离散数学复习题及答案
离散数学试题及答案

离散数学试题及答案一、选择题1. 设A、B、C为三个集合,下列哪个式子是成立的?A) \(A \cup (B \cap C) = (A \cup B) \cap (A \cup C)\)B) \(A \cap (B \cup C) = (A \cap B) \cup (A \cap C)\)C) \(A \cup (B \cup C) = (A \cup B) \cup (A \cup C)\)答案:B2. 对于一个有n个元素的集合S,S的幂集中包含多少个元素?A) \(n\)B) \(2^n\)C) \(2 \times n\)答案:B二、判断题1. 对于两个关系R和S,若S是自反的,则R ∩ S也是自反的。
答案:错误2. 若一个关系R是反对称的,则R一定是反自反的。
答案:正确三、填空题1. 有一个集合A,其中包含元素1、2、3、4和5,求集合A的幂集的大小。
答案:322. 设a和b是实数,若a \(\neq\) b,则a和b之间的关系是\(\__\_\)关系。
答案:不等四、解答题1. 证明:如果关系R是自反且传递的,则R一定是反自反的。
解答:假设关系R是自反的且传递的,即对于集合A中的任意元素x,都有(x, x) ∈ R,并且当(x, y) ∈ R和(y, z) ∈ R时,(x, z) ∈ R。
反证法:假设R不是反自反的,即存在一个元素a∈A,使得(a, a) ∉ R。
由于R是自反的,所以(a, a) ∈ R,与假设矛盾。
因此,R一定是反自反的。
答案完整证明了该结论。
2. 已知集合A={1, 2, 3},集合B={2, 3, 4},求集合A和B的笛卡尔积。
解答:集合A和B的笛卡尔积定义为{(a, b) | a∈A,b∈B}。
所以,集合A和B的笛卡尔积为{(1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)}。
(完整版)离散数学题目及答案

数理逻辑习题判断题1.任何命题公式存在惟一的特异析取范式 ( √ ) 2. 公式)(q p p →⌝→是永真式 ( √ ) 3.命题公式p q p →∧)(是永真式 ( √ ) 4.命题公式r q p ∧⌝∧的成真赋值为010 ( × ) 5.))(()(B x A x B x xA →∃=→∀ ( √ )6.命题“如果1+2=3,则雪是黑的”是真命题 ( × ) 7.p q p p =∧∨)( ( √ )8.))()((x G x F x →∀是永真式 ( × ) 9.“我正在撒谎”是命题 ( × ) 10. )()(x xG x xF ∃→∀是永真式( √ )11.命题“如果1+2=0,则雪是黑的”是假命题 ( × ) 12.p q p p =∨∧)( ( √ )13.))()((x G x F x →∀是永假式 ( × )14.每个命题公式都有唯一的特异(主)合取范式 ( √ ) 15.若雪是黑色的:p ,则q →p 公式是永真式 ( √ ) 16.每个逻辑公式都有唯一的前束范式 ( × ) 17.q →p 公式的特异(主)析取式为q p ∨⌝ ( × ) 18.命题公式 )(r q p →∨⌝的成假赋值是110 ( √ ) 19.一阶逻辑公式)),()((y x G x F x →∀是闭式( × )单项选择题1. 下述不是命题的是( A )A.花儿真美啊! B.明天是阴天。
C.2是偶数。
D.铅球是方的。
2.谓词公式(∀y)(∀x)(P(x)→R(x,y))∧∃yQ(x,y)中变元y (B)A.是自由变元但不是约束变元B.是约束变元但不是自由变元C.既是自由变元又是约束变元D.既不是自由变元又不是约束变元3.下列命题公式为重言式的是( A )A.p→ (p∨q)B.(p∨┐p)→qC.q∧┐q D.p→┐q4.下列语句中不是..命题的只有(A )A.花儿为什么这样红?B.2+2=0C.飞碟来自地球外的星球。
《离散数学》复习题及答案

页眉内容《离散数学》试题及答案一、选择或填空(数理逻辑部分)1、下列哪些公式为永真蕴含式?( )(1)⌝Q=>Q→P (2)⌝Q=>P→Q (3)P=>P→Q (4)⌝P∧(P∨Q)=>⌝P答:(1),(4)2、下列公式中哪些是永真式?( )(1)(┐P∧Q)→(Q→⌝R) (2)P→(Q→Q) (3)(P∧Q)→P (4)P→(P∨Q)答:(2),(3),(4)3、设有下列公式,请问哪几个是永真蕴涵式?( )(1)P=>P∧Q (2) P∧Q=>P (3) P∧Q=>P∨Q(4)P∧(P→Q)=>Q (5) ⌝(P→Q)=>P (6) ⌝P∧(P∨Q)=>⌝P答:(2),(3),(4),(5),(6)4、公式∀x((A(x)→B(y,x))∧∃z C(y,z))→D(x)中,自由变元是( ),约束变元是( )。
答:x,y, x,z5、判断下列语句是不是命题。
若是,给出命题的真值。
( )(1)北京是中华人民共和国的首都。
(2) 陕西师大是一座工厂。
(3) 你喜欢唱歌吗? (4) 若7+8>18,则三角形有4条边。
(5) 前进! (6) 给我一杯水吧!答:(1)是,T (2)是,F (3)不是(4)是,T (5)不是(6)不是6、命题“存在一些人是大学生”的否定是( ),而命题“所有的人都是要死的”的否定是( )。
答:所有人都不是大学生,有些人不会死7、设P:我生病,Q:我去学校,则下列命题可符号化为( )。
(1) 只有在生病时,我才不去学校 (2) 若我生病,则我不去学校(3) 当且仅当我生病时,我才不去学校(4) 若我不生病,则我一定去学校答:(1)PP⌝P→⌝↔(4)QQ→⌝(2)QP⌝→(3)Q8、设个体域为整数集,则下列公式的意义是( )。
(1) ∀x∃y(x+y=0) (2) ∃y∀x(x+y=0)答:(1)对任一整数x存在整数 y满足x+y=0(2)存在整数y对任一整数x满足x+y=0 9、设全体域D是正整数集合,确定下列命题的真值:(1) ∀x∃y (xy=y) ( ) (2) ∃x∀y(x+y=y) ( )(3) ∃x∀y(x+y=x) ( ) (4) ∀x∃y(y=2x) ( )答:(1) F (2) F (3)F (4)T10、设谓词P(x):x是奇数,Q(x):x是偶数,谓词公式∃x(P(x)∨Q(x))在哪个个体域中为真?( )(1) 自然数(2) 实数 (3) 复数(4) (1)--(3)均成立答:(1)11、命题“2是偶数或-3是负数”的否定是()。
离散数学复习题参考带答案

一、选择题:(每题2’)1、下列语句中不是命题的有( )。
A .离散数学是计算机专业的一门必修课。
B .鸡有三只脚。
C .太阳系以外的星球上有生物 。
D .你打算考硕士研究生吗?2、命题公式A 与B 是等价的,是指( )。
A . A 与B 有相同的原子变元 B . A 与B 都是可满足的C . 当A 的真值为真时,B 的真值也为真D . A 与B 有相同的真值3、所有使命题公式P ∨(Q ∧¬R)为真的赋值为( )。
A . 010,100,101,110,111B . 010,100,101,111C . 全体赋值D . 不存在4、合式公式⌝(P ∧Q)→R 的主析取范式中含极小项的个数为( )。
A .2B .3C .5D .05、一个公式在等价意义下,下面哪个写法是唯一的( )。
A .析取范式B .合取范式C .主析取范式D .以上答案都不对6、下述公式中是重言式的有( )。
A .(P ∧Q) → (P ∨Q)B .(P ↔Q) ↔ (( P →Q)∧(Q →P))C .⌝(P →Q)∧QD .P →(P ∧Q)7、命题公式 (⌝P →Q) →(⌝Q ∨P) 中极小项的个数为( ),成真赋值的个数为( )。
A .0B .1C .2D .38、若公式 (P ∧Q)∨(⌝P ∧R) 的主析取范式为 m 001∨m 011∨m 110∨m 111 则它的主合取范式为()。
A .m 001∧m 011∧m 110∧m 111 B .M 000∧M 010∧M 100∧M 101C .M 001∧M 011∧M 110∧M 111D .m 000∧m 010∧m 100∧m 1019、下列公式中正确的等价式是( )。
A .⌝(∃x)A(x) ⇔ (∃x)⌝A(x)B .(∀x) (∀y)A(x, y) ⇔ (∃y) (∀x) A(x, y)C .⌝(∀x)A(x) ⇔ (∃x)⌝A(x)D .(∀x) (A(x) ∧B(x)) ⇔ (∀x) A(x) ∨(∀x) B(x)10、下列等价关系正确的是( )。
离散数学复习题及答案

总复习题(一)一.单选题1 (C)。
一连通的平面图,5个顶点3个面,则边数为()。
、4 、5 、6 、72、 (A)。
如果一个简单图,则称为自补图,非同构的无向4阶自补图有()个。
、1 、2 、3 、43、 (D)。
为无环有向图,为的关联矩阵,则()。
、是的终点、与不关联、与关联、是的始点4、 (B)。
一连通的平面图,8个顶点4个面,则边数为。
、9 、10 、11 、125、 (D)。
如果一个简单图,则称为自补图,非同构的3阶有向完全图的子图中自补图有个。
、1 、2 、3 、46、21条边,3个4度顶点,其余顶点为3度的无向图共有个顶点。
、13 、12 、11 、107、 (D)。
有向图的通路包括。
、简单通路、初级通路、复杂通路、简单通路、初级通路和复杂通路8、 (D)。
一连通的平面图,9个顶点5个面,则边数为。
、9 、10 、11 、12A B C D G G ≅G A B C D E ,V D =[]m n ij m ⨯D 1m ij =A i v j e B i v j e C i v j e D i v j e A B C D G G ≅G A B C D A B C D A B C D A B C D9、21条边,3个4度顶点,其余顶点为3度的无向图共有个顶点。
、13 、12 、11 、1010、 (D)。
有向图的通路包括。
、简单通路、初级通路、复杂通路、简单通路、初级通路和复杂通路11、 (D)。
一连通的平面图,9个顶点5个面,则边数为。
、9 、10 、11 、1212、 (B)。
为有向图,为的邻接矩阵,则。
、邻接到的边的条数是5、接到的长度为4的通路数是5、长度为4的通路总数是5、长度为4的回路总数是513、 (C)。
在无向完全图中有个结点,则该图的边数为()。
A 、B 、C 、D 、14、 (C)。
任意平面图最多是()色的。
A 、3B 、4C 、5D 、615、 (A)。
对与10个结点的完全图,对其着色时,需要的最少颜色数为()。
(完整版)离散数学试题及答案,推荐文档

11 设 A,B,R 是三个集合,其中 R 是实数集,A = {x | -1≤x≤1, xR}, B = {x | 0≤x < 2, xR},则
A-B = __________________________ , B-A = __________________________ ,
A∩B = __________________________ , . 13. 设集合 A={2, 3, 4, 5, 6},R 是 A 上的整除,则 R 以集合形式(列举法)记为___________ _______________________________________________________. 14. 设一阶逻辑公式 G = xP(x)xQ(x),则 G 的前束范式是__________________________
二、选择题
1. C. 2. D. 3. B. 4. B.
5. D. 6. C. 7. C.
8. A. 9. D. 10. B. 11. B.
第 5 页 共 18 页
13. {(2, 2),(2, 4),(2, 6),(3, 3),(3, 6),(4, 4),(5, 5),(6, 6)}.
14. x(P(x)∨Q(x)). 15. 21.
16. (R(a)∧R(b))→(S(a)∨S(b)). 17. {(1, 3),(2, 2)}; {(1, 1),(1, 2),(1, 3)}.
8. 设命题公式 G=(P(QR)),则使公式 G 为真的解释有
__________________________,_____________________________,
__________________________.
成人教育《离散数学》期末考试复习题及参考答案

离散数学复习题二一、简要回答下列问题:1.请给出⌝P,P∧Q,P∨Q的真值表。
2.请给出公式蕴涵的定义。
举一个例子。
3.请给出命题∀xG(x)的真值规定。
4.什么是谓词逻辑公式的解释?5.叙述谓词逻辑公式G与它的Skolem范式之间的区别与联系。
6.什么是图的关联矩阵?7.什么是简单路?举一例。
8.什么是有向树?举一例9.设G为整数加群,H为5的所有倍数组成的加法群,给出H的所有陪集。
二、判断下列公式是恒真?恒假?可满足?a) (P→(Q∧R))∧(⌝P→(⌝Q∧⌝R));b) P→(P∧(Q→P));c) (Q→P)∧(⌝P∧Q);d) (⌝P∨⌝Q)→(P↔⌝Q)。
三、指出下列公式哪些是恒真的哪些是恒假的:(1)P∧(P→ Q)→Q(2)(P→ Q)→(⌝P∨Q)(3)(P→ Q)∧(Q→R)→(P→ R )(4)(P↔ Q)↔(P∧ Q∨⌝P∧⌝ Q)四、给P和Q指派真值1,给R和S指派真值0,求出下面命题的真值:a) (P∧(Q∧R))∨⌝((P∨Q)∧(R∨S))b) (⌝(P∧Q)∨⌝R)∨(((⌝P∧Q)∨⌝R)∧S)c) (⌝(P∧Q)∨⌝R)∨((Q↔⌝P)→(R∨⌝S))d) (P∨(Q→(R∧⌝P)))↔(Q∨⌝S)五、证明:连通图中任意两条最长的简单路必有公共点。
离散数学复习题二答案一、简要回答下列问题:1.请给出⌝P,P∧Q,P∨Q的真值表。
P Q ⌝P P∧Q P∨Q0 1 1 0 11 0 0 0 11 1 0 1 10 0 1 0 02.请给出公式蕴涵的定义。
举一个例子。
答:设G,H是两个公式,如果解释I满足G,I也满足S,称G蕴涵H。
例如:P∧Q蕴涵P。
3.请给出命题∀xG(x)的真值规定。
答:∀xG(x)取1值⇔对任意x∈D,G(x)都取1值;∀xG(x)取0值⇔有一个x0∈D,使G(x0)取0值。
4.什么是谓词逻辑公式的解释?答:词逻辑中公式G的一个解释I,是由非空区域D和对G中常量符号,函数符号,谓词符号以下列规则进行的一组指定组成:1. 对每个常量符号,指定D中一个元素;2. 对每个n元函数符号,指定一个函数,即指定D n到D的一个映射;3. 对每个n元谓词符号,指定一个谓词,即指定D n到{0,1}的一个映射。
离散数学考试题及答案

离散数学考试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项不是离散数学的研究对象?A. 图论B. 组合数学C. 微积分D. 逻辑学答案:C2. 在逻辑学中,下列哪个命题是真命题?A. 如果今天是周一,那么明天是周二。
B. 如果今天是周一,那么明天是周三。
C. 如果今天是周一,那么明天是周四。
D. 如果今天是周一,那么明天是周五。
答案:A3. 在集合论中,下列哪个符号表示集合的并集?A. ∩B. ∪C. ⊆D. ⊂答案:B4. 在图论中,下列哪个术语描述的是图中的顶点集合?A. 边B. 路径C. 子图D. 顶点答案:D二、填空题(每题5分,共20分)1. 如果一个集合A包含5个元素,那么它的子集个数是______。
答案:322. 在逻辑学中,如果命题P和命题Q都是真命题,那么复合命题“P且Q”的真值是______。
答案:真3. 在图论中,如果一个图的顶点数为n,那么它的最大边数是______。
答案:n(n-1)/24. 如果一个二叉树的深度为3,那么它最多包含______个节点。
答案:7三、简答题(每题10分,共30分)1. 请简述什么是图的连通性,并给出一个例子。
答案:图的连通性是指在图中任意两个顶点之间都存在一条路径。
例如,在一个完全图K3中,任意两个顶点之间都可以通过一条边直接连接,因此它是连通的。
2. 解释什么是逻辑蕴含,并给出一个例子。
答案:逻辑蕴含是指如果一个命题P为真,则另一个命题Q也必须为真。
例如,命题P:“如果今天是周一”,命题Q:“明天是周二”。
如果今天是周一,那么根据逻辑蕴含,明天必须是周二。
3. 请描述什么是二叉搜索树,并给出它的一个性质。
答案:二叉搜索树是一种特殊的二叉树,其中每个节点的左子树只包含小于当前节点的数,右子树只包含大于当前节点的数。
它的一个性质是中序遍历可以得到一个有序序列。
四、计算题(每题15分,共30分)1. 给定一个集合A={1, 2, 3, 4, 5},请计算它的幂集,并列出所有元素。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 写出命题公式﹁(P →(P∨Q))的真值表。
答案:2.证明答案:)3. 证明以下蕴涵关系成立:答案::4. 写出下列式子的主析取范式:答案:)()(QPQPQP⌝∧⌝∨∧⇔↔Q)P(Q)(PP)(QP)P(Q)(QQ)P(P)Q)P((Q)Q)P(P)Q(Q)P(QP⌝∧⌝∨∧⇔∧∨∧⌝∨⌝∧∨⌝∧⌝⇔∧∨⌝∨⌝∧∨⌝⇔∨⌝∧∨⌝⇔↔QQPP⇒∨∧⌝)()()(RPQP∨∧∧⌝5. 构造下列推理的论证:p ∨q, p →r, s →t, s →r, tq答案:①s →t 前提 {②t 前提③s ①②拒取式I12 ④s →r 前提⑤r ③④假言推理I11 ⑥p →r 前提⑦p ⑤⑥拒取式I12 ⑧p ∨q 前提⑨q ⑦⑧析取三段论I10!6. 用反证法证明:p →((r ∧s)→q), p, s q)()(R P Q P ∨∧∧⌝)()(R P Q P ∨∧⌝∨⌝⇔))(())(R Q P P Q P ∧⌝∨⌝∨∧⌝∨⌝⇔)()()()(R Q R P P Q P P ∧⌝∨∧⌝∨∧⌝∨∧⌝⇔)()()(Q R P R P Q R P Q ∧∧⌝∨⌝∧∧⌝∨∧∧⌝⇔)()()(P R Q P R Q Q R P ⌝∧∧⌝∨∧∧⌝∨⌝∧∧⌝∨)()()(Q R P R P Q R P Q ∧∧⌝∨⌝∧∧⌝∨∧∧⌝⇔)(Q R P ⌝∧∧⌝∨7. 请将下列命题符号化:所有鱼都生活在水中。
答案: —令 F( x ):x 是鱼 W( x ):x 生活在水中))((W(x)F(x)x →∀8. 请将下列命题符号化:存在着不是有理数的实数。
答案:令 Q ( x ):x 是有理数 R ( x ):x 是实数Q(x))x)(R(x)(⌝∧∃^9. 请将下列命题符号化:尽管有人聪明,但并非一切人都聪明。
答案:令M(x):x 是人 C(x):x 是聪明的 则上述命题符号化为!10. 请将下列命题符号化:对于所有的正实数x,y ,都有x+y ≥x 。
答案:令P(x):x 是正实数 S(x,y): x+y ≥x11. 请将下列命题符号化:每个人都要参加一些课外活动。
:)))()((())()((x C x M x x C x M x →⌝∀∧∧∃)),()()((y x S y P x P y x →∧∀∀令P(x):x是人Q(y): y是课外活动S(x,y):x参加y12. 请将下列命题符号化:某些人对某些药物过敏。
答案:令P(x):x是人Q(y): y是药S(x,y):x对y过敏`13. 求)())()((yyRyQxPy∀→→∃的对偶式:答案:14. 求下列谓词公式的前束范式:答案:&15. 证明:),,()),(),((uyxuQzyPzxzPyx∃→∧∃∀∀),,()),(),((uyxuQzyPzxzPyx∃∨∧∃∀⌝∀⇔),,()),(),((uyxuQzyPzxPzyx∃∨⌝∨⌝∀∃∃⇔),,()),(),((ut suQzyPxPyx∃∨⌝∨⌝∀∃∃⇔ωω)),,(),(),((ut sQzyPxPuyx∨⌝∨⌝∃∀∃∃⇔ωω))(),()((yQyxSxPyx∧→∃∀))(),()((yQyxSxPyx∧∧∃∃),,()),(),((uyxuQzyPzxzPyx∃→∧∃∀∀·16. 用反证法证明:x(P(x)∧Q(x)) , xP(x) xQ(x)答案:17. 证明:前提:x(C(x)W(x)∧R(x)), x(C(x)∧Q(x)).结论:x(Q(x)∧R(x)).】答案:(1) x(C(x)∧Q(x)) 前提引入(2) C(a)∧Q(a) (1)ES(3) C(a) (2)化简规则(4) x(C(x)W(x)∧R(x)) 前提引入(5) C(a)W(a)∧R(a) (4)US(6) W(a)∧R(a) (3)(5)假言推理(7) R(a) (6)化简规则《(8) Q(a) (2)化简规则(9) R(a)∧Q(a) (7)(8)合取引入规则(10) x(Q(x)∧R(x)) (9)EG18. 判断:下列命题是否正确答案:(1) √—(2) ×(3) √(4) √(5) √(6) √(7) √(8) ×:19. 列出下列集合的元素(1) {x|x∈N∧t(t∈{2,3}∧x=2t)}(2) {x|x∈N∧t s(t∈{0,1}∧s∈{3,4}∧t<x<s)}(3){x|x∈N∧t(t整除2x≠t)}答案:(1) {4,6}(2) {1,2,3}(3) {3,4,5…}%20.S={0,1,2,3,4,5,6,7,8,9},A={2,4,5,6,8}B={1,4,5,9},C={x|x∈Z+, 2≤x≤5}答案:)21. 一个学校有507,292,312和344个学生分别选择了A,B,C,D四门课程。
有14人选了A 和B,213人选了A和D,211人选了B和C ,43人选了C和D。
没有学生同时选择A和C,也没有学生同时选择B和D。
问共有多少学生在这四门课程中选了课答案:解:画文氏图280+87+38+88 + 14+211+213+43=97422. 分别求下列集合的幂集((1) Ø(2){Ø} (3){1,{Ø,1}}答案:解:(1) ρ(Ø)={Ø} 空集Ø的幂集的基数为1(2) ρ({Ø})={Ø,{Ø} } 幂集的基数为2(3) ρ({1,{Ø,1}})={Ø,{1},{{Ø,1}},{1,{Ø,1}}}23.A={0,1},B={1,2},C={3,4,5},求A×B, B×A, A×B×C, A2, C2 .@答案:A×B={(0,1),(0,2),(1,1),(1,2)}B×A={(1,0),(2,0),(1,1),(2,1)}A×B×C={ (0,1,3), (0,1,4), (0,1,5), (0,2,3), (0,2,4), (0,2,5), (1,1,3), (1,1,4), (1,1,5), (1,2,3), (1,2,4), (1,2,5)}A2 ={ (0,0), (0,1), (1,0), (1,1)}C2 ={ (3,3), (3,4), (3,5), (4,3), (4,4),(4,5),(5,3), (5,4),(5,5)}24.%1. 设A={{1,2,3}, {4,5}, {6,7,8}},下列选项正确的是(C)A. 1∈AB. {1,2,3} AC. {{4,5}} AD. Ø∈A2. 设A={x|x3 –x=0}, B={x|x2 – 4<0,x∈z},C={x|y=2x-1},D={x|x+y=5, xy=6}则有(A)A. A=BB. A=CC. C=DD. C=A&25. 求关系的定义域和值域:设A = {2,4,6,8},R是A上的小于关系,即当a, b∈A且a< b时,(a, b)∈R,求R及D( R ),C( R )答案:R = {(2,4),(2,6),(2,8),(4,6),(4,8),(6,8)}.R的定义域D( R ) ={2,4,6},R的值域C( R ) = {4,6,8}。
26. 设A = {a, b, c, d },求A上的恒等关系。
【答案:I A= {(a, a), (b, b), (c, c), (d, d)}。
27. 设A = {1,2,3,4,5}, R是A上的小于等于关系, 即当a ≤b时, (a, b) ∈R。
求R的关系矩阵和关系图。
答案:解:易知A上的小于等于关系为R = {(1,1),(1,2),(1,3),(1,4),(1,5),(2,2),(2,3), (2,4),(2,5),(3,3),(3,4),(3,5),(4,4),(4,5),(5,5)}其关系矩阵为<28. X={a,b,c},Y={1,2},关系R={(a,1),(b,2),(c,1)} S={(a,1),(b,1),(c,1)}、求R∪S、R∩S和R的补答案:29. 设A={1,2,3},B ={a, b, c, d},C ={x, y, z},R是A到B的二元关系,R = {(1, a), (1, b), (2, b), (3, c)},S是B到C的二元关系,S = {(a, x), (b, x), (b, y), (b, z)}。
求复合关系RοS的关系矩阵.答案:、30.答案:31. 设A = {a,b,c},R是A上的二元关系,R = {(a,a), (b,b), (a,b), (a,c), (c,a)},问:R是自反⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=111111111111111RM的吗是反自反的吗是对称的吗是反对称的吗是可传递的吗 答案:由于c ∈A ,而(c,c) ,所以R 不是自反的。
×? 由于(a,a)∈R ,(b,b)∈R ,所以R 不是反自反的。
×由于(a,b)∈R ,而(b,a) ,所以R 不是对称的。
×由于(a,c)∈R ,且(c,a)∈R ,所以R 不是反对称的。
×由于(c,a)∈R ,且(a,c)∈R ,但(c,c) ,所以R 不是可传递的。
×32.设A={1,2,3},分析A 上的下述5个关系具有哪些性质: ¥ L={<1,1>,<1,2>,<2,1>,<2,2>,<3,3>} N={<1,3>,<2,3>}S={<1,2>,<2,1>,<1,3>} G={<1,1>,<1,2>,<2,3>}答案:33. 设A = {a, b, c, d},A 上的关系,R = {(a, b), (b, a), (b, c), (c, d)} 求r(R)、s(R)、t(R) )答案:!34. A={a,b,c}, R={(a,b),(b,c),(c,a)},求r(R), S(R)和t(R) 答案:R ∉R ∉R ∉c)}(d,b),d),(c,(c,c),(b,a),(b,b),{(a,c)}(d,b),(c,b),(a,a),{(b,d)}(c,c),(b,a),(b,b),{(a,R R S(R)d)}(d,c),b),(c,(b,a),(a,d),(c,c),(b,a),(b,b),{(a,I R r(R)A===== ~234232432R d)}(b,b),(b,c),(a,a),{(a,R R R c)}(b,a),(b,d),(a,b),{(a,R R R d)}(b,b),(b,c),(a,a),{(a,R R R 而RR R R t(R)========!35. A={1,2,3,4},R={(1,1),(1,2),(1,4),(2,1),(2,2),(3,3),(4,1),(4,4)},判断R是否是等价的。