第1章晶体二极管(1)

合集下载

电子电路基础习题册参考答案

电子电路基础习题册参考答案

电子电路基础习题册参考答案免费提供(第三版)全国中等职业技术第一章常用半导体器件§1-1 晶体二极管一、填空题1、物质按导电能力的强弱可分为导体、绝缘体和半导体三大类,最常用的半导体材料是硅和锗。

2、根据在纯净的半导体中掺入的杂质元素不同,可形成N 型半导体和P 型半导体。

3、纯净半导体又称本征半导体,其内部空穴和自由电子数相等。

N型半导体又称电子型半导体,其内部少数载流子是空穴;P型半导体又称空穴型半导体,其内部少数载流子是电子。

4、晶体二极管具有单向导电性,即加正向电压时,二极管导通,加反向电压时,二极管截止。

一般硅二极管的开启电压约为0.5 V,锗二极管的开启电压约为0.1 V;二极管导通后,一般硅二极管的正向压降约为0.7 V,锗二极管的正向压降约为0.3 V。

5.锗二极管开启电压小,通常用于检波电路,硅二极管反向电流小,在整流电路及电工设备中常使用硅二极管。

6.稳压二极管工作于反向击穿区,稳压二极管的动态电阻越小,其稳压性能好。

7在稳压电路中,必须串接限流电阻,防止反向击穿电流超过极限值而发生热击穿损坏稳压管。

8二极管按制造工艺不同,分为点接触型、面接触型和平面型。

9、二极管按用途不同可分为普通二极管、整流二极管、稳压二极管、开关、热敏、发光和光电二极管等二极管。

10、二极管的主要参数有最大整流电流、最高反向工作电压、反向饱和电流和最高工作频率。

11、稳压二极管的主要参数有稳定电压、稳定电流和动态电阻。

12、图1-1-1所示电路中,二极管V1、V2均为硅管,当开关S与M 相接时,A点的电位为无法确定V,当开关S与N相接时,A点的电位为0 V.13图1-1-2所示电路中,二极管均为理想二极管,当开关S打开时,A点的电位为10V 、流过电阻的电流是4mA ;当开关S闭合时,A点的电位为0 V,流过电阻的电流为2mA 。

14、图1-1-3所示电路中,二极管是理想器件,则流过二极管V1的电流为0.25mA ,流过V2的电流为0.25mA ,输出电压U0为+5V。

第1章 半导体二极管和晶体管

第1章 半导体二极管和晶体管

型求出 IO 和 UO 的值。
+ UD -
解:
1、理想模型
UO = V = 6 V
E
IO = E / R = 6 / 6 = 1 (mA)
+
2 V ID
R UR
6KΩ
-
2、恒压降模型
UO = E – UD = 6 0.7 = 5.3 (V) IO = UO / R = 5.3 / 6 = 0.88 (mA)
反向击穿电压 I/mA 反向饱和电流
硅几 A
锗几十~几百 A UBR
硅管的温度稳
IS
O
U/V
定性比锗管好 反向 饱和电流
36
(二)极间电容
第三节、半导体二极管
C
1、PN结存在等效结电容
PN结中可存放电荷,相 当一个电容。
PN
+ ui –
R
– 2、对电路的影响:外加交流电源
+
时,当频率高时,容抗小,对PN
14
第一节、半导体的导电特性
N型半导体
多一个 价电子
4
+5
4
掺杂
4
4
4
15
本征激发
第一节、半导体的导电特性
N型半导体
4
+5
4
掺杂
正离子
电子
4
4
4
多子-------电子 少子-------空穴
N型半导体示意1图6
第一节、半导体的导电特性
P型半导体
多一个 空穴
4
+3
4
掺杂
4
4
4
17
本征激发
第一节、半导体的导电特性

电子电路基础习题册参考答案-第一章

电子电路基础习题册参考答案-第一章

第一章常用半导体器件§1-1 晶体二极管一、填空题1、物质按导电能力的强弱可分为导体、绝缘体和半导体三大类,最常用的半导体材料是硅和锗。

2、根据在纯净的半导体中掺入的杂质元素不同,可形成 N 型半导体和 P 型半导体。

3、纯净半导体又称本征半导体,其内部空穴和自由电子数相等。

N型半导体又称电子型半导体,其内部少数载流子是空穴;P型半导体又称空穴型半导体,其内部少数载流子是电子。

4、晶体二极管具有单向导电性,即加正向电压时,二极管导通,加反向电压时,二极管截止。

一般硅二极管的开启电压约为 V,锗二极管的开启电压约为 V;二极管导通后,一般硅二极管的正向压降约为 V,锗二极管的正向压降约为V。

5.锗二极管开启电压小,通常用于检波电路,硅二极管反向电流小,在整流电路及电工设备中常使用硅二极管。

6.稳压二极管工作于反向击穿区,稳压二极管的动态电阻越小,其稳压性能好。

7在稳压电路中,必须串接限流电阻,防止反向击穿电流超过极限值而发生热击穿损坏稳压管。

8二极管按制造工艺不同,分为点接触型、面接触型和平面型。

9、二极管按用途不同可分为普通二极管、整流二极管、稳压二极管、开关、热敏、发光和光电二极管等二极管。

10、二极管的主要参数有最大整流电流、最高反向工作电压、反向饱和电流和最高工作频率。

11、稳压二极管的主要参数有稳定电压、稳定电流和动态电阻。

12、图1-1-1所示电路中,二极管V1、V2均为硅管,当开关S与M 相接时,A点的电位为无法确定 V,当开关S与N相接时,A点的电位为 0 V.13图1-1-2所示电路中,二极管均为理想二极管,当开关S打开时,A点的电位为 10V 、流过电阻的电流是 4mA ;当开关S闭合时,A点的电位为 0 V,流过电阻的电流为 2mA 。

14、图1-1-3所示电路中,二极管是理想器件,则流过二极管V1的电流为,流过V2的电流为 ,输出电压U0为 +5V。

15、光电二极管的功能是将光脉冲信号转换为电信号,发光二极管的功能是将电信号转换为光信号。

第一章二极管-PPT课件

第一章二极管-PPT课件

本征半导体:
四价元素
外层四个电子
原子实或惯性核 为原子核和内层电子组成
价电子为相邻两原子所共有
3.本征激发:
本征激发 电子空穴 成对产生
自由电子(带负电-e)
+4
+4
+4
+4
+4
+4
+4
4.载流子 :自由 +4 运动的带电粒子:
电子带负电: +4 -e=-1.6×10-19c,
空穴带正电:
e=1.6×10-19c.
锗管UD(on)=0.2V。
(2)反向特性: 二极管两端加上反向 电压时,反向饱和电流IS很小(室温下, 小功率硅管的反向饱和电流IS小于0.1μA。 (3)反向击穿特性 二极管两端反向电压 超过U(BR)时,反向电流IR随反向电压的增大 而急剧增大, U(BR) 称为反向击穿电压。
(5)齐纳击穿:由高浓度掺杂材料制成的PN结中耗尽区宽度很窄,即使反向电
压不高也容易在很窄的耗尽区中形成很强的电场,将价电子直接从共价键中拉出 来产生电子-空穴对,致使反向电流急剧增加,这种击穿称为齐纳击穿。
§1 .2 二极管的特性及主要参数 一、 半导体二极管的结构和类型
构成:PN 结 + 引线 + 管壳 = 二极管(Diode) 符号:阳极(正极) 阴极(负极) 分类: 1.根据材料 硅二极管、锗二极管 2.根据结构 点接触型、面接触型、平面型 1.二极管的结构和符号
空穴(带正电+e)
5.复 合: 自由电子和空穴在运动 中相遇重新结合成对消 失的过程。 电子电流:IN
空穴电流:IP 共有电子 递补运动
+4
+4

《电工与电子技术基础》电子部分习题

《电工与电子技术基础》电子部分习题

第四章晶体二极管和二极管整流电路第一节晶体二极管(第一课时)一、选择题1、当晶体二极管的PN结导通后参加导电的是()A.少数载流子B.多数载流子B.既有少数载流子又有多数载流子2、半导体中的空穴和自由电子数目相等,这样的半导体称为()A.P型半导体B.本征半导体C.N型半导体二、填空题1、半导体是一种导电能力介于和之间的物体。

2、PN结具有的性能,即:加电压时PN结导通;加的电压时PN结截止。

三、解答题1、图所示的电路中,哪些灯泡能发亮?第一节晶体二极管(第二课时)一、选择题1、晶体二极管的正极电位是-10V,负极电位是-5V,则该二极管处于()A. 零偏B. 反偏C. 正偏2、面接触型晶体二极管比较适用于()A.小信号检波B.大功率整流C.大电流开关3、用万用表欧姆挡测量小功率晶体二极管性能好坏时,应该把欧姆挡拨到()A. R×100Ω或R×1kΩ挡B. R×1Ω挡C. R×10kΩ挡4、当晶体二极管工作在伏安特性曲线的正向特性区,而且所受正向电压大于其门槛电压,则晶体二极管相当于()A.大电阻B.断开的开关C.接通的开关5、当硅二极管加上0.3V的正向电压时,该二极管相当于()A.小阻值电阻B.阻值很大的电阻C.内部短路二、填空题1、当晶体二极管导通后,则硅二极管的正向压降为V,锗二极管的正向压降为V。

2、晶体二极管因所加电压过大而。

并出现的现象,称为热击穿。

3、下面每小题后面的括号内,提供几种答案,选择正确的填在相应的横线上。

(1)简单的把一块P型半导体和一块N型半导体接触在一起形成PN结?(能;不能;不一定)(2)二极管导通时,则二极管两端所加的是电压。

(正向偏置;反向偏置;无偏置)(3)当二极管两端的正向偏置电压增大于电压时,二极管才能导通。

(击穿;饱和;门槛)(4)二极管两端的反向偏置电压增高时,在达到电压以前,通过的电流很小。

(击穿;最大;短路)第二节二极管整流电路1、在如图所示的电路中,试分析输入端a、b间输入交流电压υ时,通过R1、R2两电阻上的是交流电,还是直流电?2、若将单相桥式电路接成如图的形式,将会出现什么结果,应如何改正?3、如图所示两个电路中,设V1、V2均为理想二极管(即正向导通时其正向电阻和正向压降为零,反向截止时其反向电阻无穷大的二极管),试判断两图中的二极管是截止的还是导通的,A、B两端的电压V AB=?C、D端的电压V CD=?4、画出半波整流电路图。

电工电子技术晶体二极管教案(1)1

电工电子技术晶体二极管教案(1)1

电工电子技术晶体二极管教案一、教学内容本节课选自《电工电子技术》教材第四章第一节,详细内容为晶体二极管的原理、特性、主要参数及其应用。

二、教学目标1. 让学生理解晶体二极管的工作原理、特性及分类。

2. 使学生掌握晶体二极管的主要参数,并能正确选用。

3. 培养学生运用晶体二极管解决实际问题的能力。

三、教学难点与重点重点:晶体二极管的原理、特性、主要参数。

难点:晶体二极管的工作状态及其判别方法。

四、教具与学具准备1. 教具:晶体二极管实物、示波器、信号发生器、多媒体设备。

2. 学具:电路实验箱、晶体二极管、电阻、电容、万用表。

五、教学过程1. 实践情景引入:通过展示一个简单的晶体二极管整流电路,让学生观察其工作原理,引发兴趣。

2. 理论讲解:讲解晶体二极管的原理、特性、分类及主要参数。

3. 例题讲解:分析一个具体的晶体二极管应用电路,引导学生运用所学知识解决问题。

4. 随堂练习:让学生绘制一个晶体二极管整流电路,并分析其工作过程。

5. 实验操作:指导学生使用实验箱搭建晶体二极管电路,观察其工作状态,测量相关参数。

六、板书设计1. 晶体二极管原理2. 晶体二极管特性3. 晶体二极管分类及主要参数4. 晶体二极管应用实例七、作业设计1. 作业题目:设计一个晶体二极管整流电路,并分析其工作原理。

2. 答案:略。

八、课后反思及拓展延伸1. 反思:关注学生在实验操作中的表现,及时发现问题并进行指导。

2. 拓展延伸:引导学生了解其他半导体器件,如晶体三极管、场效应管等,拓展知识面。

在教学过程中,注意理论与实践相结合,充分调动学生的主观能动性,培养其动手能力及创新能力。

通过本节课的学习,使学生掌握晶体二极管的基本原理、特性和应用,为后续学习打下基础。

重点和难点解析1. 晶体二极管的工作原理和特性2. 晶体二极管的主要参数及其判别方法3. 实践操作中晶体二极管电路的搭建与测量4. 作业设计中晶体二极管整流电路的分析详细补充和说明:一、晶体二极管的工作原理和特性晶体二极管的核心部分是由P型半导体和N型半导体组成的PN 结。

电子电路基础习题册参考答案-第一章讲解

电子电路基础习题册参考答案-第一章讲解

电子电路基础习题册参考答案(第三版)全国中等职业技术第一章常用半导体器件§1-1 晶体二极管一、填空题1、物质按导电能力的强弱可分为导体、绝缘体和半导体三大类,最常用的半导体材料是硅和锗。

2、根据在纯净的半导体中掺入的杂质元素不同,可形成N 型半导体和P 型半导体。

3、纯净半导体又称本征半导体,其内部空穴和自由电子数相等。

N型半导体又称电子型半导体,其内部少数载流子是空穴;P型半导体又称空穴型半导体,其内部少数载流子是电子。

4、晶体二极管具有单向导电性,即加正向电压时,二极管导通,加反向电压时,二极管截止。

一般硅二极管的开启电压约为0.5 V,锗二极管的开启电压约为0.1 V;二极管导通后,一般硅二极管的正向压降约为0.7 V,锗二极管的正向压降约为0.3 V。

5.锗二极管开启电压小,通常用于检波电路,硅二极管反向电流小,在整流电路及电工设备中常使用硅二极管。

6.稳压二极管工作于反向击穿区,稳压二极管的动态电阻越小,其稳压性能好。

7在稳压电路中,必须串接限流电阻,防止反向击穿电流超过极限值而发生热击穿损坏稳压管。

8二极管按制造工艺不同,分为点接触型、面接触型和平面型。

9、二极管按用途不同可分为普通二极管、整流二极管、稳压二极管、开关、热敏、发光和光电二极管等二极管。

10、二极管的主要参数有最大整流电流、最高反向工作电压、反向饱和电流和最高工作频率。

11、稳压二极管的主要参数有稳定电压、稳定电流和动态电阻。

12、图1-1-1所示电路中,二极管V1、V2均为硅管,当开关S与M 相接时,A点的电位为无法确定V,当开关S与N相接时,A点的电位为0 V.13图1-1-2所示电路中,二极管均为理想二极管,当开关S打开时,A点的电位为10V 、流过电阻的电流是4mA ;当开关S闭合时,A点的电位为0 V,流过电阻的电流为2mA 。

14、图1-1-3所示电路中,二极管是理想器件,则流过二极管V1的电流为0.25mA ,流过V2的电流为0.25mA ,输出电压U0为+5V。

晶体二极管ppt课件

晶体二极管ppt课件

+
+
注意-: PN-结处-于动态-平衡时+,扩+散电流+ 与漂+移电流
相抵消,通过 PN 结的电流为零。 多子扩散电流
少子漂移电流
动态平衡: 扩散电流 = 漂22移电流 总电流=0
2、内建电位差:
1.2 PN结
VB
VT ln
NaNd ni2
室温时
锗管 VB 0.2 ~ 0.3 V 硅管 VB 0.5 ~ 0.7 V
→多子扩散形成正向电流I F
P型半导体 空间电荷区 N型半导体
- - --
++ ++
- - - 正-向电流 + + + +
- - -- ++ + +
内电场 E
24
R
1.2 PN结与二极管
2、加反向电压——电源正极接N区,负极接P区
外电场的方向与内电场方向相同。
外电场加强内电场 →耗尽层变宽 →漂移运动>扩散运动
J nd
(q)Dn
dn( x) dx
x
18
小结
半导体的导电能力介于导体和绝缘体之间 在一定温度下,本征半导体因本征激发而产生自
由电子,故有一定的导电能力,其导电能力主要 由温度决定
杂质半导体的导电能力主要由所掺杂质的浓度决 定,P型半导体空穴是多子,自由电子是少子,N 型半导体中自由电子式多子,空穴是少子
V(B
IR 急剧 ,
R)
PN 结反向击穿。
ID OV
雪崩击穿 齐纳击穿
PN 结掺杂浓度较低(l0 较宽) 发生条件 外加反向电压较大(> 6 V)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

N型硅
扩散电流密度:
J pd dp( x ) qDp dx
载流子浓度 n0 p0
n(x)
p(x)
J nd
x
dn( x ) ( q ) Dn dx
20
扩散电流是半导体的特有电流。
小结
1.半导体依靠自由电子和空穴两种载流子导电。 本征半导体 存在本征激发和复合,两种载流子电子 和空穴成对出现,其浓度随温度升高迅速增大。
16
四、杂质补偿原理 实际在制作晶体管时,往往是在一种杂质 半导体中掺入浓度更高的另一种杂质。
当NdNa: 本征
当Nd>Na: N型
当Nd<Na: P型
当|Nd-Na|>>ni, 则为杂 质半导体;否则应视为 本征半导体。
17
第1章
晶体二极管
1.1.3 两种导电机理——漂移和扩散
一、漂移与漂移电流
|V反| ,速度 ,动能 ,碰撞。 PN 结掺杂浓度较高(l0 较窄) 发生条件 外加反向电压较小(< 6 V) 齐纳击穿 形成原因: 场致激发。
|V | ,E

,场致激发。
34
第1章
晶体二极管
击穿电压的温度特性
雪崩击穿电压具有正温度系数。
因为 T 载流子运动的平均自由路程 来自外电场的能量 V(BR)。
反向饱和电流
导通电压
30
正向:当V>0,V>>VT(大几倍)时,
I I S (e
V /VT
)
V VT ln I / I S
例:当I2=10I1时,V2=V1+26ln10=V1+60mV 思考:把一个1.5V的干电池直接接到二极 管两端(正偏),会不会发生什么问题? 反向:当V<0,|V|>>VT(大几倍)时,
第1章
1.0 概 述
晶体二极管
1.1 半导体物理基础知识 1.2 PN 结 1.3 晶体二极管电路分析方法 1.4 晶体二极管的应用
1
第1章
晶体二极管

正极 P N

D
+ 负极
晶体二极管结构及电路符号:
晶体二极管的主要特性:单向导电性 即 PN 结正偏(P 接 +、N 接 -),D 导通。 PN 结反偏(N 接 +、P 接 -),D 截止。 单向导电性:允许一个方向电流顺利流通的特性。 主要用途:用于整流、开关、检波电路中。
T
或光照
ni
导电能力
热敏特性
12 光敏特性
第1章
晶体二极管
1.1.2 杂质半导体
一、N 型半导体
本征半导体中掺入少量五价元素(磷\锑\砷 )构成。
+4 +4 +5
简化模型:
自由电子
+4
+4
五价元素:施主杂质 杂质浓度:Nd
13
N 型半导体
多子——自由电子 少子——空穴
第1章
晶体二极管
二、 P 型半导体
PN结合 因多子浓度差 多子的扩散
在交界面相遇复合
空间电荷区 形成内电场 阻止多子扩散,促使少子漂移 。 内电场E P型半导体 空间电荷区 N型半导体
- - -
- - -
- - -
- - -
+ + +
阻挡层
+ + +
+ + +
+ + +
多子扩散电流
24
少子漂移电流
内电场E
P型半导体 阻挡层 - - - - - - - - - - - - + + +
Na Nd VB VT ln ni2
温度每升高 1℃, VB约减小 2.5 mV。
三、 阻挡层宽度:
l0 (
2 VB q
Na Nd 2 ) Na Nd
1
阻挡层任一侧宽度与该侧掺杂浓度成反比:
注意:掺杂浓度(Na、Nd)越大,内建电位差 VB就越大,
xn Na xp Nd
27 阻挡层宽度 l0 就越小。阻挡层主要是向低掺杂一侧扩展。
本征半导体中掺入少量三价元素(硼\镓\铟 )构成。
+4
+4 +3
简化模型:
空穴
+4
+4 三价元素:受主杂质
多子——空穴 P 型半导体
杂质浓度:Na
14
少子——自由电子
第1章
晶体二极管
三、杂质半导体中载流浓度计算
热平衡条件:多子浓度与少子浓度的乘积=本征半导体载流子 浓度ni的平方
n0 p0 即得热平衡方程:
最高工作温度: 硅 锗 150 ℃ ---200 ℃ 75 ℃ ---100℃
33
第1章
晶体二极管 ID
1.2.3 PN 结的击穿特性
|V反| = V(BR)时,
V(BR)
IR 急剧 ,
PN 结反向击穿。 雪崩击穿
O
V
PN 结掺杂浓度较低(l0 较宽) 发生条件 外加反向电压较大(> 6 V) 形成原因: 碰撞电离。
电压: V = E l 电流: I = S Jt 电阻: 截面积 S
I
长度 l
+
V
-
V El l R I Jt S S
1 Jt q( p p n n ) E
19
电导率:
第1章
晶体二极管
二、扩散与扩散电流
载流子在浓度差作用下的运动称扩散运动,所形成 的电流称扩散电流。 光照
结构类型:点接触型 、面接触型、平面型
(a)点接触型
(b)面接触型
(c)平面型 22
根据P区、N区浓度大小分为:
对称PN结: Nd=Na PN+: Na<<Nd 根据杂质分布: 不对称PN结:P+N:Na>>Nd
突变结
缓变结
超突变结
23
第1章
晶体二极管
1.2.1 动态平衡下的 PN 结
一、 PN 结形成的物理过程
硅为 3.88 ×1016cm-3K-3/2 锗为 1.67 1016cm-3K-3/2 K: 玻尔兹曼常数(8.63 ×10-5eV/K) Eg0: T=0K时的禁带宽度(硅为1.21eV 锗为0.785eV)
10 3 T=300K时, ni 1.5 10 cm (硅) Si原子密度:22 3 4.96 10 cm 13 3 (锗) ni 2.4 10 cm
自由电子 — 带负电

穴 — 带正电
10
空穴的出现是半导体区别于导体的重要特征。

E
+4 +4 +4

自由电子
导电机制
+4
+4
+4
+4
+4
+4
在外电场的作用下,空穴和电子会产生移动,即不断有共 价键中的电子摆脱束缚,填充到原有的空穴中,即象是空 穴在移动,形成的电流方向就是空穴移动的方向。 判断:
+14 2 8 4
+32 2 8 18 4
+4
价电子
7
第1章
晶体二极管
1.1.1 本征半导体
一、本征半导体
硅和锗的单晶称为本征半导体。它们是制造半导 体器件的基本材料。 硅和锗共价键结构示意图:
+4 +4 +4 +4 +4 +4 +4
8
+4
共价键
第1章
晶体二极管
二、本征激发
共价键具有很强的结合力。 当 T = 0 K(无外界影响) 时,共价键中无自由移动的电子。 当 T 升高或光线照射时 这种现象称 产生自由电子空穴对。
N型半导体 + + + + + + + + +
多子扩散电流 少子漂移电流
动态平衡: 扩散电流 = 漂移电流
总电流=0
25
空间电荷区的别称: 阻挡层,耗尽层,势垒区,高阻区
第1章
晶体二极管
总结PN 结形成的物理过程:
开始因浓度差 出现内建电场 引起多子扩散 阻止多子扩散 最终达动态平衡 产生空间电荷区
第1章
晶体二极管
PN 结——伏安特性方程式
PN 结正、反向特性,可用理想的指数函数来描述:
V VT
I I S (e
1)
IS 为反向饱和
电流 , 其值与外加电 压近似无关,但受 温度影响很大。
导通电压: Si: VD(on)=0.6~0.8V Ge:VD(on)=0.2~0.3V
击穿电压
齐纳击穿电压具有负温度系数。
因为 T 价电子获得的能量 更易导致场致激发V(BR)。 ID 稳压二极管
利用 PN 结的反向击穿特性, 可制成稳压二极管。 要求:IZmin< IZ < IZmax
VZ +
IZmax 若IZ< IZmin ,不能稳压;若IZ> IZmax ,热击穿(过热烧毁)。
2.杂质半导体
掺杂 多子 少子
N型半导体:+5价 P型半导体:+3价
磷Nd 硼Na
电子 空穴
空穴 电子
施主杂质 受主杂质
3.半导体两种导电方式:漂移、扩散。
21
第1章
晶体二极管
1.2 PN 结(PN Junction)
利用掺杂工艺,把 P 型半导体和 N 型半导体在原子级上 紧密结合,P 区与 N 区的交界面就形成了 PN 结。
相关文档
最新文档