晶体二极管

合集下载

晶体二极管实验报告

晶体二极管实验报告

晶体二极管实验报告一、实验目的:1.了解晶体二极管的基本结构和原理;2.探究晶体二极管在电路中的应用。

二、实验器材及材料:1.晶体二极管2.直流电源3.万用表4.原型板5.连接线6.电阻7.LED灯(可选)三、实验原理:晶体二极管是一种光、电、热效应非常敏感的电子元件,具有一个PN结构。

当沿着P区施加电压时,会产生电流;当沿着N区施加电压时,PN结就不能导通,电流流过程断开。

晶体二极管具有单向导电性,只能让电流从P区流向N区。

四、实验步骤:1.实验前应将直流电源的电压调整到适宜的值,以保证实验安全;2.将实验所需的器材及材料准备齐全,并按照电路图的要求进行连接;3.将晶体二极管正确地插入原型板中;4.将直流电源接通,调节合适的电压值;5.使用万用表进行电流和电压的测量;6.反复改变直流电压的值,记录下电流对电压的关系曲线;7.做好相关实验数据的整理和总结。

五、实验数据及处理:1.测量实验电路中的电流和电压数据,并记录在实验数据表中;2.绘制电流对电压的关系曲线图。

六、实验结果分析:根据实验中测得的电流对电压的关系曲线,我们可以得出晶体二极管在不同电压下的导通和截止状态。

当施加的电压超过晶体二极管的正向电压时,将发生正向偏置,二极管将导通;而当施加的电压低于正向电压时,发生反向偏置,二极管将截止。

七、实验心得:通过本次实验,我进一步掌握了晶体二极管的工作原理和特性,了解了晶体二极管在电路中的应用。

此外,通过实验数据的采集和处理,我也加深了对实验数据的分析和总结能力。

总之,本次实验对加深我对电子元件的认识和理解起到了一定的帮助。

晶体二极管的作用

晶体二极管的作用

晶体二极管的作用晶体二极管(Diode)是一种半导体器件,它有着极其特殊的电学性质,被广泛应用于各种电子电路中。

它由一个P型半导体区和一个N型半导体区组成,形成一个PN结。

正向偏置时,它能够导电,反向偏置时则不能导电。

晶体二极管可以起到限流、整流、削波、稳压等重要作用。

1.整流作用最常见的就是晶体二极管的整流作用。

在交流电源的电路中,只需将一个晶体二极管接在负载电路的正向,就可以将交流信号变成单向的直流信号,这种装置就是晶体二极管整流电路。

整流电路适用于安装需要单向电流供应的场合,如通信和发射功率调整,无源放大器、送放控制设备中,它常常与电容、电感等器件组成滤波电路,使输出直流电压更加平稳。

2.削波作用当同时加以交流电压和正向直流电压时,晶体二极管呈现出的电流形象是一个波形。

因波形只能转化为单向的直流流动,因而波形的负半周期无法通过二极管。

这时,只是将波形最高处的峰值电压所对应的电路电压传递下来。

这是晶体二极管起到的削波作用。

削波可以使用单个二极管或者多个二极管连接使用。

二极管削波电路能够使输入变成干净的脉冲或方波,被广泛应用于瞬态脉冲信号的接收和处理,如雷达灌频、电视机图像扫描等。

在电路中,当需要限制电流时,就可以使用晶体二极管起到限流作用。

晶体二极管的正向电压方向流电流,反向电压方向不流电流,因此可以通过二极管来控制流经负载的电流。

在使用限流电路时,需要对二极管的最大电压和功率进行规定,这样可以使二极管正常工作,同时不会损坏二极管。

4.稳压作用晶体二极管具有一定的稳压特性,可以使用稳压二极管在电路中实现电压稳定的目的。

稳压二极管具有在一定范围内几乎恒定的反向电压导通能力。

当电路的输入电压变化时,稳压二极管能够自动调节输出电压以保持输出电压恒定。

稳压二极管被广泛应用于像色相信号放大器、音频信号放大器、直流电源电路等电子电路中。

总之,晶体二极管在电子电路中有着非常广泛的应用,可以起到限流、整流、削波、稳压等重要作用。

晶体二极管的特点

晶体二极管的特点

晶体二极管的特点
1. 晶体二极管单向导电性可强啦!就好比单方向的通道,电流只能从这头往那头流,反方向就不行嘞!比如说在整流电路里,它就能让电流乖乖地只朝着需要的方向跑,厉害吧!
2. 它的伏安特性也很有意思呀!电流和电压之间有着特别的关系,就像人和影子一样,电压一变,电流也会跟着变,你说神奇不神奇!像在一些电子设备里,就是靠着这个特性来实现稳定工作的哟。

3. 晶体二极管的开关特性那叫一个迅速!简直就像闪电一样快!在数字电路中,它能快速地开启和关闭,这速度,简直了!比我眨眼还快呢!
4. 还有呢,它的稳定性那可是杠杠的呀!不管环境怎么变化,它就在那稳稳地工作着,就如同坚定的卫士一样!比如一些恶劣环境下的设备,靠的就是它的稳定呀。

5. 哎呀呀,晶体二极管的耐高温性能也不错哦!就像能在炎热沙漠中顽强生存的仙人掌一样,高温也不怕,照样好好工作嘞!在一些高温设备里就能看到它的身影呢。

6. 晶体二极管体积小但能量大呀!别看它小小的,作用可大着呢,就好像小身材大能量的大力士!许多小巧的电子玩意儿都离不开它哟。

7. 它的成本还低呢,这不就是物廉价美嘛!简直就是我们的好朋友呀!广泛应用在各种地方,真的太实用啦!
8. 晶体二极管真的是电子世界的宝贝呀!有了它,电子设备才能更好地工作,我们的生活也变得更加丰富多彩啦!它真的太重要啦,不可替代呀!。

二极管又称晶体二极管

二极管又称晶体二极管

二极管又称晶体二极管,简称二极管(diode);它只往一个方向传送电流的电子零件。

它是一种具有1个零件号接合的2个端子的器件,具有按照外加电压的方向,使电流流动或不流动的性质。

晶体二极管为一个由p型半导体和n型半导体形成的p-n结,在其界面处两侧形成空间电荷层,并建有自建电场。

当不存在外加电压时,由于p-n 结两边载流子浓度差引起的扩散电流和自建电场引起的漂移电流相等而处于电平衡状态。

pH复合电极的概述PH测量中使用的电极又称为原电池。

原电池是一个系统,它的作用是使化学能量转成为电能。

此电池的电压被称为电动势。

此电动势由二个半电池构成。

其中一个半电池称作测量电池,它的电位与特定的离子活度有关;另一个半电池为参比半电池,通常称作参比电极,它一般是与测量溶液相通,并且与测量仪表相连。

高温防护套管(High temperature protective casing),别名:高温电缆套管,耐热套管,耐高温套管,高温防护套管是以高膨松性玻璃纤维之套管所制成,并覆以厚实的氧化铁红硅胶,能阻挡熔铁喷溅,且不受高温和火焰所损坏,具有先进的三层组合:耐磨——阻燃层,保温——隔水隔火层,耐火层,使用中即使一二层被烧穿,第三层也能进行有效的防护,为下一步的维修赢得时间,高温防护套管产品色泽鲜艳,且拥有绝佳的延展系数,这些性质使其适用于保护恶劣环境下的软管、缆线和管.熔断器是最简单的保护电器,它用来保护电气设备免受过载和短路电流的损害;按安装条件及用途选择不同类型高压熔断器如屋外跌落式、屋内式,对于一些专用设备的高压熔断器应选专用系列;我们常说的保险丝就是熔断器类。

千兆光纤收发器(又名光电转换器)是一种快速以太网,其数据传输速率达1Gbps,仍采用CSMA/CD的访问控制机制并与现有的以太网兼容,在布线系统的支持下,可以使原来的快速以太网平滑升级并能充分保护用户原来的投资。

目前,千兆网技术已成为新建网络和改造的首选技术,由此对综合布线系统的性能要求也提高。

晶体二极管的知识点总结

晶体二极管的知识点总结

晶体二极管的知识点总结一、晶体二极管的结构晶体二极管是由多个不同类型的半导体材料制成的。

其中,P型半导体材料和N型半导体材料被交替地组合在一起,形成PN结。

当PN结受到外部电压作用时,它就能够控制电流的流动。

晶体二极管通常有三个导电端:阳极(A)、阴极(K)和门极(G)。

阳极和阴极是用来控制电流流动的,而门极是用来控制PN结的导通和截止。

二、晶体二极管的工作原理当晶体二极管处于正向偏置状态时,即阳极连接到P型半导体材料,阴极连接到N型半导体材料时,PN结上的势垒就会被外部电压突破,从而使电流得以流动。

这时,晶体二极管表现出很低的电阻,从而能够导通电流。

相反,当晶体二极管处于反向偏置状态时,即阳极连接到N型半导体材料,阴极连接到P 型半导体材料时,PN结上的势垒就会加大,从而使电流无法流动。

这时,晶体二极管表现出非常高的电阻,从而能够截止电流。

三、晶体二极管的特性1. 峰值反向电压(PRV):晶体二极管能够承受的最大反向电压。

超过这个电压值,晶体二极管就会击穿,从而导致PN结上的势垒被突破,电流得以流动。

2. 正向电压降(VF):当晶体二极管导通时,阳极和阴极间的电压降。

3. 反向饱和电流(IRSM):当晶体二极管反向偏置时,PN结上的反向电流。

4. 导通电流(ITM):当晶体二极管处于正向偏置状态时,PN结能够承受的最大电流。

四、晶体二极管的应用由于其快速开关速度和可靠的性能,晶体二极管在很多领域有着广泛的应用。

它们常常用于电源供应、电动机控制和光电子装置等。

例如,交流电源中的整流电路就是需要使用晶体二极管的。

此外,晶体二极管还被用于电动车的控制系统中,以及用于光电二次发射表面(PMT)等光电子设备。

总之,晶体二极管是一种重要的半导体器件,它能够控制电流的流动,并且有着广泛的应用领域。

通过深入了解其结构、工作原理和特性,我们可以更好地应用晶体二极管,从而更好地服务于社会的发展。

晶体二极管概念

晶体二极管概念

晶体二极管概念什么是晶体二极管?晶体二极管(Diode)是一种半导体器件,由P型半导体和N型半导体组成。

它具有正向导通和反向截止的特性,是电子学中最基本的元件之一。

晶体二极管的主要功能是将电流限制在一个方向上,从而实现电流的整流和开关控制。

晶体二极管的结构晶体二极管的结构由P型半导体和N型半导体的结合构成。

P型半导体具有正电荷载流子(空穴),而N型半导体具有负电荷载流子(电子)。

当P型半导体和N型半导体连接在一起时,形成了PN结。

PN结上的电子会从N区域向P区域扩散,而空穴则从P区域向N区域扩散。

这种扩散会导致PN结上形成一个电势垒,阻止了进一步的扩散。

晶体二极管的工作原理晶体二极管的工作原理可以分为正向偏置和反向偏置两种情况。

正向偏置当晶体二极管的正端连接到正电压,负端连接到负电压时,即为正向偏置。

在这种情况下,电势垒会变窄,使得电子和空穴能够克服电势垒,通过PN结流动。

这时晶体二极管呈现出低电阻状态,称为正向导通。

正向偏置时,电流从P区域注入到N区域,形成电流流动的闭合回路。

反向偏置当晶体二极管的正端连接到负电压,负端连接到正电压时,即为反向偏置。

在这种情况下,电势垒会变宽,阻止电子和空穴通过PN结。

这时晶体二极管呈现出高电阻状态,称为反向截止。

反向偏置时,只有极小的反向漏电流通过晶体二极管。

晶体二极管的应用晶体二极管由于其独特的电流特性,广泛应用于各种电子设备中。

整流器晶体二极管的最基本应用是作为整流器,将交流电转换为直流电。

在正向偏置的情况下,晶体二极管只允许电流在一个方向上流动,实现了电流的单向传输。

信号检测晶体二极管还可以用作信号检测器。

当信号电压超过晶体二极管的正向电压阈值时,晶体二极管开始导通,将信号提取出来。

光电二极管晶体二极管的一种特殊类型是光电二极管。

光电二极管可以将光能转换为电能,常用于光电探测器和光通信中。

晶体二极管的特性晶体二极管具有以下特性:1.正向电压阈值:晶体二极管在正向偏置时需要一定的电压才能开始导通。

晶体二极管的归纳总结

晶体二极管的归纳总结晶体二极管(Diode)是一种具有非线性电阻特性的电子元器件,广泛应用于电子电路中。

它具有正向导通和反向截止的特性,被广泛用作整流器、开关以及信号调制等电路的基本元件。

本文将对晶体二极管的工作原理、分类、特性以及应用进行归纳总结。

一、晶体二极管的工作原理晶体二极管是一种半导体器件,由P型和N型半导体材料组成。

在P-N结中,P型半导体的掺杂原子与N型半导体的掺杂原子形成势垒,使得P区电子豁免区域中电子浓度较高,N区电子豁免区域中空穴浓度较高。

当外加电压使P区电势相对于N区升高,势垒减小,使得P 区的电子跨越势垒进入N区,形成正向电流。

当外加电压反向时,势垒增大,使得P-N结处形成耗尽区,电流几乎为零。

二、晶体二极管的分类根据材料、结构和用途的不同,晶体二极管可以分为多种类型。

常见的晶体二极管包括硅二极管、锗二极管、肖特基二极管、LED(发光二极管)等。

1. 硅二极管硅二极管是最常见和广泛使用的一种二极管。

它具有较高的工作温度、稳定性和可靠性,被广泛应用于各种电子电路中。

2. 锗二极管锗二极管是晶体二极管的一种,其主要特点是正向导通电压较低,适用于低电压应用电路。

3. 肖特基二极管肖特基二极管是一种利用PN结形成的金属与N型半导体之间的势垒来控制电流流动的二极管。

与普通PN结二极管相比,肖特基二极管具有较低的正向导通电压和快速响应速度。

4. LED(发光二极管)LED是一种能够将电能直接转换为光能的二极管。

它具有高效率、长寿命、低功耗等特点,被广泛应用于指示灯、背光源、室内外照明等领域。

三、晶体二极管的特性晶体二极管具有以下主要特性:1. 非线性特性晶体二极管在正向电压作用下具有较低的电阻,呈现出导通状态,而在反向电压作用下电阻很大,呈现出截止状态,具有明显的非线性特性。

2. 稳压性能晶体二极管具有稳压能力,能够在一定的工作电压范围内稳定输出,被广泛应用于稳压电源电路中。

3. 快速开关特性晶体二极管具有快速开关特性,可以迅速从导通状态切换到截止状态,被广泛应用于高频开关电路中。

晶体二极管的介绍

晶体二极管的介绍晶体二极管又称为二极管或晶导二极管,是一种最简单、最常用的半导体元件之一。

晶体二极管是一种具有非线性特性的电子器件,在电子学和电路领域中发挥着重要作用。

一、晶体二极管的结构晶体二极管的结构由两个半导体材料组成,通常为P型半导体和N 型半导体。

在P-N结区域,存在着P型半导体中的多余的空穴和N型半导体中的多余电子。

当形成P-N结后,多余的电子和空穴会发生复合,形成带电离子。

在这个过程中,形成了一个耗尽区,也叫“空隙区”。

二、晶体二极管的原理晶体二极管的工作原理基于P-N结耗尽区的特性,主要包括正向偏置和反向偏置两种情况。

1.正向偏置当正向电压作用于晶体二极管时,P型半导体端的空穴会向N型半导体端移动,而N型半导体端的电子也会向P型半导体端移动。

这样,耗尽区中的带电离子会变少,使得耗尽区变窄,从而减小了阻挡电压。

当正向电压超过阻挡电压时,晶体二极管会处于导通状态,电流能流过。

2.反向偏置当反向电压作用于晶体二极管时,P型半导体端为负电压,N型半导体端为正电压。

这样,P-N结的耗尽区会变宽,形成一个高阻抗区,阻挡电流流过。

如果反向电压过大,会使得结区耗尽区击穿,形成电流突增,此时二极管呈现放大效应。

三、晶体二极管的特性晶体二极管具有许多特性,如整流特性、导通压降、击穿电压等。

1.整流特性晶体二极管具有只允许电流沿一个方向通过的特性,即正向导通,反向截止。

这使得晶体二极管在电路中起到整流作用,将交流信号转换为直流信号。

2.导通压降当晶体二极管处于正向导通时,会产生一定的入侵(正向电流)和热效应(正向电压)。

这是由于耗尽区的宽度和载流子浓度变化导致的。

晶体二极管的导通压降一般在0.6V-0.7V左右。

3.反向截止特性在正向偏置下,晶体二极管会导通,具有一定的电流流过。

但在反向偏置下,晶体二极管不会导通,只有极少量微弱电流通过,具有很高的电阻。

四、晶体二极管的应用晶体二极管由于其简单、可靠、低成本的特点,被广泛应用于各种电子设备和电路中。

晶体二极管的分类

晶体二极管的分类一、根据构造分类半导体二极管主要是依靠PN结而工作的。

与PN结不可分割的点接触型和肖特基型,也被列入一般的二极管的范围内。

包括这两种型号在内,根据PN结构造面的特点,把晶体二极管分类如下:1、点接触型二极管点接触型二极管是在锗或硅材料的单晶片上压触一根金属针后,再通过电流法而形成的。

因此,其PN结的静电容量小,适用于高频电路。

但是,与面结型相比较,点接触型二极管正向特性和反向特性都差,因此,不能使用于大电流和整流。

因为构造简单,所以价格便宜。

对于小信号的检波、整流、调制、混频和限幅等一般用途而言,它是应用范围较广的类型。

2、键型二极管键型二极管是在锗或硅的单晶片上熔接或银的细丝而形成的。

其特性介于点接触型二极管和合金型二极管之间。

与点接触型相比较,虽然键型二极管的PN结电容量稍有增加,但正向特性特别优良。

多作开关用,有时也被应用于检波和电源整流(不大于50mA)。

在键型二极管中,熔接金丝的二极管有时被称金键型,熔接银丝的二极管有时被称为银键型。

3、合金型二极管在N型锗或硅的单晶片上,通过合金铟、铝等金属的方法制作PN结而形成的。

正向电压降小,适于大电流整流。

因其PN结反向时静电容量大,所以不适于高频检波和高频整流。

4、扩散型二极管在高温的P型杂质气体中,加热N型锗或硅的单晶片,使单晶片表面的一部变成P型,以此法PN结。

因PN 结正向电压降小,适用于大电流整流。

最近,使用大电流整流器的主流已由硅合金型转移到硅扩散型。

5、台面型二极管PN结的制作方法虽然与扩散型相同,但是,只保留PN结及其必要的部分,把不必要的部分用药品腐蚀掉。

其剩余的部分便呈现出台面形,因而得名。

初期生产的台面型,是对半导体材料使用扩散法而制成的。

因此,又把这种台面型称为扩散台面型。

对于这一类型来说,似乎大电流整流用的产品型号很少,而小电流开关用的产品型号却很多。

6、平面型二极管在半导体单晶片(主要地是N型硅单晶片)上,扩散P型杂质,利用硅片表面氧化膜的屏蔽作用,在N型硅单晶片上仅选择性地扩散一部分而形成的PN结。

晶体二极管概念

晶体二极管概念
晶体二极管是一种半导体电子器件,它具有单向电导性和整流功能。

它有两个引脚,分别为正极和负极。

正极连接带有正电压的电源时能够导通电流,而连接带有负电压的电源时则不能导通电流。

晶体二极管的主要优点是其相对简单的结构和可靠性。

晶体二极管是由 P 型半导体和 N 型半导体组成的。

在制造过程中,将普通硅材料加入掺杂剂,使其中一部分成为 P 型半导体,另一部分成为 N 型半导体。

当 P 型半导体和 N 型半导体接触时,会形成一个 PN 结。

当 PN 结正极连接正电压时,P 型半导体的电子会流向 N 型半导体,形成电流。

而当PN结正极连接负电压时,N型半导体高浓度的杂质离子会吸收并抵消 P型半导体中的电子,从而阻止电流的流动。

晶体二极管的主要应用是整流。

在直流电源中,晶体二极管可以将正半周期的电流转化为负电压,而将负半周期的电流挡住不传递。

由于晶体二极管的阻抗很小,它可以承受很高的电流。

因此,它也可以用作保护电路中的限流器。

除了整流之外,晶体二极管还可以用于LED、激光二极管、太阳能电池、电子闸和变压器等器件中。

在LED和激光二极管中,晶体二极管将电能转换为光能,从而产生光谱。

在太阳能电池中,晶体二极管可
以将太阳能转换为电能,从而提供电力。

在变压器中,晶体二极管可以作为开关使用,控制电流的流动方向。

总之,晶体二极管在电子领域中具有广泛的应用前景。

它不仅可以用于整流、保护电路、LED、激光二极管、太阳能电池等器件中,还可以作为开关来控制电路中的电流。

随着半导体技术的发展,晶体二极管的应用将会越来越广泛。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

晶体二极管的分类一、根据构造分类半导体二极管主要是依靠PN结而工作的。

与PN结不可分割的点接触型和肖特基型,也被列入一般的二极管的范围内。

包括这两种型号在内,根据PN结构造面的特点,把晶体二极管分类如下:1、点接触型二极管点接触型二极管是在锗或硅材料的单晶片上压触一根金属针后,再通过电流法而形成的。

因此,其PN 结的静电容量小,适用于高频电路。

但是,与面结型相比较,点接触型二极管正向特性和反向特性都差,因此,不能使用于大电流和整流。

因为构造简单,所以价格便宜。

对于小信号的检波、整流、调制、混频和限幅等一般用途而言,它是应用范围较广的类型。

2、键型二极管键型二极管是在锗或硅的单晶片上熔接或银的细丝而形成的。

其特性介于点接触型二极管和合金型二极管之间。

与点接触型相比较,虽然键型二极管的PN结电容量稍有增加,但正向特性特别优良。

多作开关用,有时也被应用于检波和电源整流(不大于50mA)。

在键型二极管中,熔接金丝的二极管有时被称金键型,熔接银丝的二极管有时被称为银键型。

3、合金型二极管在N型锗或硅的单晶片上,通过合金铟、铝等金属的方法制作PN结而形成的。

正向电压降小,适于大电流整流。

因其PN结反向时静电容量大,所以不适于高频检波和高频整流。

4、扩散型二极管在高温的P型杂质气体中,加热N型锗或硅的单晶片,使单晶片表面的一部变成P型,以此法PN结。

因PN结正向电压降小,适用于大电流整流。

最近,使用大电流整流器的主流已由硅合金型转移到硅扩散型。

5、台面型二极管PN结的制作方法虽然与扩散型相同,但是,只保留PN结及其必要的部分,把不必要的部分用药品腐蚀掉。

其剩余的部分便呈现出台面形,因而得名。

初期生产的台面型,是对半导体材料使用扩散法而制成的。

因此,又把这种台面型称为扩散台面型。

对于这一类型来说,似乎大电流整流用的产品型号很少,而小电流开关用的产品型号却很多。

6、平面型二极管在半导体单晶片(主要地是N型硅单晶片)上,扩散P型杂质,利用硅片表面氧化膜的屏蔽作用,在N型硅单晶片上仅选择性地扩散一部分而形成的PN结。

因此,不需要为调整PN结面积的药品腐蚀作用。

由于半导体表面被制作得平整,故而得名。

并且,PN结合的表面,因被氧化膜覆盖,所以公认为是稳定性好和寿命长的类型。

最初,对于被使用的半导体材料是采用外延法形成的,故又把平面型称为外延平面型。

对平面型二极管而言,似乎使用于大电流整流用的型号很少,而作小电流开关用的型号则很多。

7、合金扩散型二极管它是合金型的一种。

合金材料是容易被扩散的材料。

把难以制作的材料通过巧妙地掺配杂质,就能与合金一起过扩散,以便在已经形成的PN结中获得杂质的恰当的浓度分布。

此法适用于制造高灵敏度的变容二极管。

8、外延型二极管用外延面长的过程制造PN结而形成的二极管。

制造时需要非常高超的技术。

因能随意地控制杂质的不同浓度的分布,故适宜于制造高灵敏度的变容二极管。

9、肖特基二极管基本原理是:在金属(例如铅)和半导体(N型硅片)的接触面上,用已形成的肖特基来阻挡反向电压。

肖特基与PN结的整流作用原理有根本性的差异。

其耐压程度只有40V左右。

其特长是:开关速度非常快:反向恢复时间trr特别地短。

因此,能制作开关二极和低压大电流整流二极管。

二、根据用途分类1、检波用二极管就原理而言,从输入信号中取出调制信号是检波,以整流电流的大小(100mA)作为界线通常把输出电流小于100mA的叫检波。

锗材料点接触型、工作频率可达400MHz,正向压降小,结电容小,检波效率高,频率特性好,为2AP型。

类似点触型那样检波用的二极管,除用于检波外,还能够用于限幅、削波、调制、混频、开关等电路。

也有为调频检波专用的特性一致性好的两只二极管组合件。

2、整流用二极管就原理而言,从输入交流中得到输出的直流是整流。

以整流电流的大小(100mA)作为界线通常把输出电流大于100mA的叫整流。

面结型,工作频率小于KHz,最高反向电压从25伏至3000伏分A~X 共22档。

分类如下:①硅半导体整流二极管2CZ型、②硅桥式整流器QL型、③用于电视机高压硅堆工作频率近100KHz的2CLG型。

3、限幅用二极管大多数二极管能作为限幅使用。

也有象保护仪表用和高频齐纳管那样的专用限幅二极管。

为了使这些二极管具有特别强的限制尖锐振幅的作用,通常使用硅材料制造的二极管。

也有这样的组件出售:依据限制电压需要,把若干个必要的整流二极管串联起来形成一个整体。

4、调制用二极管通常指的是环形调制专用的二极管。

就是正向特性一致性好的四个二极管的组合件。

即使其它变容二极管也有调制用途,但它们通常是直接作为调频用。

5、混频用二极管使用二极管混频方式时,在500~10,000Hz的频率范围内,多采用肖特基型和点接触型二极管。

6、放大用二极管用二极管放大,大致有依靠隧道二极管和体效应二极管那样的负阻性器件的放大,以及用变容二极管的参量放大。

因此,放大用二极管通常是指隧道二极管、体效应二极管和变容二极管。

7、开关用二极管有在小电流下(10mA程度)使用的逻辑运算和在数百毫安下使用的磁芯激励用开关二极管。

小电流的开关二极管通常有点接触型和键型等二极管,也有在高温下还可能工作的硅扩散型、台面型和平面型二极管。

开关二极管的特长是开关速度快。

而肖特基型二极管的开关时间特短,因而是理想的开关二极管。

2AK型点接触为中速开关电路用;2CK型平面接触为高速开关电路用;用于开关、限幅、钳位或检波等电路;肖特基(SBD)硅大电流开关,正向压降小,速度快、效率高。

8、变容二极管用于自动频率控制(AFC)和调谐用的小功率二极管称变容二极管。

日本厂商方面也有其它许多叫法。

通过施加反向电压,使其PN结的静电容量发生变化。

因此,被使用于自动频率控制、扫描振荡、调频和调谐等用途。

通常,虽然是采用硅的扩散型二极管,但是也可采用合金扩散型、外延结合型、双重扩散型等特殊制作的二极管,因为这些二极管对于电压而言,其静电容量的变化率特别大。

结电容随反向电压VR变化,取代可变电容,用作调谐回路、振荡电路、锁相环路,常用于电视机高频头的频道转换和调谐电路,多以硅材料制作。

9、频率倍增用二极管对二极管的频率倍增作用而言,有依靠变容二极管的频率倍增和依靠阶跃(即急变)二极管的频率倍增。

频率倍增用的变容二极管称为可变电抗器,可变电抗器虽然和自动频率控制用的变容二极管的工作原理相同,但电抗器的构造却能承受大功率。

阶跃二极管又被称为阶跃恢复二极管,从导通切换到关闭时的反向恢复时间trr短,因此,其特长是急速地变成关闭的转移时间显著地短。

如果对阶跃二极管施加正弦波,那么,因tt(转移时间)短,所以输出波形急骤地被夹断,故能产生很多高频谐波。

10、稳压二极管是代替稳压电子二极管的产品。

被制作成为硅的扩散型或合金型。

是反向击穿特性曲线急骤变化的二极管。

作为控制电压和标准电压使用而制作的。

二极管工作时的端电压(又称齐纳电压)从3V左右到150V,按每隔10%,能划分成许多等级。

在功率方面,也有从200mW至100W以上的产品。

工作在反向击穿状态,硅材料制作,动态电阻RZ很小,一般为2CW型;将两个互补二极管反向串接以减少温度系数则为2DW型。

11、PIN型二极管(PIN Diode)这是在P区和N区之间夹一层本征半导体(或低浓度杂质的半导体)构造的晶体二极管。

PIN中的I 是"本征"意义的英文略语。

当其工作频率超过100MHz时,由于少数载流子的存贮效应和"本征"层中的渡越时间效应,其二极管失去整流作用而变成阻抗元件,并且,其阻抗值随偏置电压而改变。

在零偏置或直流反向偏置时,"本征"区的阻抗很高;在直流正向偏置时,由于载流子注入"本征"区,而使"本征"区呈现出低阻抗状态。

因此,可以把PIN二极管作为可变阻抗元件使用。

它常被应用于高频开关(即微波开关)、移相、调制、限幅等电路中。

12、雪崩二极管(Avalanche Diode)它是在外加电压作用下可以产生高频振荡的晶体管。

产生高频振荡的工作原理是栾的:利用雪崩击穿对晶体注入载流子,因载流子渡越晶片需要一定的时间,所以其电流滞后于电压,出现延迟时间,若适当地控制渡越时间,那么,在电流和电压关系上就会出现负阻效应,从而产生高频振荡。

它常被应用于微波领域的振荡电路中。

13、江崎二极管(Tunnel Diode)它是以隧道效应电流为主要电流分量的晶体二极管。

其基底材料是砷化镓和锗。

其P型区的N型区是高掺杂的(即高浓度杂质的)。

隧道电流由这些简并态半导体的量子力学效应所产生。

发生隧道效应具备如下三个条件:①费米能级位于导带和满带内;②空间电荷层宽度必须很窄(0.01微米以下);简并半导体P型区和N型区中的空穴和电子在同一能级上有交叠的可能性。

江崎二极管为双端子有源器件。

其主要参数有峰谷电流比(IP/PV),其中,下标"P"代表"峰";而下标"V"代表"谷"。

江崎二极管可以被应用于低噪声高频放大器及高频振荡器中(其工作频率可达毫米波段),也可以被应用于高速开关电路中。

14、快速关断(阶跃恢复)二极管(Step Recovary Diode)它也是一种具有PN结的二极管。

其结构上的特点是:在PN结边界处具有陡峭的杂质分布区,从而形成"自助电场"。

由于PN结在正向偏压下,以少数载流子导电,并在PN结附近具有电荷存贮效应,使其反向电流需要经历一个"存贮时间"后才能降至最小值(反向饱和电流值)。

阶跃恢复二极管的"自助电场"缩短了存贮时间,使反向电流快速截止,并产生丰富的谐波分量。

利用这些谐波分量可设计出梳状频谱发生电路。

快速关断(阶跃恢复)二极管用于脉冲和高次谐波电路中。

15、肖特基二极管(Schottky Barrier Diode)它是具有肖特基特性的"金属半导体结"的二极管。

其正向起始电压较低。

其金属层除材料外,还可以采用金、钼、镍、钛等材料。

其半导体材料采用硅或砷化镓,多为N型半导体。

这种器件是由多数载流子导电的,所以,其反向饱和电流较以少数载流子导电的PN结大得多。

由于肖特基二极管中少数载流子的存贮效应甚微,所以其频率响仅为RC时间常数限制,因而,它是高频和快速开关的理想器件。

其工作频率可达100GHz。

并且,MIS(金属-绝缘体-半导体)肖特基二极管可以用来制作太阳能电池或发光二极管。

16、阻尼二极管具有较高的反向工作电压和峰值电流,正向压降小,高频高压整流二极管,用在电视机行扫描电路作阻尼和升压整流用。

相关文档
最新文档