不等式exp(x)-1...引申出的一个不等式及其应用

不等式exp(x)-1...引申出的一个不等式及其应用
不等式exp(x)-1...引申出的一个不等式及其应用

不等式1x e x -≥引申出的一个不等式及其应用

王永洪1

(北京市海淀区北京理工大学机电学院,100081)

导数公式()x

x

e e '=重要极限01

lim 1x x e x

→-=,

可导函数的极值定理得到了不等式1x e x -≥,而围绕这个形式上简单的不等式及其证明过程了还有很多与自然对数(指数)有关的不等式和极限,如不等式

1(0)1x x e x x x -≤-≤≥+,ln(1)(1)1x x x x x ≤+≤>-+与极限()1

0lim 1x x x e +→+=、111lim 11ln 2n n n →∞??+++= ??? 2可由不等式11x x e x e --≥≥-经过适当变形和放缩处理就可以得到,关于1(0)1x x

e x x x

-≤-≤≥+(即

11x x e x e --≤≤-),有这样的问题,是否存在这样的正数,(0,1)a b ∈,对于任意0x ≥,成立111x x x

e bx ax

-≤-≤

++,根据x 趋于正无穷大时不等式两边的函数极限可以直接判断b 是不存在的,下面将指出这样的a 值是存在的。

考虑下面的问题:设0x ≥,11x x

e ax

--≤+恒成立,求a (0)a ≥的取值范围。下面利用不等式

11x x

e x e --≤≤-给出解答:

设()(1)(1)x f x ax e x -=+--,0x ≥.只需()0f x ≤.()(1)(1)x x f x a e axe --'=--+,利用1x x e ≤-得

()(1)(1)(1)(21)(1)x x x x f x a e a e e a e ---'≤--+-?=-?-,当1

02

a ≤≤,()0f x '≤,()f x 单调递减,

()(0)0f x f ≤=.当1

2

a >时,注意1a <,利用1x e x --≤,()(1)(1)x x f x a x axe x a ae --'≥-+=-+,

0ln 1a

x a

<<-时,()0f x '>,则()(0)0f x f >=,不符合要求。因此原问题中的a 值是存在的,其取值范围是10,2??

????

.特别地,取12a =,有不等式:

1

1112x

e

x x --??

-≤+ ???

(1.1)

由(1.1)再考虑对该不等式的修正,即提出了下面的问题,其中1

111x x x

p e p e e -----=+--。

例1 (Ⅰ)对于任意正数x ,11x x e x p e p ax ---<--+(1)p >.求证:1

02

p a +≤≤. (Ⅱ)对于任意正数x ,2

11x x e x p e p x x αβ--->--++(1)p >,若12

p α+=,求β的最小值. (I ) 证明:该不等式是(1.1)的变形式,但证明方法有异。

分式1x

p ax

-+对于一切正数x 有意义,于是0a ≥.

设()(1)(1)()x x F x e ax p p e x --=-+---,0x ≥.只需证明()0F x ≤.

[]()(1)(1)()

(1)(1)(1).

x x x x x

F x e ax p a e xe p e a x a x a p e -----'=+-+----=-+-+--

(i ) 1a ≥时,由于1x e x -≥即(1)(1)x x x e -≤+-,则

1

作者联系方式:北京市海淀区中关村南大街5号北京理工大学机电学院116信箱,100081; E-mail :mt_xxx2007@https://www.360docs.net/doc/614647055.html,

2

ln(1)1x x x x <+<+,(1)x >-中取1

x n

=,再累加,对不等式取极限即可。

[]()(1)(1)(1)(1)(1)

(21)(1).

x x x

F x a x e a x a p e a p e ---'≤-+-+-+--=---

1

12

p a +≤≤

时,()0F x '≤,()F x 在[0,)+∞单调递减,于是()(0)0F x F ≤=. (ii ) 01a ≤<时,10a -<,()(1)(1)(1)1x x

F x a x e p e x --??=--+---??

.由1x e x --≤知,01a ≤<时,()0F x ≤.

(iii ) 1

12

p a +>>时,1x e x --≤

[][]()(1)(1)(1)(1)

(1)21(1).

x x x F x a e a x a p e a x a p e ---'≥--+-+--=-+---

当2101a p x a --<<

-时,(1)210a x a p -+-->,即()0F x '>,于是21

01

a p x a --<<-时,()F x 单调递

增,即()(0)0F x F >=,这与题意矛盾.

综上(i )(ii )(iii )所述,1

02

p a +≤≤时,11x x

e x p e ax p ---<-+-对于任意的正数x 都成立. (II ) 分式2

1x

p x x αβ-++对于一切正数x 有意义,则0β≥,又由(Ⅰ)知,0β≠,于是0β>.

设211()(1)(1)x H x x x e x βα-=++--,0x ≥. 其中11112p αα-==-,11

p β

β=-.只需证明()0H x ≥. 22111111()(2)(1)222x H x x x x x e βββ-?

?'=

+-+-+-???

?,

21112111()(4)2(1)

212(1)(4).

22x x x x

H x x x e e x e e x βββββ---??

''=-+-+-????

??=--+-???

?

(i ) 由1x e x -≥得到不等式

2

12

x

x e x -≥+

, (1.2) 则211111()2(1)(4)(6)222x x

x x H x e e x xe βββ--??''=--+-≥-???

?,1112β≥时,11()(6)02x H x xe β-''≥-≥,因此

()H x '在[)0,+∞是增函数,()(0)0H x H ''≥=,即()H x 在[)0,+∞也是增函数,()(0)H x H ≥.

(ii ) 11

12

β<

时,对不等式进行估计有:21x e x x -≤+,0ln 2x ≤<.于是0ln 2x ≤<时, 22111111()2(1)(4)(6)222x x

x x H x e e x e x x ββββ--????''=--+-≤+-???????

?.

取01

1

min{ln 2,

6}2x β=-,则()0H x ''<,0(0,)x x ∈.()H x '在0(0,)x 是单调递减,()(0)0H x H ''≤=,即()H x 在0(0,)x 也单调递减,则()(0)H x H ≤.这与题意不符。

综上(i )(ii )所述,1β的最小值是112,β的最小值是1

12

p -.由此就有()H x 对应的不等式:

1

21111212x

e x x x --??->++ ???

. (1.3)

应用上例的方法可以得到 1

111(2)(3)12x

e x x x x --??

-<++-????

(01)x << (1.4)

这是x 取值很小时(1.1)的一个修正的估计,在证明一些极限问题中有所应用,在(1.3)中右边分母上添加更高阶的多项式可以得到对1x e --更好的估计。

上例(II )中对()H x 求二阶导数,是为了判断()H x '的符号,显然(0)0H '≡,因此可以通过()H x '的

单调性判断它在0x =的一定范围内的符号,这是以上所述解法的基本原理。下例是不等式(1.1)和(1.3)在数列中应用,从中可以看出不等式(1.1)、(1.3)与极限的联系。 例2 设数列{}n x 满足:00x >,11exp()n n x x +=--3,(0,1,2,)n = .求证:lim 2n n nx →∞

=.

证明:可数学归纳法可以证明:101()n n x x n N ++<<<∈.

由式(1.1)得

11111121n x n n n x x x e -+-=->-. 上式递推累加得

12111111111111

(1)2

2n n n n n x x x x x x x -????=-++-+>-+> ? ????? ,即 2

n x n

<.

(2.1)

由式(1.3)得

1111212n n n x x x +-<+,利用(2.1)即有11111126n n x x n

+-<+? 上式递推累加得11121111111111111

(1)2

6n k n n n n x x x x x x x k -=-????=-++-+<-++? ? ?????∑ .

再联系(2.1),最后得到

111111226n k n n n x x k =<<++∑. (2.2)

利用11m 10li k n n n k =→∞??

= ???∑,对(2.2)两边取极限,由极限的夹逼原理有11lim

2n n

nx →∞=.即 lim 2n n nx →∞

=。

(2.3)

作为极限(2.3)的加强,下面利用不等式(1.3)和(1.4)证明(2)2

lim

ln 3

n n n nx n →∞-=-。

1122(2)2lim lim 4lim ln ln ln n n n n

n n n n n

nx x n nx x n n

n →∞→∞→∞??--

?-??==-,只要证明 121

lim ln 6

n n n x n →∞-

=。

(2.4)

首先,利用极限1112lim 1ln n n n

→∞+++= ,对(2.2)右边取极限,有 111

lim 2ln 6n n n x n →∞??-?≤ ???。

(2.5)

由于101()n n x x n N ++<<<∈,应用(1.4)得 2

11111121212

n n n n x x x x +->+-。 (2.6)

以下的不等式放缩法推导要用到极限的思想和无穷大量的概念。

11

2n

k l l k =<<∑,122l l n +≤<4,这是一个无穷大量。于是,存在这样的正数N ,当n N >时,对于(2.2)右边,

11

1

111126241n k k n

n n x k k ==++?<+∑∑。另外

11

12n

n n

k k k k ===<<=∑∑,

1

1

111211242n k n n k n --=??????

+>>?? ????

???∑

,即2n x n >-。 下面着手利用上式对(2.6)进行不等式放缩。在(2.6)式中,利用(2.1),n N >时,

3

exp()x 表示x 的指数x e .

4 111112322+<+=,11111111145674444+++<+++=,…1111134442+>+=,111111111567888882+++>+++=,…

22

1111111111112121226426n n n n x x x x n n n +?->+->+->+ ?1N +项开始累加得

11111111()26n n

k N k N n N n N x x k =+=+++->-+-∑∑。 (2.7)

<

n

k N =+<

-∑

,1lim 0ln n n k N n →∞=+=∑,11

N

k k

=∑为一个固定的数,111lim 0ln N

n k n k →∞==∑,利用极限11

12lim 1ln n n n →∞+

++

= 得111lim 1ln n n k N n k →∞=+=∑。对(2.7)两边同除ln(1)n +并取极限得11111()21lim ln(1)6n N n n N x x n ++→∞---≥+,N 为固定的数,111(1)21lim ln(1)6

N n N x n +→∞-+=+,于是 121

lim ln 6

n n n x n →∞-

(2.8) 联系(2.5)和(2.8)得(2.4),证毕。

在例2中,若数列的递推式取为11ln(1)n n x x +-=+(0,1,2,)n = ,则1e x p

()1n n x x -=-,1111111n

x n n n x x x e --??

-=-- ?-?

?,这和例2解法相同,解出的结果为(2)2lim ln 3n n n nx n →∞-=。

参考文献:

[1] 谢惠民,恽自求,易法魁,钱定边.数学分析习题课讲义[M].北京:高等教育出版社,2003-2004:38-46,110-114

[2] 周强民.数学分析习题演练[M].第2版.北京:科学出版社,2006-2009

[3] 陈纪修,施於华,金路.数学分析[M].第2版.北京:高等教育出版社,2004:217

一元一次不等式应用题精讲及分类训练

一元一次不等式(组)解应用题精讲及分类练习 一.下列情况列一元一次不等式解应用题 1.应用题中只含有一个不等量关系,文中明显存在着不等关系的字眼,如“至少”、“至多”、“不超过”等. 例1.为了能有效地使用电力资源,宁波市电业局从1月起进行居民峰谷用电试点,每天8:00至22:00用电千瓦时0.56元(“峰电”价),22:00至次日8:00每千瓦时0.28元(“谷电”价),而目前不使用“峰谷”电的居民 用电每千瓦时0.53元.当“峰电”用量不超过 ...每月总电量的百分之几时,使用“峰谷”电合算? 二.下列情况列一元一次不等式组解应用题 1.应用题中含有两个(或两个以上,下同)不等量的关系.它们是由两个明显的不等关系体现出来,一般是讲两件事或两种物品的制作、运输等. 例3.已知服装厂现有A种布料70米,B种布料52米,现计划用这两种面料生产M,N两种型号的时装共80套.已知做一套M型号的时装需用A种布料0.6米,B种布料0.9米,可获利45元;做一套N型号的时装需用A种布料1.1米,B 种布料0.4米,可获利润50元.若设生产N型号码的时装套数为x,用这批布料生产这两种型号的时装所获的总利润为y元.(1)求y(元)与x(套)的函数关系式,并求出自变量x的取值范围; (2)服装厂在生产这批时装中,当N型号的时装为多少套时,所获利润最大?最大利润是多少? 2.两个不等关系直接可从题中的字眼找到,这些字眼明显存在着上下限. 例4.某校为了奖励在数学竞赛中获胜的学生,买了若干本课外读物准备送给他们.如果每人送3本,则还余8 本;如果前面每人送5本,则最后一人得到的课外读物不足 ..3.本..设该校买了m本课外读物,有x名学生获奖.请回答下列问题:(1)用含x的代数式表示m; (2)求出该校的获奖人数及所买课外读物的本数. 例5.某城市的出租汽车起步价为10元(即行驶距离在5千米以内都需付10元车费),达到或超过5千米后,每行驶1千米加1.2元(不足1千米也按1千米计).现某人乘车从甲地到乙地,支付车费17.2元,问从甲地到乙地的路程大约是多少? (分配问题) 1、一堆玩具分给若干个小朋友,若每人分3件,则剩余4件,若前面每人分4件,则最后一人得到的玩具最多3 件,问小朋友的人数至少有多少人?。 2、把若干颗花生分给若干只猴子。如果每只猴子分3颗,就剩下8颗;如果每只猴子分5颗,那么最后一只猴子虽分到了花生,但不足5颗。问猴子有多少只,花生有多少颗? 3、某中学为八年级寄宿学生安排宿舍,如果每间4人,那么有20人无法安排,如果每间8人,那么有一间不空也不满,求宿舍间数和寄宿学生人数。 7、用若干辆载重量为8吨的汽车运一批货物,若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不满也不空。请问:有多少辆汽车? (积分问题) 1、某次数学测验共20道题(满分100分)。评分办法是:答对1道给5分,答错1道扣2分,不答不给分。某学 生有1道未答。那么他至少答对几道题才能及格?

基本不等式及其应用知识梳理及典型练习题(含答案)

基本不等式及其应用 1.基本不等式 若a>0,,b>0,则 a + b 2 ≥ab ,当且仅当 时取“=”. 这一定理叙述为:两个正数的算术平均数 它们的几何平均数. 注:运用均值不等式求最值时,必须注意以下三点: (1)各项或各因式均正;(一正) (2)和或积为定值;(二定) (3)等号成立的条件存在:含变数的各项均相等,取得最值.(三相等) 2.常用不等式 (1)a 2+b 2≥ab 2(a ,b ∈R ). 2 a b +()0,>b a 注:不等式a 2+b 2≥2ab 和 2 b a +≥a b 它们成立的条件不同,前者只要求a 、b 都是实数,而后者要求a 、b 都是正数.其等价变形:ab≤(2 b a +)2 .

(3)ab≤ 2 2 ? ? ? ? ?+b a (a,b∈R). (4) b a + a b ≥2(a,b同号且不为0). (5) 2 2 ? ? ? ? ?+b a ≤ a2+b2 2 (a,b∈R). (6) b a ab b a b a 1 1 2 2 2 2 2 + ≥ ≥ + ≥ +()0 ,> b a (7)abc≤ a3+b3+c3 3 ;() ,,0 a b c> (8) a+b+c 3 ≥ 3 abc;() ,,0 a b c> 3.利用基本不等式求最大、最小值问题 (1)求最小值:a>0,b>0,当ab为定值时,a+b,a2+b2有,即a +b≥,a2+b2≥. (2)求最大值:a>0,b>0,当a+b为定值时,ab有最大值,即;或a2+b2为定值时,ab有最大值(a>0,b>0),即.

设a,b∈R,且a+b=3,则2a +2b的最小值是( ) 解:因为2a>0,2b>0,由基本不等式得2a+2b≥22a·2b=22a+b=42, 当且仅当a=b=3 2 时取等号,故选B. 若a>0,b>0,且a+2b-2=0, 则ab的最大值为( ) 解:∵a>0,b>0,a+2b=2,∴a+2b=2≥22ab,即ab≤1 2 .当且仅当a =1,b=1 2 时等号成立.故选A.

一元一次不等式应用题汇总

不等式应用练习题 1、某商店第一天以每件10元的价格购进某商品15件,第二天又以12元的价格购进同种商品35件,然后以相同的价格卖出,如果销售这些商品时,至少要获得10%的利润,这种商品每件的售价应不低于多少元? 2、一家三口准备参加旅行团外出旅游,甲旅行社告知:“父母买全票,小孩按半价优惠”,乙旅行社告知:“家庭旅游可按团体计价,即每人均按全价的8折收费”,若这两家旅行社每人的原价相同,那么可以算出() A.甲比乙优惠B.乙比甲优惠C.甲与乙相同D.与原票价有关 3、甲乙两家超市以相同的价格出售同样的商品.为吸引顾客各自推出不同的优惠方案.甲超市累计购买商品超出500元之后.超出部分按原价八五折优惠.在乙超市累计购买商品超出300元之后.超出部分按原价九折优惠. (1)是用含x的代数式分别表示,顾客在两家超市购物所付的费用. (2)试比较顾客到哪家超市购物更优惠,并说明你的理由. 4、按国家有关规定,个人发表文章、出版图书获得的稿费的纳税计算方法是:(1)稿费不高于4000元的不纳税; 国家规定个人发表文章、出版图书所得稿费的纳税计算方法是:(1)稿费不高于800元的不拿税;(2)稿费高于800元而低于4000元的应缴纳超过800元那部分稿费的14%的税;(3)稿费等于或高于4000元的应缴纳全部稿费的11%的税。王老师获得一笔稿费,并交纳个人所得税不超过420元,问他这笔稿费最多是多少元? 5、今秋,某市白玉村水果喜获丰收,果农王灿收获枇杷20吨,桃子12吨.现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货

车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨. (1)王灿如何安排甲、乙两种货车可一次性地运到销售地?有几种方案?(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王灿应选择哪种方案,使运输费最少?最少运费是多少? 6、某校初三年级春游,现有36座和42座两种客车供选择租用,若只租用36座客车若干辆,则正好坐满;若只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人;已知36座客车每辆租金400元,42座客车每辆租金440元. (1)该校初三年级共有多少人参加春游? (2)请你帮该校设计一种最省钱的租车方案? 7、某射击运动员在一次训练中,打靶10次的成绩为89环,已知前6次射击的成绩为50环,则他第七次射击时,击中的环数至少是______环. 8、某县出租车计费规则:2公里以内3元,超过两公里部分另按每公里1.2元收费(不足1公里按1公里收费),李立同学从家出发坐出租车到新华书店购书,下车时付费9元,那么李立家离书店最多有几公里? 9、甲从一个鱼摊上买了三条鱼,平均每条a元,又从另一个鱼摊买了两条鱼,平均每条b元,后来他又以每条a+b/2元的价格把鱼全部地卖给了乙,结果发现赔钱,你知道为什么吗?

一元一次不等式(组)及其应用

课时6 一元一次不等式(组)及其应用 班级______ 姓名______ 【课前热身】 1.设a <b ,用不等号连接下列各题中的两式。 (1)a+c________b+c (2)-2a________-2b (3)a-b_________0 (4)m 2a________ m 2b (5)-ca_________-cb(c <0) 2.不等式-032>-x 的解是_______________ 3.一个一元一次不等式组的解集在数轴上的表示如下图,则该不等式组的解集是 A .13x -≤< B . 13x -<≤ C .1x ≥- D . 3x < 4. 不等式组1 10320.x x ?+>???-? , ≥的解集是( ) A .- 3 1<x ≤2 B .-3<x ≤2 C .x ≥2 D .x <-3 【考点链接】 1.用不等号表示 关系的式子叫不等式;使不等式成立的未知数的 ,叫做不等式的解;不等式的 的集合,叫做不等式的解集. 2.不等式的基本性质: (1)若a <b ,则a +c c b +; (2)若a >b ,c >0则ac bc (或c a c b ); (3)若a >b ,c <0则ac bc (或 c a c b ). 3.一元一次不等式:只含有 未知数,未知数的最高次数是 的不等式,称为一元 一次不等式;其解法与一元一次方程的解法类似. 4.不等式组中各个不等式的解集的 ,叫做不等式组的解集. 5.由两个一元一次不等式组成的不等式组的解集有四种情况:(已知a b <) x a x b ??>?的解集是_________; x a x b >?? ?的解集是_________.

几个重要不等式及其应用

几个重要不等式及其应用 一、几个重要不等式 以下四个不等式在数学竞赛中使用频率是最高的,应用极为广泛。 1、算术-几何平均值(AM-GM )不等式 设12,,,n a a a L 是非负实数,则12n a a a n +++≥L 2、柯西(Cauchy )不等式 设,(1,2,)i i a b R i n ∈=L ,则2 22111.n n n i i i i i i i a b a b ===?????? ≥ ??? ??????? ∑∑∑等号成立当且仅当存在R λ∈,使 ,1,2,,.i i b a i n λ==L 变形(Ⅰ):设+ ∈∈R b R a i i ,,则∑∑∑===??? ??≥n i i n i i n i i i b a b a 1 2 112;等号成立当且仅当存在R λ∈, 使,1,2,,.i i b a i n λ==L 变形(Ⅱ)设i i b a ,同号,且0,≠i i b a ,则∑∑∑===??? ??≥n i i i n i i n i i i b a a b a 1 2 11。等号成立当且仅当n b b b ===Λ21 3.排序不等式 设n n n j j j b b b a a a ,,,,,212121?≤?≤≤≤?≤≤是n ,,2,1?的一个排列,则 n n j j j n n n b a b a b a b a b a b a b a b a b a n ΛΛΛ++≤+++≤+++-2211321112121. 等号成立当且仅当 n a a a ===Λ21或n b b b ===Λ21。(用调整法证明). 4.琴生(Jensen )不等式 若()x f 是区间()b a ,上的凸函数,则对任意的点()b a x x x n ,,,,21∈Λ* ()n N ∈有 ()()()12121 ( ).n n x x x f f x f x f x n n +++≤+++??? ?L L 等号当且仅当n x x x ===Λ21时取得。(用归纳法证明) 二、进一步的结论 运用以上四个不等式可得以下更一般的不等式和一些有用的结论,有时用这些结论也会起到意想不到 的效果。 1. 幂均值不等式 设0>>βα,),,2,1(n i R a i Λ=∈+ ,则

初一上数学一元一次方程经典应用题(较难)

初一上数学一元一次方程经典应用题(较难)

1.(9分)“水是生命之源”,市自来水公司为鼓励用户节约用水,按以下规定收取水费: (1)某用户1月份共交水费65元,问1月份用水多少吨? (2)若该用户水表有故障,每次用水只有60%记入用水量,这样在2月份交水费43. 2元,该用户2月份实际应交水费多少元?(1))∵40×1+0.2×40=48<65,∴用水超过40吨, 设1月份用水x吨,由题意得: 40×1+(x-40)×1.5+0.2x=65,解得:x=50,答:1月份用水50吨. (2)∵40×1+0.2×40=48>43.2,∴用水不超过40吨,

理工作。假设每个人的工作效率相同那么先安排整理的人员有多少人 等量关系为:所求人数1小时的工作量+所有人2小时的工作量=1,把相关数值代入即可求解.【解析】设先安排整理的人员有x人, 依题意得:. 解得:x=10. 答:先安排整理的人员有10人. 3公园推出集体购票优惠票价的办法其门票价目如下表 七(1)、(2)两班共104人其中七(1)班人数多于七(2)班,但都不超过70人),准备周末去公园玩若两班都以班为单位购票一共要支付1140元. (1)如果两班联合起来作为一个团体购票那么比以班为单位购票节约几元 (2)试问两班各有多少名学生 (3)如果七(1)班有10人不能前往旅游那么又该如何购票才最省钱

【解析过程】 (1)570-104×4=570-416=154(元);所以比以班为单位购票可以节约154元钱. (2)设七(1)班有学生x人,七(2)班有学生y 人. 根据不同的票价,可以得到x+y=104, ①x=53时,5×104=520(元)舍去, ②54≤x<100时,,5x+6(104-x)=570, 解得:x=54 ③100<x<104时,4x+6(104-x)=570, x=27(舍去),综上所述:七(1)班有学生54人,七(2)班有学生50人. (3)若少10人,则购买94张票,即5×94=470(元); 若购买101张票,则为101×4=404(元). 所以购买101张票合算. 4.某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产 3 种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元.(1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,

基本不等式及其应用(优秀经典专题及答案详解)

专题7.3 基本不等式及其应用 学习目标 1.了解基本不等式的证明过程; 2.会用基本不等式解决简单的最大(小)值问题. 知识点一 基本不等式ab ≤a +b 2 (1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b . 知识点二 几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R);(2)b a +a b ≥2(a ,b 同号); (3)ab ≤????a +b 22(a ,b ∈R);(4)????a +b 22≤a 2+b 2 2(a ,b ∈R); (5)2ab a +b ≤ab ≤a +b 2≤ a 2+b 22(a >0,b >0). 知识点三 算术平均数与几何平均数 设a >0,b >0,则a ,b 的算术平均数为a +b 2 ,几何平均数为ab ,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数. 知识点四 利用基本不等式求最值问题 已知x >0,y >0,则 (1)如果xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小). (2)如果x +y 是定值q ,那么当且仅当x =y 时,xy 有最大值是q 2 4(简记:和定积最大). 【特别提醒】 1.此结论应用的前提是“一正”“二定”“三相等”.“一正”指正数,“二定”指求最值时和或积为定值,“三相等”指等号成立. 2.连续使用基本不等式时,牢记等号要同时成立. 考点一 利用基本不等式求最值

【典例1】(江西临川一中2019届模拟)已知x <54,则f (x )=4x -2+14x -5 的最大值为_______ 【答案】1 【解析】因为x <54 ,所以5-4x >0, 则f (x )=4x -2+ 14x -5=-????5-4x +15-4x +3≤-2+3=1.当且仅当5-4x =15-4x ,即x =1时,取等号. 故f (x )=4x -2+ 14x -5 的最大值为1. 【方法技巧】 1.通过拼凑法利用基本不等式求最值的实质及关键点 拼凑法就是将相关代数式进行适当的变形,通过添项、拆项等方法凑成和为定值或积为定值的形式,然后利用基本不等式求解最值的方法.拼凑法的实质是代数式的灵活变形,拼系数、凑常数是关键. 2.通过常数代换法利用基本不等式求解最值的基本步骤 (1)根据已知条件或其变形确定定值(常数); (2)把确定的定值(常数)变形为1; (3)把“1”的表达式与所求最值的表达式相乘或相除,进而构造和或积为定值的形式; (4)利用基本不等式求解最值. 【变式1】(山东潍坊一中2019届模拟)已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________. 【答案】6 【解析】由已知得x +3y =9-xy , 因为x >0,y >0,所以x +3y ≥23xy , 所以3xy ≤????x +3y 22,当且仅当x =3y ,即x =3,y =1时取等号,即(x +3y )2+12(x +3y )-108≥0. 令x +3y =t ,则t >0且t 2+12t -108≥0, 得t ≥6,即x +3y 的最小值为6. 【方法技巧】通过消元法利用基本不等式求最值的策略 当所求最值的代数式中的变量比较多时,通常是考虑利用已知条件消去部分变量后,凑出“和为常数”或“积为常数”,最后利用基本不等式求最值. 考点二 利用基本不等式解决实际问题 【典例2】 【2019年高考北京卷理数】李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果

一元一次不等式组的解及其应用

2.2.2一元一次不等式组的解及其应用 学情分析:本节课是为高一旅游专业班的数学教学而设计的,旅游专业的学生数学基础差,对数学不太感兴趣,本节课在设计上力求教学内容简单化专业化。教学形式活泼话,让更多的学生参与进来,使得学生能够快乐的学习数学。前面学生已经学完集合的内容和一元一次不等式的内容,学生具备一定的独立思考,合作释疑的能力。因此,本节课采用“讲练结合与诱导法”的授课方式,既能充分发挥学生主观能动性,又能达到预期的教学目的。 For personal use only in study and research; not for commercial use 【教学目标】 知识目标: 1、理解一元一次不等式组解集的概念,掌握一元一次不等式组的解法. 2 、从实际问题中找到不等关系,根据实际情境列出不等式组。 3、能运用已学过的不等式的知识解决实际问题,并能求出符合实际的解集。 能力目标: 1、通过利用数轴来寻求不等式组的解,培养学生的观察能力、分析能力, 2、让学生从练习中发现、归纳不等式组解集步骤,以培养学生归纳总结能力. 情感目标: 将不等式组的解法和归纳留给学生在交流、讨论中完成,培养学生养成良好的学习习惯和转变一种观念——将老师与学习伙伴看成是自己有利的学习资源。. 2. 通过教学,体会数形结合、类比等数学思想方法. 3. 通过对不等式组有关概念的学习,培养学生的知识迁移能力和建模意识,以及合作学习的意识. 【教学重点】 一元一次不等式组的解法. 【教学难点】 根据实际情境列出不等式组。 【教学方法】 本节课采用讲练结合法和启发诱导式教学 首先介绍一元一次不等式组的有关概念,接着介绍一元一次不等式组的解法,引导学生在数轴上用区

均值不等式的应用(习题+答案)

均值不等式应用 一.均值不等式 1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则 ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取“=”);若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2(2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的 积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴-> ,11425434554y x x x x ??∴=-+=--++ ?--??231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。 技巧二:凑系数

基本不等式及其应用

基本不等式及其应用 一、教学分析设计 【教材分析】 人教版普通高中课程标准试验教科书分不同的章节处理不等式问题。在必修5的第三章中,首先介绍了不等关系与不等式;然后是一元二次不等式及其解法,二元一次不等式(组)与简单的线性规划问题;最后在第四节介绍基本不等式。在选修教材《不等式选讲》中对不等式与绝对值不等式、证明不等式的基本方法、柯西不等式与排序不等式、数学归纳法证明不等式作了更详细的介绍。并在书中还安排章节复习了基本不等式,并将其推广到三元的形式。基本不等式从数学上凸显了沟通基础数学知识间的内在联系的可行性。 基本不等式的课程标准内容为:探索并了解基本不等式的证明过程;会用基本不等式解决简单的最值问题。教学要求为:了解基本不等式的代数背景、几何背景以及它的证明过程;理解算数平均数、几何平均数的概念;会用基本不等式解决简单的最值问题;通过基本不等式的实际应用,感受数学的应用价值(说明:突出用基本不等式解决问题的基本方法,不必推广到三个变量以上的情形)。《考试说明》中内容为:会用基本不等式解决简单的最值问题。通过对比分析,他们的共同都有“会用基本不等式解决简单的最值问题”。基本不等式与函数(包括三角函数)、数列、解析几何等内容均有丰富的联系,在《考试说明》中属于C及内容(含义:对该知识有实质性的理解并能与已有知识建立联系,掌握内容与形式的变化;相关技能已经形成,能用它来解决简单的相关问题)。 【学生分析】 从知识储备上看,高三学生已经基本掌握了不等式的简单性质和证明,并能用不等式及不等式组抽象出实际问题中的数学模型,也具备一定的几何知识。 从思维特点看,学生了解了不等关系的数学模型是解决实际问题的重要工具,具备一定的归纳、猜想、演绎证明和抽象思维的水平。 【目标分析】 结果性目标: 1、能在具体的问题情景中,通过抽象概括、数学建模以及逻辑推理获得基本不等式; 2、掌握基本不等式应用的条件“一正二定三相等”,和基本不等式的常见变形; 3、会用基本不等式解决一些简单的实际问题。 体验性目标: 1、在解决实际问题的过程中,体验基本不等式的本质是求二元的最值问题; 2、在解决实际问题中,体验“形”与“数”间的关联。 重点:创设基本不等式使用的条件。 难点:基本不等式的简单应用,以及使用过程中定值的取得。 【核心问题分析】 核心问题:在学校文化厘清过程中,拟对一块空地实行打造,现对其规划如下:将这块空地建成一个广场,在广场中间建一个长方形文化长廊,在其正中间造一个长方形景观池,并利用长廊内部左下角的那颗古树打造一条直线型景观带。请同学们按照以下要求实行数据设计: 问题1:文化长廊的周长为480米,要求文化长廊所围成的长方形面积最大,应怎样设计其长和宽? 问题2:已知景观池的容积为4800米,深为3米。已知景观池底每平米的造价是150元,池壁每平方米的造价是120元,问怎样设计,使造价最低,最低造价是多少? 问题3:设文化长廊为ABCD,现在长廊ABCD的左下角点E处有颗古树,且点E距左边AB和下边AD的D距离各为20米、10米,为保护古树,现经过古树E建造一直线型的景观带

中考数学 一元一次不等式应用题集锦

中考数学一元一次不等式应用题集锦 1、把价格为每千克20元地甲种糖果8千克和价格为每千克18元地乙种糖果若干千克混合,要使总价不超过400元,且糖果不少于15千克,所混合地乙种糖果最多是多少?最少是多少? 某中学为八年级寄宿学生安排宿舍,如果每间4人,那么有20人无法安排,如果每间2、8人,那么有一间不空也不满,求宿舍间数和寄宿学生人数. 某校为了奖励在数学竞赛中获奖地学生,买了若干本课外读物准备送给他们.如果每人送3、3本,则还余8本。如果前面每人送5本,最后一人得到地课外读物不足3本.设该校买了m本课外读物,有x名学生获奖,请解答下列问题: (1)xm。地代数式表示用含 (2)求出该校地获奖人数及所买课外读物地本数. (2001荆门市)有10名菜农,每人可种甲种蔬菜3亩或乙种蔬菜2亩,已知甲种蔬菜每亩可4、收入0.5万元,乙种蔬菜每亩可收入0.8万元,若要使总收入不低于15.6万元,则应该如何安排人员? (2001陕西)出租汽车起价是10元(即行驶路程在5km以内需付10元车费),达到或超过、55km后,每增加1km加价1.2元(不足1km部分按1km计),现在某人乘这种出租汽车从甲地到乙地支付车费17.2元,从甲地到乙地地路程大约是多少? (2001安徽)某工程队要招聘甲、乙两种工种地工人150人,甲、乙两种工种地工人月工6、资分别为600元和1000元.现要求乙种工种地人数不少于甲种工种人数地2倍,问甲、乙两种工种各招聘多少人时,可使得每月所付地工资最少? 某种植物适宜生长在温度为18℃~22℃地山区,已知山区海拔每升高100m,气温下降7、0.6℃,现测出山脚下地平均气温为22℃,问该植物种在山上地哪一部分为宜(设山脚下地平均海拔高度为0m). (2002重庆市)韩日“世界杯”期间,重庆球迷一行56人从旅馆乘出租车到球场为中国队8、加油,现有A、B两个出租车队,A队比B队少3辆车,若全部安排乘A队地车,每辆坐5人,车不够,每辆坐6人,有地车未坐满;若全部安排乘B队地车,每辆车坐4人,车不够,每辆车坐5人,有地车未坐满,则A队有出租车() A.11 B.10 C.9 D.8辆辆辆辆

2020年高考数学复习题:基本不等式及其应用

基本不等式及其应用 [基础训练] 1.下列结论中正确的个数是( ) ①若a >0,则a 2 +1 a 的最小值是2a ; ②函数f (x )=sin 2x 3+cos 2x 的最大值是2; ③函数f (x )=x +1 x 的值域是[2,+∞); ④对任意的实数a ,b 均有a 2+b 2≥-2ab ,其中等号成立的条件是a =-b . A .0 B .1 C .2 D .3 : 答案:B 解析:①错误:设f (a )=a 2 +1 a ,其中a 是自变量,2a 也是变化的,不能说2a 是f (a )的最小值; ②错误:f (x )=sin 2x 3+cos 2 x ≤sin 2x +3+cos 2x 2 =2, 当且仅当sin 2x =3+cos 2x 时等号成立,此方程无解, ∴等号取不到,2不是f (x )的最大值; ③错误:当x >0时,x +1 x ≥2 x ·1x =2, 当且仅当x =1 x ,即x =1时等号成立; 当x <0时,-x >0,x +1 x =-? ?? ??-x +1-x ≤-2 -x ·1 -x =-2, ¥ 当且仅当-x =-1 x ,即x =-1时等号成立. ∴f (x )=x +1 x 的值域是(-∞,-2]∪[2,+∞); ④正确:利用作差法进行判断.

∵a 2+b 2+2ab =(a +b )2≥0,∴a 2+b 2≥-2ab , 其中等号成立的条件是a +b =0,即a =-b . 2.[2019河北张家口模拟]已知a +2b =2,且a >1,b >0,则 2 a -1+1 b 的最小值为( ) A .4 B .5 C .6 D .8 答案:D 解析:因为a >1,b >0,且a +2b =2, \ 所以a -1>0,(a -1)+2b =1, 所以2a -1+1b =? ????2 a -1+1 b ·[(a -1)+2b ] =4+4b a -1 +a -1b ≥4+2 4b a -1·a -1 b =8, 当且仅当4b a -1=a -1 b 时等号成立, 所以2a -1 +1b 的最小值是8,故选D. 3.若2x +2y =1,则x +y 的取值范围是( ) A .[0,2] B .[-2,0] C .[-2,+∞) D .(-∞,-2] ! 答案:D 解析:∵2x +2y ≥22x ·2y =22x +y (当且仅当2x =2y 时等号成立), ∴2 x +y ≤12,∴2x +y ≤14, 得x +y ≤-2.故选D. 4.已知x >0,y >0,且4xy -x -2y =4,则xy 的最小值为( ) B .2 2 D .2 答案:D 解析:∵x >0,y >0,x +2y ≥22xy , ∴4xy -(x +2y )≤4xy -22xy , ∴4≤4xy -22xy ,

初一下册一元一次不等式组应用题及答案

一元一次不等式应用题 用一元一次不等式组解决实际问题的步骤: ⑴审题,找出不等关系; ⑵设未知数; ⑶列出不等式; ⑷求出不等式的解集; ⑸找出符合题意的值; ⑹作答。 一.分配问题: 1.把若干颗花生分给若干只猴子。如果每只猴子分3颗,就剩下8颗;如果每只猴子分5颗,那么最后一只猴子虽分到了花生,但不足5颗。问猴子有多少只,花生有多少颗? 2 .把一些书分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本。问这些书有多少本?学生有多少人?

3.某中学为八年级寄宿学生安排宿舍,如果每间4人,那么有20人无法安排,如果每间8人,那么有一间不空也不满,求宿舍间数和寄宿学生人数。 4.将不足40只鸡放入若干个笼中,若每个笼里放4只,则有一只鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,且最后一笼不足3只。问有笼多少个?有鸡多少只?

5. 用若干辆载重量为8吨的汽车运一批货物,若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不满也不空。请问:有多少辆汽车? 6.一群女生住若干家间宿舍,每间住4人,剩下19人无房住;每间住6人,有一间宿舍住不满。 (1)如果有x间宿舍,那么可以列出关于x的不等式组: (2)可能有多少间宿舍、多少名学生?你得到几个解?它符合题意吗?

二速度、时间问题 1爆破施工时,导火索燃烧的速度是0.8cm/s,人跑开的速度是5m/s,为了使点火的战士在施工时能跑到100m以外的安全地区,导火索至少需要多长? 2.王凯家到学校2.1千米,现在需要在18分钟内走完这段路。已知王凯步行速度为90米/ 分,跑步速度为210米/分,问王凯至少需要跑几分钟?

不等式及其应用

不等式及其应用 [高考要点] 系统地把握不等式的性质; 把握不等式证明的常用方法; 把握均值不等式: ,∈);,,∈)23 a b a b c a b R a b c R +++++≥≥及其在求最值方面的用途(注意“正、定、等”三个条件的内涵)。 把握整式不等式、分式不等式、无理不等式、指数不等式和对数不等 式的解法。 把握含绝对值不等式的差不多性质,会解含绝对值的不等式。 [例题选讲] [例1] 已知a >x 的等式1 22 21 log 0.2 ax x ->+ [例2] 已知函数()()2.f x g x mx m ==- (1)当1=m 时,解不等式)()(x g x f <; (2)如果对满足1,求x 的取值范畴。

[例3] 关于实数x 的不等式2211(1)(1)22 x a a -+≤-与 23(1)2(31)2(31)0x a x a x a -+++++≤(其中a R ∈)的解集依次记为A 与B. 求A B ?的a 的取值范畴 [能力训练] 一、选择题 1.不等式44log (28)log (3)x x x x --->-的解集是( ) (A ){|4}x x > (B ){|5}x x > (C ){|46}x x << (D )x x x >且 2.不等式22log x x >的解集是( ) (A )(0,∞)+ (B )[1,∞)+ (C )R (D )ф 3.不等式312≤9x -的整数解的个数是( ) (A )7 (B )6 (C )5 (D )4 4.设111()()1222 b a <<<,则( ) (A )b a a a a << (B )a b a a a << (C )b a a a a << (D )a b a a a << 5.若实数,,a b c 满足a c b -<,则下列不等式中成立的是( ) (A )a b c >- (B )a b c <+ (C )a c b >- (D )a b c <+ 6.若不等式1x a -<成立的充分条件是04x <<,则a 的取值范畴是( ) (A )1a ≥ (B )3a ≥ (C )1a ≤ (D )3a ≤ 7.若关于x 的不等式2≥x x a a -+-在R 上恒成立,则a 的最大值是( )

10道一元一次不等式应用题和答案过程

一元一次不等式解应用题 1.某水产品市场管理部门规划建造面积为2400平方米的大棚,大棚内设A种类型和B种类型的店面共80间,每间A种类型的店面的平均面积为28平方米,月租费为400元,每间B种类型的店面的平均面积为20平方米,,月租费为360元,全部店面的建造面积不低于大棚总面积的85%。 (1) 试确定A种类型店面的数量? (2)该大棚管理部门通过了解,A种类型店面的出租率为75%,B种类型店面的出租率为90%,为使店面的月租费最高,应建造A种类型的店面多少间?

解:设A种类型店面为a间,B种为80-a间 根据题意 28a+20(80-a)≥2400×85% 28a+1600-20a≥2040 8a≥440 a≥55 A型店面至少55间 设月租费为y元 y=75%a×400+90%(80-a)×360 =300a+25920-324a =25920-24a 很明显,a≥55,所以当a=55时,可以获得最大月租费为25920-24x55=24600元

二、水产养殖户李大爷准备进行大闸蟹与河虾的混合养殖,他了解到情况:每亩地水面组建为500元;每亩水面可在年初混合投放4公斤蟹苗和20公斤虾苗;每公斤蟹苗的价格为75元,其饲养费用为525元,当年可获1400元收益;每公斤虾苗的价格为15元,其饲养费用为85元,当年可获160元收益; 问题:1、水产养殖的成本包括水面年租金,苗种费用和饲养费用,求每亩水面虾蟹混合养殖的年利润(利润=收益—成本); 2、李大爷现有资金25000元,他准备再向银行贷款不超过25000元,用于蟹虾混合养殖,已知银行贷款的年利率为10%,试问李大爷应租多少亩水面,并向银行贷款多少元,可使年利润达到36600元?

基本不等式及其应用-沪教版必修1教案

基本不等式是每年的高考热点,主要考察命题的判定,不等式的证明以及求 最值问题。特别是求最值问题往往在基本不等式的使用条件上设置一些问题。 考 察学生恒等变形的能力,运用基本不等式的和与积转化作用的能力。 教学目标 1. 知识与技能 理解基本不等式,了解变式结构;理解基本不等式的“和”、“积”放缩作用。 会运用基本不等式解决相关的问题。 2. 过程与方法 通过师生互动、学生主动的探究过程,让学生体会研究数学问题的基本思想 方法,学会学习,学会探究。 3. 情感态度与价值观 鼓励学生大胆探索,增强学生的信心,获得探索问题的成功情感体验。逐步 养成学生严谨的科学态度及良好的思维习惯。 重点:运用基本不等式求最值 难点:恰当变形转化,构建出满足运用基本不等式的条件 教学过程: 一、 要点梳理 1、基本不等式 若a 、b € R,则a 2+b 2> 2ab,当且仅当a=b 时取“=” b 2(a 、b 同号) a 3、求最大值、最小值问题 (1) __________________________________________________________ 如果x 、y € (0,+ g ),且xy=p(定值),那么当x=y 时,x+y 有 _______________ (2) __________________________________________________________ 如果x 、y € (0,+ g ),且x+y=s(定值),那么当x=y 时,xy 有 _______________ 例题精讲 例1、若正数a 、b 满足ab=a+b+3,求ab 的取值范围, 1 9 例2、已知x>0、y>0,且一 一 1,求x+y 的最小值 x y 2、 若 a 、b € R',则 常用变形形式: 宁,ab ,当且仅当a=b 时取 ■- ab 2 b 2 ——b a 0,b 0 ④ 2 b 2 2ab ab 2 a 2 b 2 2 概括为:

一元一次不等式(组)应用(讲义及答案)

一元一次不等式(组)应用(讲义) ?课前预习 1.回顾不等式的相关概念,并完成下列各题: (1)不等式的解: 能使不等式成立的___________________,叫做不等式的解; (2)不等式的解集: 一个含有未知数的不等式的___________,组成这个不等式的解集,通常用“x a <”的形式表示. >”或“x a (3)不等式的解集的数轴表示: 不等式的解集可以在数轴上表示,需要注意___________和 ____________的区别. (4)一元一次不等式组的解集: 一元一次不等式组中各个不等式的解集的___________,叫做这个不等式组的解集. 2.一个不等式的解集如图所示,则这个不等式的正整数解是 ___________. 3.若不等式组的解集为-1≤x<2,则以下数轴表示中正确的是() A.B. C.D.

? 知识点睛 1. 不等式(组)的解集: 包含不等式(组)的所有解,一个不多一个不少,解集中的任何一个数都是不等式(组)的一个解. 2. 含参不等式(组)的解题思路: (1)先将字母当作常数解不等式(组); (2)借助数轴,确定大致范围; (3)验证端点值,求解. 3. 不等式应用题的处理思路: (1)理解题意,梳理信息. (2)建立不等式(组)模型. 分析实际问题中的不等关系列不等式(组),常见关键词有:不超过、至少、不低于、多于、不空不满等. (3)求解验证,回归实际. ①结果是否符合题目要求; ②结果是否符合实际意义. ? 精讲精练 1. 若x a =是不等式5x +125≤0的解,则a 的取值范围是______. 2. 若关于x 的不等式0x a -≤的解集如图所示,则a =______. 3. 若不等式组420x a x >??->? 的解集是12x -<<,则a =_______. 4. 如果不等式组2123 x a x b -?的解集是11x -<<,那么 (1)(1)a b +-=________. 5. 如果一元一次不等式组>2>x x a ???的解集是2x >,那么a 的取值范围是( ) A .2a > B .2a ≥ C .2a ≤ D .2 a <

常见的几个函数不等式及其应用

常见的几个函数不等式及其应用 武汉市教育科学研究院 孔峰 在近几年的高考中,无论是国家考试中心的数学命题,还是一些独立命题省市的数学命题,有一些函数不等式在命题中出现的频率很高,它们在函数的性质的应用中和函数不等式的证明中发挥着很重要的作用,下面分别介绍这些函数不等式. 一、函数不等式的介绍 (1))1()1ln(1->≤+≤+x x x x x ① 证明:令x x x f -+=)1ln()(,则x x x x f +-= -+='1111)(. 当01<<-x 时,0)(>'x f ;当0>x 时,0)(<'x f . 所以)(x f 在0=x 时取得极大值,故0)0()(=≤f x f , 所以)1()1ln(->≤+x x x . 令x x x x g +-+=1)1ln()(,则2 2)1()1()1(11)(x x x x x x x g += +-+-+='. 当01<<-x 时,0)(<'x f ;当0>x 时,0)(>'x f . 所以)(x f 在0=x 时取得极小值,故0)0()(=≥g x g , )1)(1ln(1->+≤+∴x x x x . 综上可知,)1()1ln(1->≤+≤+x x x x x . 变式:)0(1ln >-≤x x x , ② )0(11 ln >≥+x x x . ③ (2))1)(1 (21ln ≥-≤x x x x ④ )10)(1 (21ln ≤<-≥x x x x ⑤ 证明:令)1 (21ln )(x x x x f --=,则02)1()11(211)(22≤--=+-='x x x x x f . 所以函数)(x f 在),0(+∞单调递减. 所以,当1≥x 时,0)1()(=≤f x f ;当10≤