雷诺数与粗糙度对摩擦系数的影响(化工基础)
《化工基础学习知识原理》实验思考题题目及其规范标准答案

实验一流体流动阻力测定1、倒∪型压差计的平衡旋塞和排气旋塞起什么作用? 怎样使用?平衡旋塞是打开后,可以进水检查是否有气泡存在,而且能控制液体在U型管中的流量而排气旋塞,主要用于液柱调零的时候使用的,使管内形成气-水柱操作方法如下:在流量为零条件下,打开光滑管测压进水阀和回水阀,旋开倒置U型管底部中间的两个进水阀,检查导压管内是否有气泡存在。
若倒置U型管内液柱高度差不为零,则表明导压管内存在气泡,需要进行赶气泡操作。
开大流量,使倒置U型管内液体充分流动,以赶出管路内的气泡;若认为气泡已赶净,将流量阀关闭;慢慢旋开倒置U型管上部的放空阀,打开底部左右两端的放水阀,使液柱降至零点上下时马上关闭,管内形成气-水柱,此时管内液柱高度差应为零。
然后关闭上部两个放空阀。
2、如何检验测试系统内的空气已经排除干净?在流量为零条件下,打开光滑管测压进水阀和回水阀,旋开倒置U型管底部中间的两个进水阀。
若倒置U型管内液柱高度差不为零,则表明导压管内存在气泡,需要进行赶气泡操作。
知道,U型管高度差为零时,表示气泡已经排干净。
3、U型压差计的零位应如何调节?操作方法如下:在流量为零条件下,打开光滑管测压进水阀和回水阀,旋开倒置U型管底部中间的两个进水阀,检查导压管内是否有气泡存在。
若倒置U型管内液柱高度差不为零,则表明导压管内存在气泡,需要进行赶气泡操作。
开大流量,使倒置U型管内液体充分流动,以赶出管路内的气泡;若认为气泡已赶净,将流量阀关闭;慢慢旋开倒置U型管上部的放空阀,打开底部左右两端的放水阀,使液柱降至零点上下时马上关闭,管内形成气-水柱,此时管内液柱高度差应为零。
然后关闭上部两个放空阀。
4、测压孔的大小和位置、测压导管的粗细和长短对实验有无影响?为什么?有,有影响。
跟据公式hf=Wf/g=λlu平方/2d也就是范宁公式,是沿程损失的计算公式。
因此,根据公式,测压孔的长度,还有直径,都是影响测压的因素。
再根据伯努利方程测压孔的位置,大小都会对实验有影响。
已阅4-化工基础第一章(流体在管内的流动阻力损失)2008

——流动阻力产生的条件(外因)
2013-6-28
三、阻力的分类
流动阻力的大小与流体本身的物理性质、流动状况及壁面
的形状等因素有关。 化工管路系统主要由两部分组成,一部分是直管,另一部
分是管件、阀门等。相应流体流动阻力也分为两种: (1)直管阻力(沿程阻力)——流体流经一定管径的直管时 所产生的阻力 ,是由于内部的粘性力导致的能量消耗。
2013-6-28
2、湍流时的准数关系式
经分析,影响湍流过程的阻力因素为:
Δ p=f(d,l,u,ρ ,μ ,ε )
若用幂函数(雷莱指数式)来表示即:
p Kd l u
a b c d e
f
经因次分析后,可得到:
p l K 2 u d
2013-6-28
b
du d
的1.75次方成正比。
2013-6-28
顾毓珍式
0.500 0.0056 0.32 Re
适用范围Re=3×103~1×106 对于粗糙管 尼库拉则与卡门公式
1
上式适用于
2013-6-28
2 lg
d /
d
1.14
0.005
46 / Re 0.38
在计算过程中,为使用方便,一般将实验数据进行综合整
理,以ε/d为参数,标绘λ-Re关系曲线,由Re及ε/d值便可查得
λ值。
图中可划分为四个区域 。
2013-6-28
2013-6-28
不同区域λ的影响因素
阻力平方区 (完全湍流区) 图中虚线以 上区
四个区
Re hf λ值
滞流区
过渡区
2000~ 4000
化工原理实验讲义(应化)

化⼯原理实验讲义(应化)实验⼀雷诺实验⼀、⽬的与要求1、通过实验了解圆管内流体流动情况,建⽴流型概念。
2、通过流量的测定、雷诺数的计算和圆管内流线的特征,判断流体的流动型态,并测定临界雷诺数。
3、测定流体在圆形直管中层流、湍流的速度分布图。
⼆、实验原理流体作稳态流动时,其流动型态基本分为滞流(层流)、湍流两种,这两种流型的过渡状态称为过渡流。
流体流动的型态与流体的密度、粘度及流道的直径有关。
这可⽤雷诺准数来判断,⼀般为:Re≤2000为滞流Re≥4000为湍流2000三、实验主要仪器及主要技术数据实验主要仪器:雷诺仪、秒表、量筒实验主要数据:实验管道有效长度L=600mm外径d =30mm内径d i=26mm四、实验⽅法1、准备⼯作(1)向墨⽔储瓶中加⼊适量的⽤⽔稀释过的墨⽔。
(2)调整墨⽔细管出⼝的位置,使它位于实验管道的中⼼线上。
(3)轻轻打开墨⽔流量调节夹,使墨⽔从墨⽔咀流出,排出墨⽔管内空⽓,关闭调节夹。
2、雷诺实验过程(1)关闭流量出⼝调节阀,打开储⽔槽进⽔阀,使⾃来⽔充满⽔槽,并使槽内溢流堰具有⼀定的溢流量。
(2)轻轻打开管道出⽔阀门,使流体缓慢流过实验管道,排出管内⽓体。
(3)调节储⽔槽下部的出⽔阀开度,调节储⽔槽液位,使其保持恒定。
(4)缓慢地适当打开墨⽔流量调节夹,墨⽔⾃墨⽔咀流出,待墨线稳定后,即可看出当前⽔流量下实验管道中墨⽔的流线。
根据流线判断流型,并⽤秒表、量筒测定流体流量。
(5)适当的增⼤管道出⽔阀开度,通过调节储⽔槽下部的出⽔阀和进⽔阀控制储⽔槽液位,并维持⼀定的⽔槽溢流板溢流量。
适当调整墨⽔流量,使墨线清晰,稳定后,测定较⼤流量下实验管内的流动状况。
如此反复,可测得⼀系列不同流量下的流型,并判断临界流型。
3、速度分布图的测定与上述雷诺数测定相似,通过流量调节及墨线线形的判断,分别判定流型为层流、湍流时对应的管道出⽔阀的开度范围。
⾸先使储⽔槽液位恒定(此时,可通过调节储⽔槽的进⼝阀和出⼝阀使液位稳定),瞬时开关墨⽔流量调节夹,在墨⽔咀出⼝处形成⼀个墨团,观察墨团端⾯特征,打开管道出⽔阀(使出⽔阀开度在所测定流型的开度范围),观察墨团端⾯随流体流动时的变化,记下管道末端墨团端⾯的形态后,通过调节储⽔槽的进⼝阀和出⼝阀调节储槽液位,使其恒定。
化工原理雷诺实验报告doc

化工原理雷诺实验报告篇一:化工原理实验报告(流体阻力)摘要:本实验通过测定流体在不同管路中流动时的流量qv、测压点之间的压强差ΔP,结合已知的管路的内径、长度等数据,应用机械能守恒式算出不同管路的λ‐Re变化关系及突然扩大管的?-Re关系。
从实验数据分析可知,光滑管、粗糙管的摩擦阻力系数随Re增大而减小,并且光滑管的摩擦阻力系数较好地满足Blasuis关系式:?? 。
突然扩大管的局部阻力系数随Re的变化而变化。
一、目的及任务①掌握测定流体流动阻力实验的一般实验方法。
②测定直管的摩擦阻力系数λ及突然扩大管和阀门的局部阻力系数ξ。
③验证湍流区内摩擦系数λ为雷诺数Re 和相对粗糙度的函数。
④将所得光滑管λ-Re方程与Blasius方程相比较。
二、基本原理1. 直管摩擦阻力不可压缩流体,在圆形直管中做稳定流动时,由于黏性和涡流的作用产生摩擦阻力;流体在流过突然扩大、弯头等管件时,由于流体运动的速度和方向突然变化,产生局部阻力。
影响流体阻力的因素较多,在工程上通常采用量纲分析方法简化实验,得到在一定条件下具有普遍意义的结果,其方法如下:流体流动阻力与流体的性质,流体流经处的几何尺寸以及流动状态相关,可表示为:△p=?(d,l,u,ρ, μ, ε) 引入下列无量纲数群。
雷诺数 Re?相对粗糙度管子长径比从而得到lddu???d??(du??l,,) ?dd?p?u2令???(Re,)d??p??ld?(Re,?ud)22可得到摩擦阻力系数与压头损失之间的关系,这种关系可用实验方法直接测定。
hf??p???ld?u22式中hf——直管阻力,J/kg;——被测管长,m; d——被测管内径,m; u——平均流速,m/s; ?——摩擦阻力系数。
当流体在一管径为d的圆形管中流动时,选取两个截面,用U形压差计测出这两个截面间的静压强差,即为流体流过两截面间的流动阻力。
根据伯努利方程找出静压强差和摩擦阻力系数的关系式,即可求出摩擦阻力系数。
化工原理第一章流体流动知识点总结

第一章流体流动一、流体静力学:压强,密度,静力学方程二、流体基本方程:流速流量,连续性方程,伯努利方程三、流体流动现象:牛顿粘性定律,雷诺数,速度分布四、摩擦阻力损失:直管,局部,总阻力,当量直径五、流量的测定:测速管,孔板流量计,文丘里流量计六、离心泵:概述,特性曲线,气蚀现象和安装高度8■绝对压力:以绝对真空为基准测得的压力。
■表压/真空度 :以大气压为基准测得的压力。
表 压 = 绝对压力 - 大气压力真空度 = 大气压力 - 绝对压力1.1流体静力学1.流体压力/压强表示方法绝对压力绝对压力绝对真空表压真空度1p 2p 大气压标准大气压:1atm = 1.013×105Pa =760mmHg =10.33m H 2O112.流体的密度Vm =ρ①单组分密度),(T p f =ρ■液体:密度仅随温度变化(极高压力除外),其变化关系可从手册中查得。
■气体:当压力不太高、温度不太低时,可按理想气体状态方程计算注意:手册中查得的气体密度均为一定压力与温度下之值,若条件不同,则需进行换算。
②混合物的密度■ 混合气体:各组分在混合前后质量不变,则有nn 2111m φρφρφρρ+++= RTpM m m=ρnn 2211m y M y M y M M +++= ■混合液体:假设各组分在混合前后体积不变,则有nmn12121w w w ρρρρ=+++①表达式—重力场中对液柱进行受力分析:液柱处于静止时,上述三力的合力为零:■下端面所受总压力 A p P 22=方向向上■上端面所受总压力 A p P 11=方向向下■液柱的重力)(21z z gA G -=ρ方向向下p 0p 2p 1z 1z 2G3.流体静力学基本方程式g z p g z p 2211+=+ρρ能量形式)(2112z z g p p -+=ρ压力形式②讨论:■适用范围:适用于重力场中静止、连续的同种不可压缩性流体;■物理意义:在同一静止流体中,处在不同位置流体的位能和静压能各不相同,但二者可以转换,其总和保持不变。
化工原理讲稿(上册)-应化第1章流体流动3

⒋湍流摩擦系数-因次分析法的应用 :
实验证明:d、u、ρ 、μ 一定时,ΔPf∝l/d
Pf du l K 2 u d d
e g
e g
l u 2 Pf 2KRe d d 2
而:
Pf
1 u umax 2
(二)层流时的速度分布和摩擦系数
32 lu Pf 2 d
——哈根—泊谡叶公式
32 2 l u 2 64 l u 2 64 l u 2 Pf . . . . . . du d 2 ud d 2 Re d 2
64 Re
(三)湍流时的速度分布与摩擦系数 ⒈湍流速度分布: 湍流流动加剧了管内流体的混合 与传递,使截面上的速度分布更 趋平坦。 速度分布符合1/n 次方规律:
四、直管阻力损失
(一) 计算通式
因摩擦阻力而引起的能量损失:
l u2 hf d 2
J/k g
--范宁公式
λ是无因次的系数,称为摩擦阻力系数。
(一) 计算通式
流体的压力损失:
l u 2 p f d 2
J/m3(pa)
流体的压头损失:
l u2 Hf d 2g
u↑, μ ↓ → 惯性力主导 → 湍流 u↓, μ ↑ → 粘性力主导 → 层流
二、 边界层概念
1.平壁边界层的形成及发展
u0
u0
边界层界限
u0
y
x
定义:通常把从流速为0的壁面处至流速等于主体流 速的99%处之间的区域称为边界层。
1.平壁边界层的形成及发展
判据:
流型由Rex= xu0ρ /μ 值来决定,对于光滑的平板壁面:
Pf K d l u
摩擦系数,雷诺数,相对粗糙度之间的关系

摩擦系数,雷诺数,相对粗糙度之间的关系
摩擦系数、雷诺数和相对粗糙度之间是有关系的,他们之间的关系是紧密而复杂的。
摩擦系数是衡量两种物质接触时在同一受力方向下形成的摩擦力大小的系数,它可以通过实验获得,不仅取决于摩擦材料的物理性质,还取决于接触面的形状、接触面的表面粗糙度,工件受力大小、接触温度和介质等。
雷诺数也叫粗糙度指数,是用来衡量表面的粗糙度的一个指标,它涉及到四种不同参数:最大凹隙深度、凹隙数、表面粗糙系数和累计深度,它们能反映表面的细节尺寸,以及表面的凹凸程度和空间分布情况。
相对粗糙度是表面粗糙度单位长度上相关的参数,它表示表面上凹隙和凸起尺寸分布情况,并可以用多种技术手段测量出来,因此它已成为提高表面质量的重要参数之一。
摩擦系数、雷诺数和相对粗糙度之间的关系可以从摩擦力的三要素入手来说明,它们是接触面物质的性质、表面粗糙度和受力大小,它们都会直接影响摩擦系数的值。
首先说接触表面物质,可以简单粗暴地分为金属和非金属两大类,不同的表面粗糙度和结构会影响到摩擦力,有时雷诺数可以用来衡量表面粗糙度,它可以反映表面细节尺寸和空间分布;另一个就是受力大小,摩擦力和受力之间也存在一定的关系,受力越大,摩擦力也越大。
在摩擦力的三要素中,有一个是相对粗糙度,它是表面凹隙和凸起尺寸分布的参数,它可以用不同的技术手段测量出来,并且会和摩擦系数之间存在一定的关系。
研究表明,随着相对粗糙度的增加,摩擦系数也会有所增加。
所以我们可以得出的结
论是,摩擦系数、雷诺数和相对粗糙度之间是存在关系的,他们之间的关系是相互影响,且有利有弊的。
若想提高摩擦系数,就必须从多方面入手,调整接触表面物质、表面粗糙度和受力大小,还要保持表面相对粗糙度,才能使摩擦系数达到最佳状态。
化工原理复习题

化⼯原理复习题名词解释1.单元操作:在各种化⼯⽣产过程中,除化学反应外的其余物理操作。
如流体的流动与输送,沉降,过滤,传热,蒸发,结晶等。
2.真空度:当被测流体的绝对压强⼩于外界⼤⽓压强时,真空表的数值。
它表⽰所测压⼒的实际值⽐⼤⽓压⼒低多少,即真空度=⼤⽓压强-绝对压强 = -表压强3.⽜顿流体:符合⽜顿黏性定律的液体称之为⽜顿流体。
所有⽓体和⼤多数低相对分⼦质量液体均属于⽜顿流体,如⽔、空⽓等4.层流流动:是流体两种基本流动形态之⼀,当管内流动的Re<2000时,流体质点在管内呈平⾏直线流动,⽆不规则运动和相互碰撞及混杂。
5.理想流体:粘度为零的流体。
实际⾃然中并不存在,引⼊理想流体的概念,对研究实际流体起重要作⽤。
6.泵的特性曲线:泵在⼀定的转速下,压头、功率、效率与流量之间的关系曲线。
7.流体边界层:当流体流经固体壁⾯时,由于流体具有黏度,在垂直于流体流动的⽅向上流速逐渐减弱,受壁⾯影响⽽存在速度梯度的流体层。
8.泵的⼯作点:泵的特性曲线和管路特性曲线的交点。
9.泵的安装⾼度:泵的吸⼊⼝轴线与贮液槽液⾯间的垂直距离(Zs, m )。
泵的安装⾼度直接影响到泵的吸液性能。
)(22m H g u g p p z fs s s a s -=-=ρ g u s 22,Hfs 变化不⼤,P a ⼀定,P s 越⼩,安装⾼度越⼤。
10.泵的压头:也称泵的扬程,是泵给予单位重量(1N)液体的有效能量,其单位为m 。
f Hg u g p z H +?+?+?=22ρ, (m )11.边界层分离:当流体沿曲⾯流动或流动中遇障碍物时,不论是层流或湍流,会发⽣边界层脱离壁⾯的现象。
dydu =τ12.完全湍流区:λ-Re 曲线趋于⽔平线,及摩擦系数λ只与ε/d 有关,⽽与Re 准数⽆关的⼀个区域,与h f 成正⽐,所以⼜称阻⼒平⽅区。
13.风压HT :单位体积(1m 3 )的⽓体流过通风机所获得的机械能,其单位为P a ( J/m 3或N/ m 2),习惯上还⽤mmH 2O 表⽰。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
流体存在流动边界层,最近壁为层流底层,层流底层与管体的粗糙相对高度比较如下图:
du
u
层流时,粗糙程度影响不大;湍流时,粗糙度的影响取决于流体湍流的程度。当 Re 数 增大时,湍流程度越大,层流底层厚度越小,暴露在湍流主体区的粗糙峰越多,如图 2 所示, ɛ/d 对 λ 的影响越大。 (2)Re 数对 λ 的影响:
4 68 2 4 68 2
105
106
du 雷诺数 Re =
0.05 0.04
0.03 0.02 0.015
0.01 0.008 0.006
0.004
d 0.002
0.001 0.0008 0.0006 0.0004
0.0002
0.0001 0.00005
4 68 2 107
0.00001 4 68
根据公式: 对于光滑管,λ = 0.3164Re−0.25;
对于粗糙管λ−1/2
=
1.74
−
2lg[2ɛ
d
+
R1e8λ.−712];
当 Re 数更大时,流动进入了阻力平方区(也称为完全湍流区),在阻力平方区,因 Re
数很大,科尔布鲁克式中的R1e8λ.−712项很小,可以忽略,于是λ−1/2
=
1.74
−
2lg2ɛ,该区域的各
d
曲线趋近于水平线,可以说 Re 数对 λ 无影响。
根据公式可得出摩擦阻力系数 λ 与 Re 的关系图(如下)
0.10 0.09 0.08 0.07 0.06 0.05
0.04
0.03 0.025
0.020.0150.01 0.0090.008
2 4 68 2
103
104
108
0.000005 0.000001
可看出,Re 数较小时,是一条直线,Re 数大于 4000 时,对于不同的ɛ/d 都有不同的线, 而每一条曲线都随着 Re 数的增大逐渐趋于平缓,即是 Re 对 λ 的影响越来越弱。