12BE BG =, 又 2AB BO =, ∴2122BC BA BE BO BG BG BO =⋅=⋅=⋅; 【小问3详解】解:45CAD ∠=°,证明如下:如图,连接OC ,FO FG =,∴FOG FGO ∠=∠,直径AB 垂直弦CD ,∴CE DE =,90AED AEC ∠=∠=°, 又 AE AE =,∴ACE △ADE ≌()SAS ,∴DAE CAE ∠=∠,设DAE CAE α∠=∠=,FOG FGO β∠=∠=, 则FCD BCD DAE α∠=∠=∠=,OA OC =,∴OCA OAC α∠=∠=,又 90ACB ∠=°, ∴903OCF ACB OCA FCD BCD α∠=∠−∠−∠−∠=°−,CGE OGF β∠=∠=,GCE α∠=,90CGE GCE ∠+∠=°∴90βα+=°,∴90αβ=°−,2COG OAC OCA ααα∠=∠+∠=+=,∴()2290180COF COG GOF αββββ∠=∠+∠=+=°−+=°−,∴COF AOF ∠=∠,在COF 和AOF 中,CO AO COF AOF OF OF = ∠=∠ =∴()SAS COF AOF ≌,∴OCF OAF ∠=∠,即903αα°−=,∴22.5α=°,∴245CAD α∠==°.【点睛】本题考查垂径定理,圆周角定理,全等三角形的判定与性质,相似三角形的判定与性质,等腰三角形的性质等,难度较大,解题的关键是综合应用上述知识点,特别是第3问,需要大胆猜想,再逐步论证.。

浙江省温州市2021-2023三年中考数学真题分类汇编-01选择题知识点分类

浙江省温州市2021-2023三年中考数学真题分类汇编-01选择题知识点分类一.有理数的加法(共1小题)1.(2022•温州)计算9+(﹣3)的结果是( )A.6B.﹣6C.3D.﹣3二.有理数的加减混合运算(共1小题)2.(2023•温州)如图,比数轴上点A表示的数大3的数是( )A.﹣1B.0C.1D.2三.有理数的乘方(共1小题)3.(2021•温州)计算(﹣2)2的结果是( )A.4B.﹣4C.1D.﹣1四.科学记数法—表示较大的数(共2小题)4.(2023•温州)苏步青来自“数学家之乡”,为纪念其卓越贡献,国际上将一颗距地球约218000000公里的行星命名为“苏步青星”.数据218000000用科学记数法表示为( )A.0.218×109B.2.18×108C.21.8×102D.218×106 5.(2021•温州)第七次全国人口普查结果显示,我国具有大学文化程度的人口超218000000人.数据218000000用科学记数法表示为( )A.218×106B.21.8×107C.2.18×108D.0.218×109五.列代数式(共1小题)6.(2021•温州)某地居民生活用水收费标准:每月用水量不超过17立方米,每立方米a元;超过部分每立方米(a+1.2)元.该地区某用户上月用水量为20立方米,则应缴水费为( )A.20a元B.(20a+24)元C.(17a+3.6)元D.(20a+3.6)元六.同底数幂的乘法(共1小题)7.(2023•温州)化简a4•(﹣a)3的结果是( )A.a12B.﹣a12C.a7D.﹣a7七.单项式乘单项式(共1小题)8.(2022•温州)化简(﹣a)3•(﹣b)的结果是( )A.﹣3ab B.3ab C.﹣a3b D.a3b八.解一元一次方程(共1小题)9.(2021•温州)解方程﹣2(2x+1)=x,以下去括号正确的是( )A.﹣4x+1=﹣x B.﹣4x+2=﹣x C.﹣4x﹣1=x D.﹣4x﹣2=x九.由实际问题抽象出二元一次方程(共1小题)10.(2023•温州)一瓶牛奶的营养成分中,碳水化合物含量是蛋白质的1.5倍,碳水化合物、蛋白质与脂肪的含量共30g.设蛋白质、脂肪的含量分别为x(g),y(g),可列出方程为( )A.x+y=30B.x+y=30C.x+y=30D.x+y=30一十.根的判别式(共1小题)11.(2022•温州)若关于x的方程x2+6x+c=0有两个相等的实数根,则c的值是( )A.36B.﹣36C.9D.﹣9一十一.函数的图象(共2小题)12.(2023•温州)【素材1】某景区游览路线及方向如图1所示,①④⑥各路段路程相等,⑤⑦⑧各路段路程相等,②③两路段路程相等.【素材2】设游玩行走速度恒定,经过每个景点都停留20分钟,小温游路线①④⑤⑥⑦⑧用时3小时25分钟;小州游路线①②⑧,他离入口的路程s与时间t的关系(部分数据)如图2所示,在2100米处,他到出口还要走10分钟.【问题】路线①③⑥⑦⑧各路段路程之和为( )A.4200米B.4800米C.5200米D.5400米13.(2022•温州)小聪某次从家出发去公园游玩的行程如图所示,他离家的路程为s米,所经过的时间为t分钟.下列选项中的图象,能近似刻画s与t之间关系的是( )A.B.C.D.一十二.反比例函数图象上点的坐标特征(共1小题)14.(2021•温州)如图,点A,B在反比例函数y=(k>0,x>0)的图象上,AC⊥x轴于点C,BD⊥x轴于点D,BE⊥y轴于点E,连结AE.若OE=1,OC=OD,AC=AE,则k的值为( )A.2B.C.D.2一十三.二次函数图象上点的坐标特征(共1小题)15.(2022•温州)已知点A(a,2),B(b,2),C(c,7)都在抛物线y=(x﹣1)2﹣2上,点A在点B左侧,下列选项正确的是( )A.若c<0,则a<c<b B.若c<0,则a<b<cC.若c>0,则a<c<b D.若c>0,则a<b<c一十四.勾股定理(共1小题)16.(2022•温州)如图,在Rt△ABC中,∠ACB=90°,以其三边为边向外作正方形,连结CF,作GM⊥CF于点M,BJ⊥GM于点J,AK⊥BJ于点K,交CF于点L.若正方形ABGF与正方形JKLM的面积之比为5,CE=+,则CH的长为( )A.B.C.2D.一十五.菱形的性质(共1小题)17.(2023•温州)图1是第七届国际数学教育大会(ICME)的会徽,图2由其主体图案中相邻两个直角三角形组合而成.作菱形CDEF,使点D,E,F分别在边OC,OB,BC 上,过点E作EH⊥AB于点H.当AB=BC,∠BOC=30°,DE=2时,EH的长为( )A.B.C.D.一十六.圆周角定理(共1小题)18.(2022•温州)如图,AB,AC是⊙O的两条弦,OD⊥AB于点D,OE⊥AC于点E,连结OB,OC.若∠DOE=130°,则∠BOC的度数为( )A.95°B.100°C.105°D.130°一十七.圆内接四边形的性质(共1小题)19.(2023•温州)如图,四边形ABCD内接于⊙O,BC∥AD,AC⊥BD.若∠AOD=120°,AD=,则∠CAO的度数与BC的长分别为( )A.10°,1B.10°,C.15°,1D.15°,一十八.相似三角形的判定与性质(共1小题)20.(2021•温州)由四个全等的直角三角形和一个小正方形组成的大正方形ABCD如图所示.过点D作DF的垂线交小正方形对角线EF的延长线于点G,连结CG,延长BE交CG于点H.若AE=2BE,则的值为( )A.B.C.D.一十九.位似变换(共1小题)21.(2021•温州)如图,图形甲与图形乙是位似图形,O是位似中心,位似比为2:3,点A,B的对应点分别为点A′,B′.若AB=6,则A′B′的长为( )A.8B.9C.10D.15二十.解直角三角形的应用(共1小题)22.(2021•温州)图1是第七届国际数学教育大会(ICME)会徽,在其主体图案中选择两个相邻的直角三角形,恰好能组合得到如图2所示的四边形OABC.若AB=BC=1,∠AOB=α,则OC2的值为( )A.+1B.sin2α+1C.+1D.cos2α+1二十一.简单几何体的三视图(共1小题)23.(2021•温州)直六棱柱如图所示,它的俯视图是( )A.B.C.D.二十二.简单组合体的三视图(共2小题)24.(2023•温州)截面为扇环的几何体与长方体组成的摆件如图所示,它的主视图是( )A.B.C.D.25.(2022•温州)某物体如图所示,它的主视图是( )A.B.C.D.二十三.扇形统计图(共2小题)26.(2022•温州)某校参加课外兴趣小组的学生人数统计图如图所示.若信息技术小组有60人,则劳动实践小组有( )A.75人B.90人C.108人D.150人27.(2021•温州)如图是某天参观温州数学名人馆的学生人数统计图.若大学生有60人,则初中生有( )A.45人B.75人C.120人D.300人二十四.概率公式(共1小题)28.(2022•温州)9张背面相同的卡片,正面分别写有不同的从1到9的一个自然数.现将卡片背面朝上,从中任意抽出一张,正面的数是偶数的概率为( )A.B.C.D.浙江省温州市2021-2023三年中考数学真题分类汇编-01选择题知识点分类参考答案与试题解析一.有理数的加法(共1小题)1.(2022•温州)计算9+(﹣3)的结果是( )A.6B.﹣6C.3D.﹣3【答案】A【解答】解:9+(﹣3)=+(9﹣3)=6.故选:A.二.有理数的加减混合运算(共1小题)2.(2023•温州)如图,比数轴上点A表示的数大3的数是( )A.﹣1B.0C.1D.2【答案】D【解答】解:由数轴可得:A表示﹣1,则比数轴上点A表示的数大3的数是:﹣1+3=2.故选:D.三.有理数的乘方(共1小题)3.(2021•温州)计算(﹣2)2的结果是( )A.4B.﹣4C.1D.﹣1【答案】A【解答】解:(﹣2)²=(﹣2)×(﹣2)=4,故选:A.四.科学记数法—表示较大的数(共2小题)4.(2023•温州)苏步青来自“数学家之乡”,为纪念其卓越贡献,国际上将一颗距地球约218000000公里的行星命名为“苏步青星”.数据218000000用科学记数法表示为( )A.0.218×109B.2.18×108C.21.8×102D.218×106【答案】B【解答】解:将218000000用科学记数法表示为2.18×108.故选:B.5.(2021•温州)第七次全国人口普查结果显示,我国具有大学文化程度的人口超218000000人.数据218000000用科学记数法表示为( )A.218×106B.21.8×107C.2.18×108D.0.218×109【答案】C【解答】解:将218000000用科学记数法表示为2.18×108.故选:C.五.列代数式(共1小题)6.(2021•温州)某地居民生活用水收费标准:每月用水量不超过17立方米,每立方米a元;超过部分每立方米(a+1.2)元.该地区某用户上月用水量为20立方米,则应缴水费为( )A.20a元B.(20a+24)元C.(17a+3.6)元D.(20a+3.6)元【答案】D【解答】解:根据题意知:17a+(20﹣17)(a+1.2)=(20a+3.6)(元).故选:D.六.同底数幂的乘法(共1小题)7.(2023•温州)化简a4•(﹣a)3的结果是( )A.a12B.﹣a12C.a7D.﹣a7【答案】D【解答】解:a4•(﹣a)3=﹣a7.故选:D.七.单项式乘单项式(共1小题)8.(2022•温州)化简(﹣a)3•(﹣b)的结果是( )A.﹣3ab B.3ab C.﹣a3b D.a3b【答案】D【解答】解:原式=﹣a3•(﹣b)=a3b.故选:D.八.解一元一次方程(共1小题)9.(2021•温州)解方程﹣2(2x+1)=x,以下去括号正确的是( )A.﹣4x+1=﹣x B.﹣4x+2=﹣x C.﹣4x﹣1=x D.﹣4x﹣2=x【答案】D【解答】解:根据乘法分配律得:﹣(4x+2)=x,去括号得:﹣4x﹣2=x,故选:D.九.由实际问题抽象出二元一次方程(共1小题)10.(2023•温州)一瓶牛奶的营养成分中,碳水化合物含量是蛋白质的1.5倍,碳水化合物、蛋白质与脂肪的含量共30g.设蛋白质、脂肪的含量分别为x(g),y(g),可列出方程为( )A.x+y=30B.x+y=30C.x+y=30D.x+y=30【答案】A【解答】解:∵碳水化合物含量是蛋白质的1.5倍,且蛋白质的含量为xg,∴碳水化合物含量是1.5xg.根据题意得:1.5x+x+y=30,∴x+y=30.故选:A.一十.根的判别式(共1小题)11.(2022•温州)若关于x的方程x2+6x+c=0有两个相等的实数根,则c的值是( )A.36B.﹣36C.9D.﹣9【答案】C【解答】解:∵方程x2+6x+c=0有两个相等的实数根,∴Δ=62﹣4c=0,解得c=9,故选:C.一十一.函数的图象(共2小题)12.(2023•温州)【素材1】某景区游览路线及方向如图1所示,①④⑥各路段路程相等,⑤⑦⑧各路段路程相等,②③两路段路程相等.【素材2】设游玩行走速度恒定,经过每个景点都停留20分钟,小温游路线①④⑤⑥⑦⑧用时3小时25分钟;小州游路线①②⑧,他离入口的路程s与时间t的关系(部分数据)如图2所示,在2100米处,他到出口还要走10分钟.【问题】路线①③⑥⑦⑧各路段路程之和为( )A.4200米B.4800米C.5200米D.5400米【答案】B【解答】解:由图象可知:小州游玩行走的时间为75+10﹣40=45(分钟),小温游玩行走的时间为205﹣100=105(分钟),设①④⑥各路段路程为x米,⑤⑦⑧各路段路程为y米,②③各路段路程为z米由图象可得:,解得:x+y+z=2700,∴游玩行走的速度为:(2700﹣2100)÷10=60 (米/分),由于游玩行走速度恒定,则小温游路线①④⑤⑥⑦⑧的路程为:3x+3y=105×60=6300,∴x+y=2100,∴路线①③⑥⑦⑧各路段路程之和为:2x+2y+z=x+y+z+x+y=2700+2100=4800(米).故选:B.13.(2022•温州)小聪某次从家出发去公园游玩的行程如图所示,他离家的路程为s米,所经过的时间为t分钟.下列选项中的图象,能近似刻画s与t之间关系的是( )A.B.C.D.【答案】A【解答】解:由题意可知:小聪某次从家出发,s米表示他离家的路程,所以C,D错误;小聪在凉亭休息10分钟,所以A正确,B错误.故选:A.一十二.反比例函数图象上点的坐标特征(共1小题)14.(2021•温州)如图,点A,B在反比例函数y=(k>0,x>0)的图象上,AC⊥x轴于点C,BD⊥x轴于点D,BE⊥y轴于点E,连结AE.若OE=1,OC=OD,AC=AE,则k的值为( )A.2B.C.D.2【答案】B【解答】解:∵BD⊥x轴于点D,BE⊥y轴于点E,∴四边形BDOE是矩形,∴BD=OE=1,把y=1代入y=,求得x=k,∴B(k,1),∴OD=k,∵OC=OD,∴OC=k,∵AC⊥x轴于点C,把x=k代入y=得,y=,∴AE=AC=,∵OC=EF=k,AF=﹣1=,在Rt△AEF中,AE2=EF2+AF2,∴()2=(k)2+()2,解得k=±,∵在第一象限,∴k=,故选:B.一十三.二次函数图象上点的坐标特征(共1小题)15.(2022•温州)已知点A(a,2),B(b,2),C(c,7)都在抛物线y=(x﹣1)2﹣2上,点A在点B左侧,下列选项正确的是( )A.若c<0,则a<c<b B.若c<0,则a<b<cC.若c>0,则a<c<b D.若c>0,则a<b<c【答案】D【解答】解:∵抛物线y=(x﹣1)2﹣2,∴该抛物线的对称轴为直线x=1,抛物线开口向上,当x>1时,y随x的增大而增大,当x<1时,y随x的增大而减小,∵点A(a,2),B(b,2),C(c,7)都在抛物线y=(x﹣1)2﹣2上,点A在点B左侧,∴若c<0,则c<a<b,故选项A、B均不符合题意;若c>0,则a<b<c,故选项C不符合题意,选项D符合题意;故选:D.一十四.勾股定理(共1小题)16.(2022•温州)如图,在Rt△ABC中,∠ACB=90°,以其三边为边向外作正方形,连结CF,作GM⊥CF于点M,BJ⊥GM于点J,AK⊥BJ于点K,交CF于点L.若正方形ABGF与正方形JKLM的面积之比为5,CE=+,则CH的长为( )A.B.C.2D.【答案】C【解答】解:设CF交AB于点P,过C作CN⊥AB于点N,如图:设正方形JKLM边长为m,∴正方形JKLM面积为m2,∵正方形ABGF与正方形JKLM的面积之比为5,∴正方形ABGF的面积为5m2,∴AF=AB=m,由已知可得:∠AFL=90°﹣∠MFG=∠MGF,∠ALF=90°=∠FMG,AF=GF,∴△AFL≌△FGM(AAS),∴AL=FM,设AL=FM=x,则FL=FM+ML=x+m,在Rt△AFL中,AL2+FL2=AF2,∴x2+(x+m)2=(m)2,解得x=m或x=﹣2m(舍去),∴AL=FM=m,FL=2m,∵tan∠AFL====,∴=,∴AP=,∴FP===m,BP=AB﹣AP=m﹣=,∴AP=BP,即P为AB中点,∵∠ACB=90°,∴CP=AP=BP=,∵∠CPN=∠APF,∠CNP=90°=∠FAP,∴△CPN∽△FPA,∴==,即==,∴CN=m,PN=m,∴AN=AP+PN=m,∴tan∠BAC====,∵△AEC和△BCH是等腰直角三角形,∴△AEC∽△BCH,∴=,∵CE=+,∴=,∴CH=2,故选:C.一十五.菱形的性质(共1小题)17.(2023•温州)图1是第七届国际数学教育大会(ICME)的会徽,图2由其主体图案中相邻两个直角三角形组合而成.作菱形CDEF,使点D,E,F分别在边OC,OB,BC 上,过点E作EH⊥AB于点H.当AB=BC,∠BOC=30°,DE=2时,EH的长为( )A.B.C.D.【答案】C【解答】解:∵四边形CDEF是菱形,DE=2,∴CD=DE=CF=EF=2,CF∥DE,CD∥EF,∵∠CBO=90°,∠BOC=30°,∴OD=2DE=4,OE=DE=2,∴CO=CD+DO=6,∴BC=AB=CD=3,OB=BC=3,∵∠A=90°,∴==3,∵EF∥CD,∴∠BEF=∠BOC=30°,∴,∵EH⊥AB,∴EH∥OA,∴△BHE∽△BAO,∴,∴,∴EH=,故选:C.一十六.圆周角定理(共1小题)18.(2022•温州)如图,AB,AC是⊙O的两条弦,OD⊥AB于点D,OE⊥AC于点E,连结OB,OC.若∠DOE=130°,则∠BOC的度数为( )A.95°B.100°C.105°D.130°【答案】B【解答】解:∵OD⊥AB,OE⊥AC,∴∠ADO=90°,∠AEO=90°,∵∠DOE=130°,∴∠BAC=360°﹣90°﹣90°﹣130°=50°,∴∠BOC=2∠BAC=100°,故选:B.一十七.圆内接四边形的性质(共1小题)19.(2023•温州)如图,四边形ABCD内接于⊙O,BC∥AD,AC⊥BD.若∠AOD=120°,AD=,则∠CAO的度数与BC的长分别为( )A.10°,1B.10°,C.15°,1D.15°,【答案】C【解答】解:∵BC∥AD,∴∠DBC=∠ADB,∴=,∴∠AOB=∠COD,∠CAD=∠BDA,∵DB⊥AC,∴∠AED=90°,∴∠CAD=∠BDA=45°,∴∠AOB=2∠ADB=90°,∠COD=2∠CAD=90°,∵∠AOD=120°,∴∠BOC=360°﹣90°﹣90°﹣120°=60°,∵OB=OC,∴△OBC是等边三角形,∴BC=OB,∵OA=OD,∠AOD=120°,∴∠OAD=∠ODA=30°,∴AD=OA=,∴OA=1,∴BC=1,∴∠CAO=∠CAD﹣∠OAD=45°﹣30°=15°.故选:C.一十八.相似三角形的判定与性质(共1小题)20.(2021•温州)由四个全等的直角三角形和一个小正方形组成的大正方形ABCD如图所示.过点D作DF的垂线交小正方形对角线EF的延长线于点G,连结CG,延长BE交CG于点H.若AE=2BE,则的值为( )A.B.C.D.【答案】C【解答】解:如图,过点G作GT⊥CF交CF的延长线于T,设BH交CF于M,AE交DF于N.设BE=AN=CM=DF=a,则AE=BM=CF=DN=2a,∴EN=EM=MF=FN=a,∵四边形ENFM是正方形,∴∠EFH=∠TFG=45°,∠NFE=∠DFG=45°,∵GT⊥TF,DF⊥DG,∴∠TGF=∠TFG=∠DFG=∠DGF=45°,∴TG=FT=DF=DG=a,∴CT=3a,CG==a,∵MH∥TG,∴△CMH∽△CTG,∴CM:CT=MH:TG=1:3,∴MH=a,∴BH=2a+a=a,∴==,故选:C.一十九.位似变换(共1小题)21.(2021•温州)如图,图形甲与图形乙是位似图形,O是位似中心,位似比为2:3,点A,B的对应点分别为点A′,B′.若AB=6,则A′B′的长为( )A.8B.9C.10D.15【答案】B【解答】解:∵图形甲与图形乙是位似图形,位似比为2:3,AB=6,∴=,即=,解得,A′B′=9,故选:B.二十.解直角三角形的应用(共1小题)22.(2021•温州)图1是第七届国际数学教育大会(ICME)会徽,在其主体图案中选择两个相邻的直角三角形,恰好能组合得到如图2所示的四边形OABC.若AB=BC=1,∠AOB =α,则OC2的值为( )A.+1B.sin2α+1C.+1D.cos2α+1【答案】A【解答】解:∵AB=BC=1,在Rt△OAB中,sinα=,∴OB=,在Rt△OBC中,OB2+BC2=OC2,∴OC2=()2+12=.故选:A.二十一.简单几何体的三视图(共1小题)23.(2021•温州)直六棱柱如图所示,它的俯视图是( )A.B.C.D.【答案】C【解答】解:从上面看这个几何体,看到的图形是一个正六边形,因此选项C中的图形符合题意,故选:C.二十二.简单组合体的三视图(共2小题)24.(2023•温州)截面为扇环的几何体与长方体组成的摆件如图所示,它的主视图是( )A.B.C.D.【答案】A【解答】解:从正面看,可得选项A的图形.故选:A.25.(2022•温州)某物体如图所示,它的主视图是( )A.B.C.D.【答案】D【解答】解:某物体如图所示,它的主视图是:故选:D.二十三.扇形统计图(共2小题)26.(2022•温州)某校参加课外兴趣小组的学生人数统计图如图所示.若信息技术小组有60人,则劳动实践小组有( )A.75人B.90人C.108人D.150人【答案】B【解答】解:本次参加课外兴趣小组的人数为:60÷20%=300(人),劳动实践小组有:300×30%=90(人),故选:B.27.(2021•温州)如图是某天参观温州数学名人馆的学生人数统计图.若大学生有60人,则初中生有( )A.45人B.75人C.120人D.300人【答案】C【解答】解:参观温州数学名人馆的学生人数共有60÷20%=300(人),初中生有300×40%=120(人),故选:C.二十四.概率公式(共1小题)28.(2022•温州)9张背面相同的卡片,正面分别写有不同的从1到9的一个自然数.现将卡片背面朝上,从中任意抽出一张,正面的数是偶数的概率为( )A.B.C.D.【答案】C【解答】解:因为1到9共9个自然数.是偶数的有4个,所以正面的数是偶数的概率为.故选:C.。

浙江省嘉兴市、舟山市2021-2023三年中考数学真题分类汇编-02填空题知识点分类

浙江省嘉兴市、舟山市2021-2023三年中考数学真题分类汇编-02填空题知识点分类一.绝对值(共1小题)1.(2023•浙江)计算:|﹣2023|= .二.列代数式(共1小题)2.(2022•嘉兴)某动物园利用杠杆原理称象:如图,在点P处挂一根质地均匀且足够长的钢梁(呈水平状态),将装有大象的铁笼和弹簧秤(秤的重力忽略不计)分别悬挂在钢梁的点A,B处,当钢梁保持水平时,弹簧秤读数为k(N).若铁笼固定不动,移动弹簧秤使BP扩大到原来的n(n>1)倍,且钢梁保持水平,则弹簧秤读数为 (N)(用含n,k的代数式表示).三.规律型:数字的变化类(共1小题)3.(2021•浙江)观察下列等式:1=12﹣02,3=22﹣12,5=32﹣22,…按此规律,则第n 个等式为2n﹣1= .四.因式分解-提公因式法(共1小题)4.(2022•舟山)分解因式:m2+m= .五.因式分解-运用公式法(共1小题)5.(2023•长春)分解因式:m2﹣1= .六.因式分解的应用(共1小题)6.(2023•浙江)一个多项式,把它因式分解后有一个因式为(x+1),请你写出一个符合条件的多项式: .七.二元一次方程的解(共1小题)7.(2021•浙江)已知二元一次方程x+3y=14,请写出该方程的一组整数解 .八.由实际问题抽象出二元一次方程组(共1小题)8.(2023•浙江)我国古代数学名著《张丘建算经》中有这样一题:一只公鸡值5钱,一只母鸡值3钱,3只小鸡值1钱,现花100钱买了100只鸡.若公鸡有8只,设母鸡有x只,小鸡有y只,可列方程组为 .九.勾股定理(共1小题)9.(2022•舟山)如图,在直角坐标系中,△ABC的顶点C与原点O重合,点A在反比例函数y=(k>0,x>0)的图象上,点B的坐标为(4,3),AB与y轴平行,若AB=BC,则k= .一十.等腰直角三角形(共1小题)10.(2022•嘉兴)小曹同学复习时将几种三角形的关系整理如图,请帮他在括号内填上一个适当的条件 .一十一.多边形内角与外角(共1小题)11.(2022•舟山)正八边形一个内角的度数为 .一十二.平行四边形的性质(共1小题)12.(2021•浙江)如图,在▱ABCD中,对角线AC,BD交于点O,AB⊥AC,AH⊥BD于点H,若AB=2,BC=2,则AH的长为 .一十三.切线的性质(共1小题)13.(2023•浙江)如图,点A是⊙O外一点,AB,AC分别与⊙O相切于点B,C,点D在上.已知∠A=50°,则∠D的度数是 .一十四.扇形面积的计算(共1小题)14.(2023•浙江)一副三角板ABC和DEF中,∠C=∠D=90°,∠B=30°,∠E=45°,BC=EF=12.将它们叠合在一起,边BC与EF重合,CD与AB相交于点G(如图1),此时线段CG的长是 .现将△DEF绕点C(F)按顺时针方向旋转(如图2),边EF与AB相交于点H,连结DH,在旋转0°到60°的过程中,线段DH扫过的面积是 .一十五.轴对称的性质(共1小题)15.(2021•浙江)如图,在△ABC中,∠BAC=30°,∠ACB=45°,AB=2,点P从点A 出发沿AB方向运动,到达点B时停止运动,连结CP,点A关于直线CP的对称点为A′,连结A′C,A′P.在运动过程中,点A′到直线AB距离的最大值是 ;点P到达点B时,线段A′P扫过的面积为 .一十六.翻折变换(折叠问题)(共1小题)16.(2022•嘉兴)如图,在扇形AOB中,点C,D在上,将沿弦CD折叠后恰好与OA,OB相切于点E,F.已知∠AOB=120°,OA=6,则的度数为 ,折痕CD的长为 .一十七.相似三角形的判定与性质(共1小题)17.(2022•嘉兴)如图,在△ABC中,∠ABC=90°,∠A=60°,直尺的一边与BC重合,另一边分别交AB,AC于点D,E.点B,C,D,E处的读数分别为15,12,0,1,则直尺宽BD的长为 .一十八.位似变换(共1小题)18.(2021•浙江)如图,在直角坐标系中,△ABC与△ODE是位似图形,则它们位似中心的坐标是 .一十九.概率公式(共2小题)19.(2023•浙江)现有三张正面印有2023年杭州亚运会吉祥物琮琮、宸宸和莲莲的不透明卡片,卡片除正面图案不同外,其余均相同.将三张卡片正面向下洗匀,从中随机抽取一张卡片,则抽出的卡片图案是琮琮的概率是 .20.(2022•嘉兴)不透明的袋子中装有5个球,其中有3个红球和2个黑球,它们除颜色外都相同.从袋子中随机取出1个球,它是黑球的概率是 .二十.列表法与树状图法(共1小题)21.(2021•浙江)看了《田忌赛马》故事后,小杨用数学模型来分析:齐王与田忌的上中下三个等级的三匹马记分如表,每匹马只赛一场,两数相比,大数为胜,三场两胜则赢.已知齐王的三匹马出场顺序为10,8,6.若田忌的三匹马随机出场,则田忌能赢得比赛的概率为 .马匹下等马中等马上等马姓名齐王6810田忌579浙江省嘉兴市、舟山市2021-2023三年中考数学真题分类汇编-02填空题知识点分类参考答案与试题解析一.绝对值(共1小题)1.(2023•浙江)计算:|﹣2023|= 2023 .【答案】2023.【解答】解:﹣2023的相反数是2023,故|﹣2023|=2023,故答案为:2023.二.列代数式(共1小题)2.(2022•嘉兴)某动物园利用杠杆原理称象:如图,在点P处挂一根质地均匀且足够长的钢梁(呈水平状态),将装有大象的铁笼和弹簧秤(秤的重力忽略不计)分别悬挂在钢梁的点A,B处,当钢梁保持水平时,弹簧秤读数为k(N).若铁笼固定不动,移动弹簧秤使BP扩大到原来的n(n>1)倍,且钢梁保持水平,则弹簧秤读数为 (N)(用含n,k的代数式表示).【答案】.【解答】解:如图,设装有大象的铁笼重力为aN,将弹簧秤移动到B′的位置时,弹簧秤的度数为k′,由题意可得BP•k=PA•a,B′P•k′=PA•a,∴BP•k=B′P•k′,又∵B′P=nBP,∴k′==,故答案为:.三.规律型:数字的变化类(共1小题)3.(2021•浙江)观察下列等式:1=12﹣02,3=22﹣12,5=32﹣22,…按此规律,则第n 个等式为2n﹣1= n2﹣(n﹣1)2 .【答案】n2﹣(n﹣1)2.【解答】解:∵1=12﹣02,3=22﹣12,5=32﹣22,…,∴第n个等式为2n﹣1=n2﹣(n﹣1)2,故答案为:n2﹣(n﹣1)2.四.因式分解-提公因式法(共1小题)4.(2022•舟山)分解因式:m2+m= m(m+1) .【答案】m(m+1).【解答】解:m2+m=m(m+1).故答案为:m(m+1).五.因式分解-运用公式法(共1小题)5.(2023•长春)分解因式:m2﹣1= (m+1)(m﹣1) .【答案】(m+1)(m﹣1).【解答】解:m2﹣1=(m+1)(m﹣1).六.因式分解的应用(共1小题)6.(2023•浙江)一个多项式,把它因式分解后有一个因式为(x+1),请你写出一个符合条件的多项式: x2﹣1(答案不唯一). .【答案】x2﹣1(答案不唯一).【解答】解:∵x2﹣1=(x+1)(x﹣1),∴符合条件的一个多项式是x2﹣1,故答案为:x2﹣1(答案不唯一).七.二元一次方程的解(共1小题)7.(2021•浙江)已知二元一次方程x+3y=14,请写出该方程的一组整数解 (答案不唯一) .【答案】(答案不唯一).【解答】解:x+3y=14,x=14﹣3y,当y=1时,x=11,则方程的一组整数解为.故答案为:(答案不唯一).八.由实际问题抽象出二元一次方程组(共1小题)8.(2023•浙江)我国古代数学名著《张丘建算经》中有这样一题:一只公鸡值5钱,一只母鸡值3钱,3只小鸡值1钱,现花100钱买了100只鸡.若公鸡有8只,设母鸡有x只,小鸡有y只,可列方程组为 .【答案】.【解答】解:根据题意得:.故答案为:.九.勾股定理(共1小题)9.(2022•舟山)如图,在直角坐标系中,△ABC的顶点C与原点O重合,点A在反比例函数y=(k>0,x>0)的图象上,点B的坐标为(4,3),AB与y轴平行,若AB=BC,则k= 32 .【答案】32.【解答】解:∵点B的坐标为(4,3),C(0,0),∴BC==5,∴AB=BC=5,∵AB与y轴平行,∴A(4,8),把A(4,8)代入y=得:8=,解得k=32,故答案为:32.一十.等腰直角三角形(共1小题)10.(2022•嘉兴)小曹同学复习时将几种三角形的关系整理如图,请帮他在括号内填上一个适当的条件 ∠B=60°(答案不唯一) .【答案】∠B=60°.(答案不唯一)【解答】解:有一个角是60°的等腰三角形是等边三角形,故答案为:∠B=60°.(答案不唯一)一十一.多边形内角与外角(共1小题)11.(2022•舟山)正八边形一个内角的度数为 135° .【答案】135°.【解答】解:正八边形的内角和为:(8﹣2)×180°=1080°,每一个内角的度数为×1080°=135°.故答案为:135°.一十二.平行四边形的性质(共1小题)12.(2021•浙江)如图,在▱ABCD中,对角线AC,BD交于点O,AB⊥AC,AH⊥BD于点H,若AB=2,BC=2,则AH的长为 .【答案】.【解答】解:如图,∵AB⊥AC,AB=2,BC=2,∴AC==2,在▱ABCD中,OA=OC,OB=OD,∴OA=OC=,在Rt△OAB中,OB==,又AH⊥BD,∴OB•AH=OA•AB,即=,解得AH=.故答案为:.一十三.切线的性质(共1小题)13.(2023•浙江)如图,点A是⊙O外一点,AB,AC分别与⊙O相切于点B,C,点D在上.已知∠A=50°,则∠D的度数是 65° .【答案】65°.【解答】解:连接OC,OB,∵AB,AC分别与⊙O相切于点B,C,∴∠ACO=∠ABO=90°,∵∠A=50°,∴∠COB=360°﹣∠A﹣∠ACO﹣∠ABO=130°,∴∠D=,故答案为:65°.一十四.扇形面积的计算(共1小题)14.(2023•浙江)一副三角板ABC和DEF中,∠C=∠D=90°,∠B=30°,∠E=45°,BC=EF=12.将它们叠合在一起,边BC与EF重合,CD与AB相交于点G(如图1),此时线段CG的长是 6﹣6 .现将△DEF绕点C(F)按顺时针方向旋转(如图2),边EF与AB相交于点H,连结DH,在旋转0°到60°的过程中,线段DH扫过的面积是 18+12π﹣18 .【答案】6﹣6;18+12π﹣18.【解答】解:如图1,过点G作GK⊥BC于K,则∠CKG=∠BKG=90°,∵∠BCD=45°,∴△CGK是等腰直角三角形,∴CK=GK=CG,∵BC=12,∴BK=BC﹣CK=12﹣CG,在Rt△BGK中,∠GBK=30°,∴=tan∠GBK=tan30°=,∴BK=GK,即12﹣CG=×CG,∴CG=6﹣6;如图2,以C为圆心,CD为半径作圆,当△CDE绕点C旋转60°时,CE′交AB于H ′,连接DD′,过点D作DM⊥AB于M,过点C作CN⊥DD′于N,则∠BCE′=∠DCD′=60°,点D的运动轨迹为,点H的运动轨迹为线段BH ′,∴在旋转0°到60°的过程中,线段DH扫过的面积为S△BDD′+S扇形CDD′﹣S△CDD′,∵CD=BC•cos CBD=12cos45°=6,∴DG=CD﹣CG=6﹣(6﹣6)=12﹣6,∵∠BCD+∠ABC=60°+30°=90°,∴∠BH′C=90°,在Rt△BCH′中,CH′=BC•sin30°=12×=6,BH′=BC•cos30°=12×=6,∵△CD′E′是等腰直角三角形,∠CD′E′=90°,D′H′⊥CE′,∴D′H′=CE′=6,∴BD′=6+6,∵DM⊥AB,∴∠DMG=90°,∴∠DMG=∠CH′G,∵∠DGM=∠CGH′,∴△DGM∽△CGH′,∴=,即=,∴DM=3﹣3,∵CD′=CD=6,∠DCD′=60°,∴△CDD′是等边三角形,∴∠CDD′=60°,∵CN⊥DD′,∴CN=CD•sin∠CDD′=6sin60°=3,∴S△BDD′+S扇形CDD′﹣S△CDD′=×(6+6)×(3﹣3)+﹣×6×3=18+12π﹣18;故答案为:6﹣6;18+12π﹣18.一十五.轴对称的性质(共1小题)15.(2021•浙江)如图,在△ABC中,∠BAC=30°,∠ACB=45°,AB=2,点P从点A 出发沿AB方向运动,到达点B时停止运动,连结CP,点A关于直线CP的对称点为A′,连结A′C,A′P.在运动过程中,点A′到直线AB距离的最大值是 ;点P到达点B时,线段A′P扫过的面积为 (1+)π﹣1﹣ .【答案】,(1+)π﹣1﹣.【解答】解:如图1中,过点B作BH⊥AC于H.在Rt△ABH中,BH=AB•sin30°=1,AH=BH=,在Rt△BCH中,∠BCH=45°,∴CH=BH=1,∴AC=CA′=1+,当CA′⊥AB时,点A′到直线AB的距离最大,设CA′交AB的延长线于K.在Rt△ACK中,CK=AC•sin30°=,∴A′K=CA′﹣CK=1+﹣=.如图2中,点P到达点B时,线段A′P扫过的面积=S扇形A′CA﹣2S△ABC=﹣2××(1+)×1=(1+)π﹣1﹣.故答案为:,(1+)π﹣1﹣.一十六.翻折变换(折叠问题)(共1小题)16.(2022•嘉兴)如图,在扇形AOB中,点C,D在上,将沿弦CD折叠后恰好与OA,OB相切于点E,F.已知∠AOB=120°,OA=6,则的度数为 60° ,折痕CD的长为 4 .【答案】60°,4.【解答】解:如图,设翻折后的弧的圆心为O′,连接O′E,O′F,OO′,O′C,OO ′交CD于点H,∴OO′⊥CD,CH=DH,O′C=OA=6,∵将沿弦CD折叠后恰好与OA,OB相切于点E,F.∴∠O′EO=∠O′FO=90°,∵∠AOB=120°,∴∠EO′F=60°,则的度数为60°;∵∠AOB=120°,∴∠O′OF=60°,∵O′F⊥OB,O′E=O′F=O′C=6,∴OO′===4,∴O′H=2,∴CH===2,∴CD=2CH=4.故答案为:60°,4.一十七.相似三角形的判定与性质(共1小题)17.(2022•嘉兴)如图,在△ABC中,∠ABC=90°,∠A=60°,直尺的一边与BC重合,另一边分别交AB,AC于点D,E.点B,C,D,E处的读数分别为15,12,0,1,则直尺宽BD的长为 .【答案】.【解答】解:由题意得,DE=1,BC=3,在Rt△ABC中,∠A=60°,则AB===,∵DE∥BC,∴△ADE∽△ABC,∴=,即=,解得:BD=,故答案为:.一十八.位似变换(共1小题)18.(2021•浙江)如图,在直角坐标系中,△ABC与△ODE是位似图形,则它们位似中心的坐标是 (4,2) .【答案】(4,2).【解答】解:如图,点G(4,2)即为所求的位似中心.故答案是:(4,2).一十九.概率公式(共2小题)19.(2023•浙江)现有三张正面印有2023年杭州亚运会吉祥物琮琮、宸宸和莲莲的不透明卡片,卡片除正面图案不同外,其余均相同.将三张卡片正面向下洗匀,从中随机抽取一张卡片,则抽出的卡片图案是琮琮的概率是 .【答案】.【解答】解:从这三张卡片中随机挑选一张,是“琮琮”的概率是,故答案为:.20.(2022•嘉兴)不透明的袋子中装有5个球,其中有3个红球和2个黑球,它们除颜色外都相同.从袋子中随机取出1个球,它是黑球的概率是 .【答案】.【解答】解:∵盒子中装有3个红球,2个黑球,共有5个球,∴从中随机摸出一个小球,恰好是黑球的概率是;故答案为:.二十.列表法与树状图法(共1小题)21.(2021•浙江)看了《田忌赛马》故事后,小杨用数学模型来分析:齐王与田忌的上中下三个等级的三匹马记分如表,每匹马只赛一场,两数相比,大数为胜,三场两胜则赢.已知齐王的三匹马出场顺序为10,8,6.若田忌的三匹马随机出场,则田忌能赢得比赛的概率为 .马匹姓名下等马中等马上等马齐王6810田忌579【答案】.【解答】解:由于田忌的上、中等马分别比齐王的中、下等马强,当齐王的三匹马出场顺序为10,8,6时,田忌的马按5,9,7的顺序出场,田忌才能赢得比赛,当田忌的三匹马随机出场时,双方马的对阵情况如下:双方马的对阵中,只有一种对阵情况田忌能赢,∴田忌能赢得比赛的概率为.故答案为:.。

浙江省各地市2023-中考数学真题分类汇编-03解答题(提升题)知识点分类②

浙江省各地市2023-中考数学真题分类汇编-03解答题(提升题)知识点分类②一.实数的运算(共1小题)1.(2023•金华)计算:(﹣2023)0+﹣2sin30°+|﹣5|.二.解二元一次方程组(共1小题)2.(2023•台州)解方程组:.三.一次函数的应用(共2小题)3.(2023•金华)兄妹俩放学后沿图1中的马路从学校出发,到书吧看书后回家,哥哥步行先出发,途中速度保持不变:妹妹骑车,到书吧前的速度为200米/分,图2中的图象分别表示两人离学校的路程s(米)与哥哥离开学校的时间t(分)的函数关系.(1)求哥哥步行的速度.(2)已知妹妹比哥哥迟2分钟到书吧.①求图中a的值;②妹妹在书吧待了10分钟后回家,速度是哥哥的1.6倍,能否在哥哥到家前追上哥哥?若能,求追上时兄妹俩离家还有多远;若不能,说明理由.4.(2023•台州)【问题背景】“刻漏”是我国古代的一种利用水流计时的工具.综合实践小组准备用甲、乙两个透明的竖直放置的容器和一根带节流阀(控制水的流速大小)的软管制作简易计时装置.【实验操作】综合实践小组设计了如下的实验:先在甲容器里加满水,此时水面高度为30cm,开始放水后每隔10min观察一次甲容器中的水面高度,获得的数据如表:流水时间t/min010203040水面高度h/cm(观察值)302928.12725.8任务1:分别计算表中每隔10min水面高度观察值的变化量.【建立模型】小组讨论发现:“t=0,h=30”是初始状态下的准确数据,水面高度值的变化不均匀,但可以用一次函数近似地刻画水面高度h与流水时间t的关系.任务2:利用t=0时,h=30;t=10时,h=29这两组数据求水面高度h与流水时间t的函数解析式;【反思优化】经检验,发现有两组表中观察值不满足任务2中求出的函数解析式,存在偏差,小组决定优化函数解析式,减少偏差.通过查阅资料后知道:t为表中数据时,根据解析式求出所对应的函数值,计算这些函数值与对应h的观察值之差的平方和,记为w;w越小,偏差越小.任务3:(1)计算任务2得到的函数解析式的w值;(2)请确定经过(0,30)的一次函数解析式,使得w的值最小;【设计刻度】得到优化的函数解析式后,综合实践小组决定在甲容器外壁设计刻度,通过刻度直接读取时间.任务4:请你简要写出时间刻度的设计方案.四.反比例函数与一次函数的交点问题(共1小题)5.(2023•杭州)在直角坐标系中,已知k1k2≠0,设函数y1=与函数y2=k2(x﹣2)+5的图象交于点A和点B.已知点A的横坐标是2,点B的纵坐标是﹣4.(1)求k1,k2的值.(2)过点A作y轴的垂线,过点B作x轴的垂线,在第二象限交于点C;过点A作x轴的垂线,过点B作y轴的垂线,在第四象限交于点D.求证:直线CD经过原点.五.勾股定理的逆定理(共1小题)6.(2023•金华)如图,为制作角度尺,将长为10,宽为4的矩形OABC 分割成4×10的小正方形网格,在该矩形边上取点P ,来表示∠POA 的度数,阅读以下作图过程,并回答下列问题:作法(如图)结论①在CB 上取点P 1,使CP 1=4.∠P 1OA =45°,点P 1表示45°.②以O 为圆心,8为半径作弧,与BC 交于点P 2.∠P 2OA =30°,点P 2表示30°.③分别以O ,P 2为圆心,大于OP 2长度一半的长为半径作弧,相交于点E ,F ,连接EF 与BC相交于点P 3.…④以P 2为圆心,OP 2的长为半径作弧,与射线CB 交于点D ,连结OD 交AB 于点P 4.…(1)分别求点P 3,P 4表示的度数.(2)用直尺和圆规在该矩形的边上作点P 5,使该点表示37.5°(保留作图痕迹,不写作法).六.三角形综合题(共1小题)7.(2023•金华)问题:如何设计“倍力桥”的结构?图1是搭成的“倍力桥”,纵梁a,c夹住横梁b,使得横梁不能移动,结构稳固.图2是长为l(cm),宽为3cm的横梁侧面示意图,三个凹槽都是半径为1cm的半圆,圆心分别为O1,O2,O3,O1M=O1N,O2Q=O3P=2cm,纵梁是底面半径为1cm的圆柱体,用相同规格的横梁、纵梁搭“桥”,间隙忽略不计.探究1:图3是“桥”侧面示意图,A,B为横梁与地面的交点,C,E为圆心,D,H1,H2是横梁侧面两边的交点,测得AB=32cm,点C到AB的距离为12cm,试判断四边形CDEH1的形状,并求l的值.探究2:若搭成的“桥”刚好能绕成环,其侧面示意图的内部形成一个多边形.①若有12根横梁绕成环,图4是其侧面示意图,内部形成十二边形H1H2H3…H12,求l的值;②若有n根横梁绕成的环(n为偶数,且n≥6),试用关于n的代数式表示内部形成的多边形H1H2H3…H n的周长.七.四边形综合题(共1小题)8.(2023•绍兴)在平行四边形ABCD中(顶点A,B,C,D按逆时针方向排列),AB=12,AD=10,∠B为锐角,且sin B=.(1)如图1,求AB边上的高CH的长;(2)P是边AB上的一动点,点C,D同时绕点P按逆时针方向旋转90°得点C',D',①如图2,当C'落在射线CA上时,求BP的长;②当△AC'D'是直角三角形时,求BP的长.9.(2023•台州)如图,四边形ABCD中,AD∥BC,∠A=∠C,BD为对角线.(1)证明:四边形ABCD是平行四边形;(2)已知AD>AB,请用无刻度的直尺和圆规作菱形BEDF,顶点E,F分别在边BC,AD上(保留作图痕迹,不要求写作法).九.解直角三角形的应用(共1小题)10.(2023•台州)教室里的投影仪投影时,可以把投影光线CA,CB及在黑板上的投影图象高度AB抽象成如图所示的△ABC,∠BAC=90°,黑板上投影图象的高度AB=120cm,CB与AB的夹角∠B=33.7°,求AC的长.(结果精确到1cm.参考数据:sin33.7°≈0.55,cos33.7°≈0.83,tan33.7°≈0.67)一十.统计量的选择(共1小题)11.(2023•台州)为了改进几何教学,张老师选择A,B两班进行教学实验研究,在实验班B实施新的教学方法,在控制班A采用原来的教学方法.在实验开始前,进行一次几何能力测试(前测,总分25分),经过一段时间的教学后,再用难度、题型、总分相同的试卷进行测试(后测),得到前测和后测数据并整理成表1和表2.表1:前测数据测试分数x0<x≤55<x≤1010<x≤1515<x≤2020<x≤25控制班A289931实验班B2510821表2:后测数据测试分数x0<x≤55<x≤1010<x≤1515<x≤2020<x≤25控制班A14161262实验班B6811183(1)A,B两班的学生人数分别是多少?(2)请选择一种适当的统计量,分析比较A,B两班的后测数据.(3)通过分析前测、后测数据,请对张老师的教学实验效果进行评价.浙江省各地市2023-中考数学真题分类汇编-03解答题(提升题)知识点分类②参考答案与试题解析一.实数的运算(共1小题)1.(2023•金华)计算:(﹣2023)0+﹣2sin30°+|﹣5|.【答案】7.【解答】解:(﹣2023)0+﹣2sin30°+|﹣5|=1+2﹣2×+5=1+2﹣1+5=7.二.解二元一次方程组(共1小题)2.(2023•台州)解方程组:.【答案】.【解答】解:,①+②得3x=9,解得x=3,把x=3代入①,得3+y=7,解得y=4,∴方程组的解是.三.一次函数的应用(共2小题)3.(2023•金华)兄妹俩放学后沿图1中的马路从学校出发,到书吧看书后回家,哥哥步行先出发,途中速度保持不变:妹妹骑车,到书吧前的速度为200米/分,图2中的图象分别表示两人离学校的路程s(米)与哥哥离开学校的时间t(分)的函数关系.(1)求哥哥步行的速度.(2)已知妹妹比哥哥迟2分钟到书吧.①求图中a的值;②妹妹在书吧待了10分钟后回家,速度是哥哥的1.6倍,能否在哥哥到家前追上哥哥?若能,求追上时兄妹俩离家还有多远;若不能,说明理由.【答案】(1)100m/min.(2)①a=6.②能,追上时兄妹俩离家300米远.【解答】解:(1)由A(8,800)可知哥哥的速度为:800÷8=100(m/min).(2)①∵妹妹骑车到书吧前的速度为200米/分,∴妹妹所用时间t为:800÷200=4(min).∵妹妹比哥哥迟2分钟到书吧,∴a=8+2﹣4=6.②由(1)可知:哥哥的速度为100m/min,∴设BC所在直线为s1=100t+b,将B(17,800)代入得:800=100×17+b,解得b=﹣900.∴BC所在直线为:s1=100t﹣900.当s1=1900时,t哥哥=28.∵返回时妹妹的速度是哥哥的1.6倍,∴妹妹的速度是160米/分.∴设妹妹返回时得解析式为s2=160t+b,将F(20,800)代入得800=160×20+b,解得b=﹣2400,∴s2=160t﹣2400.令s1=s2,则有100t﹣900=160t﹣2400,解得t=25<28,∴妹妹能追上哥哥,此时哥哥所走得路程为:800+(25﹣17)×100=1600(米).兄妹俩离家还有1900﹣1600=300(米),即妹妹能追上哥哥,追上时兄妹俩离家300米远.4.(2023•台州)【问题背景】“刻漏”是我国古代的一种利用水流计时的工具.综合实践小组准备用甲、乙两个透明的竖直放置的容器和一根带节流阀(控制水的流速大小)的软管制作简易计时装置.【实验操作】综合实践小组设计了如下的实验:先在甲容器里加满水,此时水面高度为30cm,开始放水后每隔10min观察一次甲容器中的水面高度,获得的数据如表:流水时间t/min010203040水面高度h/cm(观察值)302928.12725.8任务1:分别计算表中每隔10min水面高度观察值的变化量.【建立模型】小组讨论发现:“t=0,h=30”是初始状态下的准确数据,水面高度值的变化不均匀,但可以用一次函数近似地刻画水面高度h与流水时间t的关系.任务2:利用t=0时,h=30;t=10时,h=29这两组数据求水面高度h与流水时间t的函数解析式;【反思优化】经检验,发现有两组表中观察值不满足任务2中求出的函数解析式,存在偏差,小组决定优化函数解析式,减少偏差.通过查阅资料后知道:t为表中数据时,根据解析式求出所对应的函数值,计算这些函数值与对应h的观察值之差的平方和,记为w;w越小,偏差越小.任务3:(1)计算任务2得到的函数解析式的w值;(2)请确定经过(0,30)的一次函数解析式,使得w的值最小;【设计刻度】得到优化的函数解析式后,综合实践小组决定在甲容器外壁设计刻度,通过刻度直接读取时间.任务4:请你简要写出时间刻度的设计方案.【答案】任务1:﹣1,﹣0.9,﹣1.1,﹣1.2;任务2:h=﹣0.1t+30;任务3:(1)0.05,(2)0.038.任务4:见解析.【解答】解:任务1:变化量分别为:29﹣30=﹣1(cm);28.1﹣29=﹣0.9(cm);27﹣28.1=﹣1.1(cm);25.8﹣27=﹣1.2(cm),∴每隔10min水面高度观察值的变化量为:﹣1,﹣0.9,﹣1.1,﹣1.2.任务2:设水面高度h与流水时间t的函数解析式为h=kt+b,∵t=0 时,h=30;t=10时,h=29;∴,解得:,∴水面高度h与流水时间t的函数解析式为h=﹣0.1t+30;任务3:(1)w=(30﹣30)2+(29﹣29)2+(28﹣28.1)2+(27﹣27)2+(26﹣25.8)2=0.05.(2)设:h=kt+30,∴w=(0•k+30﹣30)2+(10k+30﹣29)2+(20k+30﹣28.1)2+(30k+30﹣27)2+(40k+30﹣25.8)2=3000(k+0.102)2+0.038,∴当k=﹣0.102时,w的最小值为0.038.任务4:将零刻度放在水位最高处,在容器外壁每隔1.02cm标记一次刻度,这样水面每降低一个刻度,就代表时间经过了10分钟.四.反比例函数与一次函数的交点问题(共1小题)5.(2023•杭州)在直角坐标系中,已知k1k2≠0,设函数y1=与函数y2=k2(x﹣2)+5的图象交于点A和点B.已知点A的横坐标是2,点B的纵坐标是﹣4.(1)求k1,k2的值.(2)过点A作y轴的垂线,过点B作x轴的垂线,在第二象限交于点C;过点A作x轴的垂线,过点B作y轴的垂线,在第四象限交于点D.求证:直线CD经过原点.【答案】(1)k1=10,k2=2;(2)答案见解析.【解答】(1)解:∵点A的横坐标是2,∴将x=2代入y2=k2(x﹣2)+5=5,∴A(2,5),∴将A(2,5)代入得:k1=10,∴,∵点B的纵坐标是﹣4,∴将y=﹣4代入得,,∴B(﹣,﹣4).∴将B(﹣,﹣4)代入y2=k2(x﹣2)+5得:,解得:k2=2.∴y2=2(x﹣2)+5=2x+1.(2)证明:如图所示,由题意可得:C(,5),D(2,﹣4),设CD所在直线的表达式为y=kx+b,∴,解得:,∴CD所在直线的表达式为y=﹣2x,∴当x=0时,y=0,∴直线CD经过原点.五.勾股定理的逆定理(共1小题)6.(2023•金华)如图,为制作角度尺,将长为10,宽为4的矩形OABC分割成4×10的小正方形网格,在该矩形边上取点P,来表示∠POA的度数,阅读以下作图过程,并回答下列问题:作法(如图)结论①在CB上取点P1,使CP1=4.∠P1OA=45°,点P1表示45°.②以O为圆心,8为半径作弧,与BC交于点P2.∠P2OA=30°,点P2表示30°.…③分别以O,P2为圆心,大于OP2长度一半的长为半径作弧,相交于点E,F,连接EF与BC相交于点P3.④以P2为圆心,OP2的长为半径作弧,与射线…CB交于点D,连结OD交AB于点P4.(1)分别求点P3,P4表示的度数.(2)用直尺和圆规在该矩形的边上作点P5,使该点表示37.5°(保留作图痕迹,不写作法).【答案】(1)点P3表示60°,点P4表示15°;(2)见解析.【解答】解:①∵四边形OABC是矩形,∴BC∥OA,∴∠OP2C=∠P2OA=30°,由作图可知,EF是OP2的中垂线,∴OP3=P3P2;∴∠P3OP2=∠P3P2O=30°,∴∠P3OA=∠P3OP2+∠P2OA=60°,∴点P3表示60°;②作图可知,P2D=P2O,∴∠P2OD=∠P2DO,∵CB∥OA,∴∠P2DO=∠DOA;∴,∴点P4表示15°;答:点P3表示60°,点P4表示15°;(2)作∠P3OP4的角平分线交BC于P5,点P5即为所求作的点,如图:∵点P3表示60°,点P4表示15°,∴∠P3OP4=60°﹣15°=45°,∴∠P3OP4+∠P4OA=22.5°+15°=37.5°,∴P5表示37.5°.六.三角形综合题(共1小题)7.(2023•金华)问题:如何设计“倍力桥”的结构?图1是搭成的“倍力桥”,纵梁a,c夹住横梁b,使得横梁不能移动,结构稳固.图2是长为l(cm),宽为3cm的横梁侧面示意图,三个凹槽都是半径为1cm的半圆,圆心分别为O1,O2,O3,O1M=O1N,O2Q=O3P=2cm,纵梁是底面半径为1cm的圆柱体,用相同规格的横梁、纵梁搭“桥”,间隙忽略不计.探究1:图3是“桥”侧面示意图,A,B为横梁与地面的交点,C,E为圆心,D,H1,H2是横梁侧面两边的交点,测得AB=32cm,点C到AB的距离为12cm,试判断四边形CDEH1的形状,并求l的值.探究2:若搭成的“桥”刚好能绕成环,其侧面示意图的内部形成一个多边形.①若有12根横梁绕成环,图4是其侧面示意图,内部形成十二边形H1H2H3…H12,求l的值;②若有n根横梁绕成的环(n为偶数,且n≥6),试用关于n的代数式表示内部形成的多边形H1H2H3…H n的周长.【答案】(1)CDEH1为菱形,l=22cm;(2)①l=(16+6)cm,②()cm.【解答】解:探究1:①四边形CDEH1是菱形,理由如下:由图1可知,CD∥EH1,ED∥CH1,∴CDEH1为平行四边形,∵桥梁的规格是相同的,∴桥梁的宽度相同,即四边形CDEH1每条边上的高相等,∵平行四边形CDEH1的面积等于边长乘这条边上的高,∴CDEH1每条边相等,∴CDEH1为菱形.②如图1,过点C作CM⊥AB于点M.由题意,得CA=CB,CM=12cm,AB=32cm,∴AM=AB=16cm,在Rt△CAM中,CA2=AM2+CM2,∴CA=20(cm),∴l=CA+2=22(cm),故答案为:l=22cm.探究2:①如图2,过点C作CN⊥H1H2于点N,由题意,得∠H1CH2=120°,CH1=CH2,CN=3cm,∴∠CH1N=30°,∴CH1=2CN=6cm,H1N=cm,又∵四边形CDEH1是菱形,∴EH1=CH1=6cm,∴l=2(2+6+3)=(16+6)cm,故答案为:l=(16+6)cm.②如图3,过点C作CN⊥H1H2于点N.由题意,形成的多边形为正n边形,∴外角∠CH1H2=,在Rt△CNH1中,H1N=(cm),又∵CH1=CH2,CN⊥H1H2,∴H1H2=2H1N=cm,∴形成的多边形的周长为()cm.故答案为:()cm.七.四边形综合题(共1小题)8.(2023•绍兴)在平行四边形ABCD中(顶点A,B,C,D按逆时针方向排列),AB=12,AD=10,∠B为锐角,且sin B=.(1)如图1,求AB边上的高CH的长;(2)P是边AB上的一动点,点C,D同时绕点P按逆时针方向旋转90°得点C',D',①如图2,当C'落在射线CA上时,求BP的长;②当△AC'D'是直角三角形时,求BP的长.【答案】(1)8;(2)①;②6 或8±.【解答】解:(1)在▱ABCD中,BC=AD=10,在Rt△BCH中,HC=BC sin B=.(2)①如图,作CH⊥BA于点H,由(1)得,BH===6,作C'Q⊥BA交BA延长线于点Q,则∠CHP=∠PQC'=90°,∴∠C'PQ+∠PC'Q=90°,∵∠C'PQ+∠CPH=90°,∴∠PC'Q=∠CPH,由旋转知PC'=PC,∴△PQC′≌△CHP(AAS).设BP=x,则PQ=CH=8,C′Q=PH=6﹣x,QA=PQ﹣PA=x﹣4.∵C′Q⊥AB,CH⊥AB,∴C′Q∥CH,∴△AQC′∽△AHC,∴,∴,∴x=,∴BP=,②由旋转得△PCD≌△PC′D′,CD=C'D'CD⊥CD'又∵AB∥CD,∴C'D'⊥AB情况一:当以C′为直角顶点时,如图.∵C'D'⊥AB,∴C′落在线段BA延长线上.∵PC⊥PC',∴PC⊥AB,由(1)知,PC=8,∴BP=6.情况二:当以A为直角顶点时,如图,设C'D'与射线BA的交点为T,作CH⊥AB于点H.∵PC⊥PC',∴∠CPH+∠TPC'=90°,∵点C,D同时绕点P按逆时针方向旋转90°得点C',D',∴∠CPD=∠C'PD'=90°,PC=PD,PC'=PD',∴∠CPD=∠C'PD',∴△PCD≌△PC'D'(SAS),∴∠PCD=∠PC'D',∵AB∥CD,∴∠BPC=∠PCD=∠PC'D',∵∠C'PT+∠CPB=90°,∴∠C'PT+∠PC'T=90°,∴∠PTC'=90°=∠CHP,∴△CPH≌△PC′T(AAS),∴C′T=PH,PT=CH=8.设C′T=PH=t,则AP=6﹣t,∴AT=PT﹣PA=2+t.∵∠C'AD'=90°,C'D'⊥AB,∴△ATD′∽△C′TA,∴,∴AT2=C'T⋅TD',∴(2+t)2=t(12﹣t),化简得t2﹣4t+2=0,解得,∴BP=BH+HP=8±,情况三:当以D'为直角顶点时,点P落在BA的延长线上,不符合题意.综上所述,BP=6 或8±.②方法二:动静互换:将C、D看成静止的,点A绕P点顺时针旋转90°,∴△APA1是等腰直角三角形,∴A点轨迹是在∠BAE=45°的射线AE上,当△A1CD为直角三角形时,(i)当∠A1CD=90°时,∴∠BP1A1=90°,∴BP1==6;(ii)当点A为直角时,以CD为直径作圆O交AE于点A2、A3.如图所示,则△AOE为等腰直角三角形,∵AO=8,∴AE=8,OF=4,∴A2F=A3F=2,AF=4,∴AA2=4+2,∴AP2=4+BP2=12﹣(4+)=8﹣,(iii)AA3=4﹣2,∴AA3=4﹣,∴BP3=12﹣(4﹣)=8+,综上所述:BP=6 或8±.八.作图—复杂作图(共1小题)9.(2023•台州)如图,四边形ABCD中,AD∥BC,∠A=∠C,BD为对角线.(1)证明:四边形ABCD是平行四边形;(2)已知AD>AB,请用无刻度的直尺和圆规作菱形BEDF,顶点E,F分别在边BC,AD上(保留作图痕迹,不要求写作法).【答案】(1)证明见解析部分;(2)作图见解析部分.【解答】(1)证明:∵AD∥BC,∴∠ADB=∠CBD,∠A=∠C,∴180°﹣(∠ADB+∠A)=180°﹣(∠CBD+∠C),即∠ABD=∠CDB,∴AB∥CD,∴四边形ABCD是平行四边形;(2)解:如图,四边形BEDF就是所求作的菱形.九.解直角三角形的应用(共1小题)10.(2023•台州)教室里的投影仪投影时,可以把投影光线CA,CB及在黑板上的投影图象高度AB抽象成如图所示的△ABC,∠BAC=90°,黑板上投影图象的高度AB=120cm,CB与AB的夹角∠B=33.7°,求AC的长.(结果精确到1cm.参考数据:sin33.7°≈0.55,cos33.7°≈0.83,tan33.7°≈0.67)【答案】AC的长约为80cm.【解答】解:在Rt△ABC中,AB=120cm,∠BAC=90°,∠B=33.7°,∴tan B=,∴AC=AB•tan33.7°≈120×0.67=80.4≈80(cm),∴AC的长约为80cm.一十.统计量的选择(共1小题)11.(2023•台州)为了改进几何教学,张老师选择A,B两班进行教学实验研究,在实验班B实施新的教学方法,在控制班A采用原来的教学方法.在实验开始前,进行一次几何能力测试(前测,总分25分),经过一段时间的教学后,再用难度、题型、总分相同的试卷进行测试(后测),得到前测和后测数据并整理成表1和表2.表1:前测数据测试分数x0<x≤55<x≤1010<x≤1515<x≤2020<x≤25控制班A289931实验班B2510821表2:后测数据测试分数x0<x≤55<x≤1010<x≤1515<x≤2020<x≤25控制班A14161262实验班B6811183(1)A,B两班的学生人数分别是多少?(2)请选择一种适当的统计量,分析比较A,B两班的后测数据.(3)通过分析前测、后测数据,请对张老师的教学实验效果进行评价.【答案】(1)50、46;(2)B班成绩好于A班成绩,理由见解答;(3)张老师新的教学方法效果较好,理由见解答.【解答】解:(1)A班的人数:28+9+9+3+1=50(人),B班的人数:25+10+8+2+1=46(人),答:A,B两班的学生人数分别是50人,46人.(2)==9.1,=≈12.9,从平均数看,B班成绩好于A班成绩.从中位数看,A班中位数在5<x≤10这一范围,B班中位数在10<x≤15这一范围,B 班成绩好于A班成绩.从百分率看,A班15分以上的人数占16%,B班15分以上的人数约占46%,B班成绩好于A班成绩.(3)前测结果中:,.4,从平均数看,两班成绩较前测都有上升,但实验班提升得更明显,因此张老师新的教学方法效果较好.从中位数看,两班前测中位数均在0<x≤5这一范围,后测A班中位数在5<x≤10这一范围,B班中位数在10<x≤15这一范围,两班成绩较前测都有上升,但实验班提升得更明显,因此张老师新的教学方法效果较好.从百分率看,A班15分上的人数增加了100%,B班15分以上的人数增加了600%,两班成绩较前测都有上升,但实验班提升得更明显,因此张老师新的教学方法效果较好.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙江省2023年中考数学真题分类汇编 代数式一、选择题1.(2023·绍兴)下列计算正确的是( )A .a 6÷a 2=a 3B .(−a 2)5=−aC .(a +1)(a −1)=a 2−1D .(a +1)2=a 2+12.(2023·台州)下列运算正确的是( ).A .2(a −1)=2a −2B .(a +b)2=a 2+b 2C .3a +2a =5a 2D .(ab)2=ab 23.(2023·宁波)下列计算正确的是( )A .x 2+x =x 3B .x 6÷x 3=x 2C .(x 3)4=x 7D .x 3⋅x 4=x 74.(2023·丽水)计算a 2+2a 2的正确结果是( )A .2a 2B .2a 4C .3a 2D .3a 45.(2023·温州)化简a 4⋅(−a)3的结果是( )A .a12B .−a12C .a2D .−a76.(2023·杭州)分解因式:4a 2−1=( )A .(2a −1)(2a +1)B .(a −2)(a +2)C .(a −4)(a +1)D .(4a −1)(a +1)7.(2023·金华)要使√x −2有意义,则x 的值可以是( )A .0B .-1C .-2D .2二、填空题8.(2023·金华)因式分解:x 2+x = . 9.(2023·温州)分解因式:2a 2−2a = 。

10.(2023·丽水)分解因式:x 2-9= ,11.(2023·宁波)要使分式3x−2有意义,x 的取值应满足 .12.(2023·嘉兴)一个多项式,把它因式分解后有一个因式为(x +1),请你写出一个符合条件的多项式: 。

三、计算题13.(2023·温州)计算:(1)|−1|+√−83+(13)−2−(−4).(2)a 2+2a+1−31+a.14.(2023·宁波)计算:(1)(1+√83)0+|−2|−√9. (2)(a +3)(a −3)+a(1−a).15.(2023·金华)已知x =13,求(2x +1)(2x −1)+x (3−4x )的值.16.(2023·嘉兴)(1)解不等式:2x −3>x +1.(2)已知a 2+3ab =5,求(a +b)(a +2b)−2b 2的值.四、综合题17.(2023·嘉兴)观察下面的等式:32−12=8×1,52−32=8×2,72−52=8×3,92−72=8×4,⋯(1)写出192−172的结果.(2)按上面的规律归纳出一个一般的结论(用含n 的等式表示,n 为正整数) (3)请运用有关知识,推理说明这个结论是正确的.答案解析部分1.【答案】C【解析】【解答】解:A、a6÷a2=a4,故此选项计算错误,不符合题意;B、(-a2)5=-a10,故此选项计算错误,不符合题意;C、(a+1)(a-1)=a2-1,故此选项计算正确,符合题意;D、(a+1)2=a2+2a+1,故此选项计算错误,不符合题意.故答案为:C.【分析】由同底数幂的除法,底数不变,指数相减,进行计算可判断A选项;由幂的乘方,底数不变,指数相乘,可判断B选项;由平方差差公式,两个数的和与这两个数的差的积,等于这两个数的平方差,可判断C选项;由完全平方公式的展开式是一个三项式可判断D选项.2.【答案】A【解析】【解答】解:A、2(a-1)=2a-2,故此选项计算正确,符合题意;B、(a+b)2=a2+2ab+b2,故此选项计算错误,不符合题意;C、3a+2a=5a,故此选项计算错误,不符合题意;D、(ab)2=a2b2,故此选项计算错误,不符合题意.故答案为:A.【分析】根据去括号法则(括号前面是负号,去掉括号和负号,括号里的每一项都要变号;括号前面是正号,去掉括号和正号,括号里的每一项都不变号,括号前的数要与括号里的每一项都要相乘),即可判断A选项;由完全平方公式的展开式是一个三项式可判断B选项;整式加法的实质就是合并同类项,所谓同类项就是所含字母相同,而且相同字母的指数也分别相同的项,同类项与字母的顺序没有关系,与系数也没有关系,合并同类项的时候,只需要将系数相加减,字母和字母的指数不变,但不是同类项的一定就不能合并,从而即可判断C选项;由积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘即可判断D选项.3.【答案】D【解析】【解答】解:A、x2+x不能合并,故A不符合题意;B、x6÷x3=x3,故B不符合题意;C、(x3)4=x12,故C不符合题意;D、x3·x4=x7,故D符合题意;故答案为:D【分析】只有同类项才能合并,可对A作出判断;利用同底数幂相除,底数不变,指数相减,可对B作出判断;利用幂的乘方,底数不变,指数相乘,可对C作出判断;利用同底数幂相乘,底数不变,指数相加,可对D作出判断.4.【答案】C【解析】【解答】解:a2+2a2=3a2,故答案为:C【分析】利用合并同类项的法则:把同类项的系数相加,字母和字母的指数不变,据此可求解. 5.【答案】D【解析】【解答】解:a4·(-a)3=a4·(-a3)=-a7.故答案为:-a7.【分析】直接根据同底数幂的乘法法则(同底数幂相乘,底数不变,指数相加)计算即可. 6.【答案】A【解析】【解答】解:4a2-1=(2a)2-1=(2a-1)(2a+1).故答案为:A.【分析】直接利用平方差公式分解即可.7.【答案】D【解析】【解答】解:由题意得x-2≥0,解得x≥2,所以A、B、C三个选项都不符合题意,只有选项D符合题意.故答案为:D.【分析】根据二次根式的被开方数不能为负数列出不等式,求解得出x的取值范围,从而即可一一判断得出答案.8.【答案】x(x+1)【解析】【解答】解:x2+x=x(x+1).故答案为:x(x+1).【分析】直接利用提取公因式法分解因式即可.9.【答案】2a(a−1)【解析】【解答】解:2a2-2a=2a(a-1).故答案为:2a(a-1).【分析】直接利用提取公因式法分解分解因式即可.10.【答案】(x+3)(x-3)【解析】【解答】解:x 2-9=(x+3)(x-3)故答案为:(x+3)(x-3)【分析】观察此多项式的特点:有两项,两项符号相反,都能写成平方形式,因此利用平方差公式分解因式.11.【答案】x ≠2【解析】【解答】解:∵ 分式3x−2有意义,∴x-2≠0, 解之:x≠2. 故答案为:x≠2【分析】利用分式有意义,则分母不等于0,可得到关于x 的不等式,然后求出不等式的解集.12.【答案】x 2−1(答案不唯一)【解析】【解答】解:令另一个因式为(x-1),则该多项式为(x+1)(x-1)=x 2-1.故答案为:x 2-1.(答案不唯一)【分析】令另一个因式为(x-1),则该多项式为(x+1)(x-1),然后利用平方差公式进行计算.13.【答案】(1)解:原式=1−2+9+4=12;(2)解:原式=a 2+2−3a+1=a 2−1a+1=(a+1)(a−1)a+1=a −1.【解析】【分析】(1)先根据绝对值性质、立方根的的定义、负整数指数幂的性质及去括号法则分别化简,再计算有理数的加减法运算即可;(2)根据同分母分式的减法,分母不变,分子相减进行计算,进而将分子利用平方差公式分解因式后约分化简即可.14.【答案】(1)解:(1+√83)0+|−2|−√9=1+2−3=0;(2)解:(a +3)(a −3)+a(1−a)=a 2−9+a −a 2=a −9.【解析】【分析】(1)先算乘方和开方运算,同时化简绝对值,再利用有理数的加减法法则进行计算.(2)利用多项式乘以多项式的法则和多项式除以单项式的法则,先去括号,再合并同类项.15.【答案】解:原式=4x 2−1+3x −4x 2=−1+3x.当x=13时,原式=−1+3×13=0.【解析】【分析】先根据平方差公式及单项式乘以多项式的法则分别计算,再合并同类项化简,最后将x的值代入化简结果按有理数的加减乘除混合运算的运算顺序计算即可.16.【答案】(1)解:移项,得2x−x>1+3,解得,x>4.(2)解:原式=a2+2ab+ab+2b2−2b2,=a2+3ab,=5.【解析】【分析】(1)根据移项、合并同类项的步骤进行求解;(2)根据多项式与多项式的乘法法则以及合并同类项法则即可对待求式进行化简,然后将已知条件代入进行计算.17.【答案】(1)8×9(2)(2n+1)2−(2n−1)2=8n(3)(2n+1)2−(2n−1)2=(2n+1+2n−1)(2n+1−2n+1)=4n×2=8n。

∴结论正确.【解析】【解答】解:(1)192−172=8×9;(2)(2n+1)2−(2n−1)2=8n【分析】(1)观察可得192-172的结果;(2)观察可得等号右边的底数可表示为2n+1、2n-1,右边的式子可表示为8n,据此解答;(3)根据平方差公式进行证明.试题分析部分1、试卷总体分布分析2、试卷题量分布分析3、试卷难度结构分析4、试卷知识点分析。

相关文档
最新文档