转轮热回收
高温热回收转轮

高温热回收转轮
高温热回收转轮是一种用于热能回收的设备,它通过转轮的旋转将废气中的热量传递给新风或净化气体,从而实现热能的再利用。
高温热回收转轮通常由一个转轮和一个外壳组成。
转轮内部有许多平行的通道,废气和新风或净化气体分别通过这些通道。
当转轮旋转时,通道中的废气和新风或净化气体交替接触,通过热交换实现热能的传递。
高温热回收转轮的优点包括高效的热能回收、较低的运行成本、紧凑的结构和较长的使用寿命。
它可以应用于各种工业领域,如化工、制药、食品加工、造纸等,帮助企业节约能源和降低生产成本。
在选择高温热回收转轮时,需要考虑转轮的材质、热交换效率、转轮的尺寸和转速等因素。
此外,还需要根据实际情况进行系统设计和优化,以确保热能回收的效果和系统的稳定性。
总的来说,高温热回收转轮是一种有效的热能回收设备,可以帮助企业提高能源利用率,减少能源浪费,降低生产成本,同时也有助于减少对环境的影响。
热回收转轮 操作和维护手册说明书

热回收转轮操作和维护手册DTR-VS-ver.5.0 (09.2017)IEC/EN 60439-1 +AC Low voltage switchgears and controllersVTS 保留非预先通知而修改的权利目录1. 介绍 (2)2. 技术数据 (3)2.1. 驱动单元基本参数 (3)2.1.1. 结构 (3)2.1.2. 驱动器操作 (3)2.2. 技术规范 (4)2.2.1. 结构 (4)2.2.2. 操作参数 (4)2.2.3. 元器件的额定参数 (4)2.3. 驱动单元的安装和配置 (5)2.4. 含变频器和VTS自控的驱动单元安装和配置 (5)2.4.1. 热回收转轮驱动回路的接线图 (5)2.4.2. 驱动单元的安装和配置 (6)2.4.3. 电机防护 (7)2.5. 自控系统的驱动单元安装和配置 (7)2.5.1. 热回收转轮驱动回路的接线图 (7)2.5.2. 热回收转轮驱动单元的控制 (8)2.5.3. 变频器配置例子 (8)2.5.4. 电机保护 (9)2.6. 系统中带有EC调速器的驱动单元安装和配置 (10)2.6.1. EC调节器的ModBus RTU/RS485参数 (11)2.6.2. 通过MODBUS设置旋转速度 (12)2.7. 安装建议 (13)3. 保存和运输 (14)4. 启动 (14)5. 维护 (15)5.1. 热回收转轮和驱动皮带 (15)5.2. 转轮密封 (16)1. 介绍本文档描述了关于热回收转轮的参数、运输、保管和服务内容。
●在进行任何动作前,务必详细阅读本文档。
2. 技术数据2.1. 驱动单元基本参数2.1.1. 结构本驱动单元是每个热回收转轮的完整部件。
基本构成如下:●变频器/EC电机控制器(取决于不同的版本或区域)●热回收轮芯●轮芯驱动皮带传动装置●电机减速器-马达带有减速齿轮2.1.2. 驱动器操作驱动单元用于启动并平缓地控制热回收转轮,使得速度在3-10rpm范围内。
转轮热回收原理

转轮热回收原理转轮热回收,也称为热轮回收,是一种能够在能源利用过程中提高能效的技术。
它利用转轮热交换器将烟气中的热量回收,再利用于预热空气或水等介质,从而实现能源的有效利用和节能减排。
转轮热回收原理的核心是热轮,热轮是一种由多个热传导材料构成的旋转式热交换器。
其外形类似于车轮,由多个轮辐组成,每个轮辐上都安装有热传导材料。
热轮通过电机驱动以较低的转速旋转,当烟气通过热轮时,烟气中的热量会被传导到热轮上。
转轮热回收的工作过程可以分为两个阶段:吸热阶段和放热阶段。
在吸热阶段,烟气从燃烧设备中产生,并通过热轮的吸热侧流过。
烟气中的高温热量会被传导到热轮上,使得热轮温度升高。
同时,燃烧设备需要用到的空气或水等介质在热轮的吸热作用下被预热,从而降低了燃料的消耗量。
在放热阶段,热轮上吸收的热量会被传导到热轮的放热侧。
这一侧的空气或水等介质会经过热轮的放热作用而升温,提高了其温度。
这些预热后的介质可以用于供暖、热水等需求,从而减少了能源的消耗。
整个转轮热回收过程是循环进行的,不断地将烟气中的热量回收并利用。
通过转轮的转动,热轮的吸热侧和放热侧不断地进行交替,实现了热量的传递和能量的回收。
转轮热回收技术具有以下优势:1. 高效节能:通过回收烟气中的热量,减少了能源的浪费,提高了能源的利用效率,从而达到节能的目的。
2. 环保减排:转轮热回收可以有效地减少燃烧设备产生的废气中的有害物质的排放,降低了对环境的污染。
3. 经济可行:虽然转轮热回收技术的设备和运行成本相对较高,但由于其高效节能的特点,可以在较短的时间内实现投资回收,从而带来经济效益。
4. 适用性广泛:转轮热回收技术可以应用于各种燃烧设备,例如锅炉、热风炉、干燥设备等,适用范围较广。
虽然转轮热回收技术在能源利用中有着广泛的应用前景,但也存在一些局限性。
例如,热轮的材料选择和设计需要考虑到高温、腐蚀等因素,增加了设备的复杂度和成本;同时,烟气中的颗粒物等污染物会对热轮的传热效果产生影响,需要定期清洗和维护。
热回收转轮原理

热回收转轮原理
热回收转轮的工作原理是利用转轮的旋转,在室内外空气交换时回收由于换气而损失的能量,以达到节能的效果。
具体来说,转轮作为蓄热芯体,新风和排风以相反的方向交替流过转轮。
转轮在电动机的驱动下旋转,排风从热交换器的上侧通过转轮排到室外,同时新风从热交换器的下侧引入,通过转轮时获取转轮中所聚集的热量和湿气,被预热和加湿。
全热回收转轮的材质一般为具有吸湿表面的铝箔材料或其他蓄热吸湿材料,能够同时回收显热和潜热,实现全热交换。
而热管热回收则是利用封闭的金属管(管壳)内的少量工作介质(冷媒)和毛细结构(管芯),在管内的空气及其他杂物排除在外的情况下,利用热管内介质的感应温度蒸发(吸热)和到达另一端冷凝(放热)沿管芯回流的过程,形成循环,实现热量的回收。
以上信息仅供参考,如需了解更多信息,建议查阅相关书籍或咨询专业人士。
转轮热回收的工作原理

转轮热回收的工作原理
转轮热回收是一种用于提高能源效率的热回收技术,其工作原
理如下:
首先,转轮热回收器通常安装在建筑物的通风系统中。
当建筑
物内部需要通风换气时,新鲜空气通过一个旋转的热交换轮(也称
为热回收轮)进入建筑物。
同时,建筑物内的废弃空气也通过另一
侧的转轮排出。
在转轮热回收器内部,新鲜空气和废弃空气在旋转的热交换轮
上交错流动。
这个热交换轮通常由吸湿性能良好的材料制成,比如
特殊的塑料或者金属。
当废弃空气中含有的热量和湿气传递到热交
换轮上时,这些热量和湿气被吸收并储存起来。
接下来,当新鲜空气经过热交换轮时,它会吸收之前储存的热
量和湿气。
这样一来,建筑物内部的温度和湿度得到了调节,而且
能源也得到了有效利用,从而减少了采暖和空调系统的能耗。
总的来说,转轮热回收的工作原理就是通过热交换轮将废弃空
气中的热量和湿气传递给新鲜空气,从而实现能源的回收和再利用,
提高建筑物的能源效率。
这种技术在提高室内空气质量的同时,也有助于节能减排,是一种环保节能的热回收方法。
热管、转轮,板换的比较

热管、转轮、板式换热器热回收的比较随着我国经济实力的增长和人民物质文化生活水平的不断提高;高层建筑的迅速发展,高气密化、高隔热化影响到人们的工作和生活环境,人们对室空气品质的要求也越来越高,都渴望拥有一个健康、舒适的室环境,特别是经历了SARS、PM2.5的袭击,人们越来越注重室空气品质,对引进室外新风换气提出了更高的要求,但是换气必然会带来能量的损失,引入新风需要消耗更多的能量,因此需要考虑一种有效的节能方法,通过热回收装置使新风和排风进行热交换。
热交换器是空气调节和余热回收的关键装置。
一、各类热交换器的性能与利用分析目前的热交换器有显热和全热回收两种形式。
不同形式的性能、效率和利用方式,设备费的高低、维护保养的难易也各不相同,它们的综合比较如下表所示:下面介绍几种常用的热交换器。
1. 转轮式全热换热器转轮式换热器的表面为蜂窝状,涂上一层吸附材料作干燥剂。
将转轮置于风道之间,使其分成两部分。
来自空调房间的排风从一侧排出,室外空气以相反的方向从另一侧进入。
为加大换热面积,轮子缓慢旋转(10~12转/分)。
轮子的一半从较热空气中吸收存储热量,旋转到另一侧时,释放热量,使热量发生转移。
附着表面的干燥剂将来自高湿度的空气流里的湿气冷凝后,通过干燥剂吸收,旋转到另一侧时,将湿气释放到低湿度的气流里,这个过程将潜热转移。
换热器旋转体的两侧设有隔板,使新风与排风逆向流动。
转轮芯片用特殊的纸或铝箔制成,其表面涂上吸湿性涂层,形成热、湿交换的载体,它以10-12r/min的速度旋转,先把排风中的冷热量收集在蓄热体(转轮芯)里,然后传递给新风,空气以2.5-3.5m/s的流速通过蓄热体,靠新风与排风的温差和蒸汽分压差来进行热湿交换。
所以,既能回收显热,又能回收潜热。
1)转轮换热器的功能与适用围2)转轮换热器的主要优缺点:3) 影响转轮换热器效率的因素:a. 空气流速:空气流过转轮时的迎风面流速越大,效率越低,反之效率则高,推荐风速2~4m/s。
热回收和除湿

热回收及除湿机原理与设计胡莉萍 南京2010年热回收热回收简介要提高室内空气品质,引进新风是必不可少的, 但在能源日益紧张的今天,新风意味着更多的能耗! 如果在空调系统中安装能量回收装置,把排风中 的能量转移到新风侧,这样就可减少处理新风所需的 能量,达到节能减排的目的。
所以热回收方案越来越 受设计师和业主的青睐!常见的热回收方式1、转轮热回收 2、板式热回收 3、中间热媒热回收 4、热管热回收1、转轮热回收结构和原理:转轮热回收 由转轮、壳体、动力机构、 密封件组成。
是转轮在旋 转过程中让排风与新风以 相逆的方向流过转轮而各 自释放和吸收能量的。
1、转轮热回收特点转轮热回收 优点 1、可回收显热和潜热 2、回收效率高达70 %~90% 3、设计排布简单 4、能应用于 温度较高的场合 1、无法完全避免交叉污染 2、有传动设备, 消耗动力 3、压力损失大缺点1、转轮热回收转轮热回收空调机组示意图回风 22℃22℃28℃排风出风14℃30℃35℃ 35℃ 新风1、转轮热回收选型注意事项1、转轮入口处宜设过滤器,尤其新风侧。
2、针对北方地区冬季新风温度低易冻结,建 议增加预热处理。
3、新排风气流逆向排布利于能量回收。
4、选型建议转轮迎面风速3.5m/s左右,此风 速下转轮的效率和经济性最好 5、因有传动部分,功能段上建议设置中间段 便于维护。
2、板式热回收结构和原理:板式热回收是采用多孔纤维纸 材料或铝箔为基材,对其表面进行特殊处理 后制成单元体,单元体的波纹板交叉叠积, 并用胶使其峰谷与隔板粘结而组成。
有显热 和全热两种,当隔板两侧气流间存在温差 (和水蒸气分压力差)时,两者间就产生传 热(和传质)进程,从而进行显热(全热) 交换。
2、板式热回收全热型----特殊空调纸 显热型----特殊空调铝室内送入的新鲜空气室外排出的污浊空气污浊空气室外的新鲜空气2、板式热回收特点--全热项目 全热型 1、可回收显热和潜热 2、无交叉污染 3、 构造简单,运行安全 4、无传动设备,不消耗 电力 5、小风量设备造价低 1、寿命较短,建议前面排布过滤器 2、大 风量使用时由多个单体拼接,容易漏风,压力 损失也大优点缺点2、板式热回收特点--显热项目 显热型 1、可回收显热、使用寿命长 2、无交 叉污染3、构造简单,运行安全 4、无传动 设备,不消耗电力 5、小风量设备造价低 1、不可回收潜热 2、大风量使用 时由多个单体拼接,容易漏风,压力损失 也大优点缺点2、板式热回收板式热回收空调机组示意图新风 排风排风 新风2、板式热回收-新风换气机/热回收新风机组 天加新风换气机、 热回收新风机组 TFDJ中采用的就 是板式热回收。
转轮式热回收器的工作原理

转轮式热回收器的工作原理转轮式热回收器是一种常见的热回收设备,主要用于对废气中的热能进行回收。
下面将从工作原理、组成部分和应用场景三个方面介绍转轮式热回收器。
工作原理:转轮式热回收器是通过转动热藏贮存材料的热轮来实现热能回收的。
其工作原理可用以下四个步骤概括:1. 烟气进入转轮式热回收器,并从一个侧面进入热轮内部。
2. 热能在热轮与冷凝水之间进行交换。
废气中的高温热能被传导到热轮上,而热轮中的低温热能则被传导到冷凝水上。
3. 热轮继续旋转,将被吸附的废气带到另一个侧面,同时冷凝水也转移到另一个侧面。
4. 在另一个侧面,冷凝水释放热量,同时热轮也回复其最初的温度。
组成部分:转轮式热回收器通常由以下几个组成部分组成:1. 热轮:热轮是转轮式热回收器最重要的组成部分之一,其由高温材料制成,能够吸附和释放热能。
2. 稳定器:稳定器用于确保废气气流能够在热轮上均匀地分布,从而使热轮能够充分利用热能。
3. 侧面板:侧面板用于控制烟气的进出口,能够保证废气稳定进入和流出热轮。
4. 冷凝水系统:冷凝水系统包括水喉和排水管,用于在热轮内部释放吸收的热能。
应用场景:转轮式热回收器适用于需要对工业废气中的热能进行回收和利用的场景,例如钢铁、电力、制药等行业。
在这些场景中,废气的温度通常较高,如果不进行回收的话,会造成能源的浪费和环境的污染。
在转轮式热回收器的应用中,还需根据具体工艺条件选择不同的热轮材料,确保其能够够耐高温、不易腐蚀和安全可靠地工作。
总之,转轮式热回收器是一种有效利用工业废气热能的设备,其工作原理简单而有效,在各种工业生产领域中得到了广泛的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
转轮热回收与乙二醇热回收对比分析
一、转轮热回收和乙二醇热回收工作原理
转轮热回收:以轮芯作为换热媒介,转轮使用定制的蜂窝状金属材料,表面涂有一层特殊等级的吸附材料分子筛干燥剂。
将转轮置于风道之间,从而使其分成两部分。
来自空调房间不新鲜空气从一半转轮排出,室外空气以相反的方向从另一半转轮进入。
同时,轮子缓慢旋转(约20RPM)。
金属层从较热(冷)空气流吸收存储热量(冷量),并释放到较冷(较热)部分,显热发生转移。
附着干燥剂的金属片将来自高湿度的空气流里的湿气冷凝后,通过干燥剂吸收(同时释放热量),再蒸发(吸热),将湿气释放到低湿度的气流里,这个过程将潜热转移。
乙二醇热回收:以换热器和乙二醇溶液作为换热媒介在排风侧将排风中的冷量(热量)通过换热器传递给乙二醇溶液,降低(提高)乙二醇溶液的温度,然后通过循环泵将被冷却(加热)的乙二醇溶液输送到新风侧的换热器中,降低(提高)新风温度,减少系统的负荷和整个空调系统的运行成本。
二、关键部件外形图
转轮热回收转轮:乙二醇热回收换热器
三、关键部件材质
转轮热回收转轮:
其特点如下:
1、选择性吸附分子筛技术:热回收转轮的基材采用铝箔材料,在铝箔表面覆盖不可移动式分子筛干燥剂;相比采用其他材料覆盖在铝箔上的其他热回收转轮,分子筛热回收转轮在铝箔表面覆盖低微孔尺寸佛石干燥剂,仅容许水分子通过,拒绝所有其他污染物,其结果是
污染物只留在排风中。
2、转轮内置净化装置:消除了交叉污染,做到新风和排风气流的隔离,防止新风排风的交叉污染;净化装置具备严格的空气流隔离功能,以防止细菌、灰尘和污染物从排风侧携带到新风侧,净化装置和迷宫式密封系统把交叉污染的排风浓度限制在0.1%。
3、清洁扇:转轮采用可调整式内置清洁扇清洗部件;免除清洁烦恼,降低运行成本。
乙二醇热回收换热器:
排风侧的换热器和新风侧的换热器组成,两换热器直接通过乙二醇管道相连,通过循环泵循环。
由于有载冷剂乙二醇的存在,乙二醇有一定的挥发性及有毒性,且是可燃性液体,存在泄露隐患。
四、与空调系统配套情况
转轮热回收:
由于转轮热回收整体结构简单,无连接件。
则与空调系统配套较为方便,可作为空调箱的一个功能段可以上下安装也可以左右安装。
可以承收5.5m/s的面风速,占用空间小。
乙二醇热回收:
由于连接部件较多,结构复杂,连接件较多。
则与空调系统配套较复杂,连通管道的泄漏,换热媒介的质量,换热器的质量,管道循环泵的质量,均可形成空调整套系统隐患。
可作为空调箱的一个功能段可以上下安装也可以左右安装。
比较适用于送排风须完全隔离的(甚至是远距离的末端处理)送排风系统。
可承受的最大面风速为2.8m/s,占用空间大。
五、换热效率
转轮热回收:
中间换热媒介单一,换热效率高,在高温高湿条件下显热效率和潜热效率到均可达到70%以上,最高可达80%(焓换效率)。
乙二醇热回收:
间接能量回收(显热)型,中间换热媒介较多,换热效率低,显热效率一般仅为30-40%,最高仅能达到45%基本上无潜热回收(温度交换效率)。
下面就本工程单台机组冬季运行时作经济分析:
转轮热回收换热效率按70%,乙二醇热回收换热效率按40%,其他参数暂定如下:
另外北京地区冬季室外空调计算干球温度-12℃,相对湿度45%,相对应的焓值为-10.68 kJ/kg;冬季室内空调设计干球温度按30℃,相对湿度60%,焓值71.79kJ/kg。
空气处理过程如下:
本机为组合式空调机组,型号为ZK100,按功能段组合,上层顺气流方向(从右向左)依次:回风段、挡水段、板式活性炭过滤段、旁通(中间)段、转轮热回收段、排风机段;下层顺气流方向(从左向右)依次:新风进风段、板式初效过滤段、袋式中效过滤段、中间段、转轮热回收段、混合段、送风机段、均流段、加热段、加湿段、顶出风段。
其功能段布置如下图所示。
转轮热回收:
计算公式:
焓换效率
100⨯--=
RA
OA SA OA i i i i i η 式中:i η:焓换效率(%); OA i :新风进风空气焓值[kJ/kg(干)];
SA i :新风送风空气焓值[kJ/kg(干)];
RA i :排风进风空气焓值[kJ/kg(干)]。
暂且RA i 为冬季室内空调设计状态点焓值为71.79kJ/kg ,G 为新风量100000m3/h ,
OA i =-10.68 kJ/kg ,RA i =71.79kJ/kg ,
i η=70%,则SA i =i η*(RA i -OA i )+OA i =70%*(71.79-(-10.68))+(-10.68)=57.73-10.68=47.05 kJ/kg
则热回收的热量为:G*1.2*(SA i -OA i )/3600=100000*1.2*(57.73-(-10.68))/3600=1568.3KW 。
其中:热回收了部分水份,回收的水份为:(湿度交换效率按50%)
湿度交换效率
100⨯--=
RA OA SA OA x x x x x η
式中:x η:湿度交换效率(%); OA x :新风进风绝对湿度[g/kg(干)];
SA x :新风送风绝对湿度[g/kg(干)];
RA x :排风进风绝对湿度[g/kg(干)]。
暂且RA x 为冬季室内空调设计状态点绝对湿度16.23 g/kg(干)(相对湿度60%),G 为新风量100000m3/h ,OA x =0.58 g/kg(干)(相对湿度45%),RA x =16.23 g/kg(干)(相对湿度60%),x η=50%则SA x =x η*(RA x -OA x )+OA
i =50%*(16.23-0.58)+0.58=7.82+0.58=8.4 g/kg(干) 则热回收的水份为:G*1.2*( SA x -OA x )/1000=100000*1.2*(8.4-0.58)/1000=260 kg/h 如果转轮段改为乙二醇热回收段:
计算公式:
温度交换效率
1001⨯--=
RA OA SA OA t t t t η
式中:1η:温度交换效率(%); OA t :新风进风干球温度(℃);
SA t :新风出风干球温度(℃);
RA t :排风进风干球温度(℃)。
暂且RA t 为冬季室内空调设计状态点温度为30℃,G 为新风量100000m3/h , OA t =-12℃,RA t =30℃,1η=40%,则SA t =1η*(RA t -OA t )+OA t =40%*(30-(-12))+(-12)=16.8-12=4.8℃
则热回收的热量为:c*m*△t =1.01*(100000*1.2/3600)*(4.8-(-12))=565.6KW
根据以上数据最终计算结果为:转轮热回收的热量为1568.3KW ,而乙二醇热回收的热量为565.6KW ,二者相差为1568.3-565.6=1002.7KW ,乙二醇热回收实际热回收效率相当于转轮的565.6/1568.3*100%=36%,同时转轮热回收了部分水份,约为260 kg/h 。
再简单的从100000m3/h 新风量的热回收经济上分析,二者相差1002.7KW ,根据实际工作情况,空调随时启用,可认为24小时不间断运行,空调供暖风时间为11月15日到次年3月15日,约120天,则120*24*1002.7=2887776KW.H ;260 kg/h 水份转化成260 kg/h 蒸汽,则260*24*120=748800kg/h 。
以上再按转化成电热水功率(热效率按95%),则耗电为:2887776/95%=3039764 KW.H ,748800*0.7/95%=551747 KW.H ,则全部按照北京民用电费计算(0.48元/ KW.H ),则一个冬季运行费用节约:(3039764+551747)*0.48=1723925元
以上为本工程单台机组(新风量100000m3/h ,室内参数30℃,相对湿度60%)数据分析,可见转轮热回收比乙二醇热回收单台机组每个冬季节约1723925元运行费用,乙二醇热回收只是转轮热回收的36%。
六、维修方便程度
转轮热回收:
从结构和工作原理上看维修、维护非常方便。
乙二醇热回收:从结构和工作原理上看,维护、维修均比较困难,维护费用高,易存在隐患。
七、结论
从以上两种热回收的工作原理、结构、材质、换热效率及维修定性定量上分析可知:在此项目热回收上转轮热回收明显优于乙二醇热回收(乙二醇热回收比较适用于送排风须完全隔离的远距离末端处理的送排风系统)。