数字图像处理课程论文
数字图像处理技术的应用综述--课程论文

《数字图像处理》课程论文题目:数字图像处理技术的应用综述1 绪论1.1数字图像处理简介数字图像处理又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。
数字图像处理的早期应用是对宇宙飞船发回的图像所进行的各种处理。
到了70年代,图像处理技术的应用迅速从宇航领域扩展到生物医学、信息科学、资源环境科学、天文学、物理学、工业、农业、国防、教育、艺术等各个领域与行业,对经济、军事、文化及人们的日常生活产生重大的影响。
1.2数字图像处理技术的基本特点1)处理信息量很大。
数字图像处理的信息大多是二维信息,处理信息量很大。
如一幅256×256低分辨率黑白图像,要求约64kbit的数据量;对高分辨率彩色512×512图像,则要求768kbit数据量;如果要处理30帧/秒的电视图像序列,则每秒要求500kbit~22.5Mbit数据量。
因此对计算机的计算速度、存储容量等要求较高。
2)占用频带较宽。
数字图像处理占用的频带较宽。
与语言信息相比,占用的频带要大几个数量级。
如电视图像的带宽约5.6MHz,而语音带宽仅为4kHz左右。
所以在成像、传输、存储、处理、显示等各个环节的实现上,技术难度较大,成本亦高,这就对频带压缩技术提出了更高的要。
3)各像素相关性大。
数字图像中各个像素是不独立的,其相关性大。
在图像画面上,经常有很多像素有相同或接近的灰度。
就电视画面而言,同一行中相邻两个像素或相邻两行间的像素,其相关系数可达0.9以上,而相邻两帧之间的相关性比帧内相关性一般说还要大些。
因此,图像处理中信息压缩的潜力很大。
4)无法复现三维景物的全部几何信息。
由于图像是三维景物的二维投影,一幅图象本身不具备复现三维景物的全部几何信息的能力,很显然三维景物背后部分信息在二维图像画面上是反映不出来的。
因此,要分析和理解三维景物必须作合适的假定或附加新的测量,例如双目图像或多视点图像。
在理解三维景物时需要知识导引,这也是人工智能中正在致力解决的知识工程问题。
数字图像处理论文

数字图像处理论文数字图像处理在计算机视觉和图像分析领域中扮演着重要角色。
随着数字图像处理算法的不断发展和改进,对于图像的处理和分析有了更深入的理解。
本篇论文主要介绍了数字图像处理的一些基础概念、方法和应用。
首先,数字图像处理是基于计算机的图像处理技术,旨在改善图像的质量、增强图像的特征以及从图像中提取有用的信息。
数字图像处理的基本步骤包括图像获取、预处理、特征提取和图像重建等。
在图像获取的阶段,通过传感器或数码相机等设备获取图像的原始数据。
在预处理的阶段,对图像进行去噪、平滑和增加对比度等操作,以消除图像中的噪声和提高图像的视觉效果。
在特征提取的阶段,根据图像的特定特征,如边缘、纹理和颜色等,进行特征的提取和描述。
在图像重建的阶段,利用图像处理算法对图像进行重建和恢复。
常见的图像处理算法包括滤波、变换和编码等。
滤波算法主要用于图像平滑和去噪,如均值滤波、中值滤波和高斯滤波等。
变换算法主要用于提取图像的频域特征,如傅里叶变换和小波变换等。
编码算法主要用于图像的压缩和存储,如JPEG、PNG和GIF等。
除了基本的图像处理方法,数字图像处理还有许多应用领域。
其中之一是医学图像处理,包括医学图像的分割、配准和识别等。
另一个应用是遥感图像处理,用于地理信息系统和环境监测等领域。
此外,数字图像处理还在安全和认证、图像检索和图像合成等领域发挥重要作用。
总之,数字图像处理是一门研究如何使用计算机技术对图像进行处理和分析的学科。
通过了解数字图像处理的基本概念、方法和应用,可以更好地理解图像的特性和结构,提高图像处理的效果和精度,并在各个领域中发挥重要作用。
数字图像计算机处理技术论文范文

数字图像计算机处理技术论文范文推荐文章无人机应用技术论文优秀范文热度:物联网传感知识技术论文范文热度:维修电工技术论文范文大全热度:无人驾驶技术原理论文优秀范文热度:现代教育技术论文范文热度:数字图像处理技术是研究采用计算机和其他数字化技术对图像信息进行处理的新技术。
小编整理了数字图像处理技术论文,欢迎阅读! 数字图像处理技术论文篇一浅谈数字图像处理技术摘要:本文针对目前广泛应用数字图像识别处理技术国内外研究现状进行了分析,阐述了数字图像处理技术的应用前景。
关键词:数字图像图像处理数字技术应用一、数字图像处理综述数字图像处理(Digital Image Processing)又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。
数字图像处理最早出现于20世纪50年代,当时的电子计算机已经发展到一定水平,人们开始利用计算机来处理图形和图像信息,数字图像处理作为一门学科大约形成于20世纪60年代初期,早期的图像处理的目的是改善图像的质量,它以人为对象,以改善人的视觉效果为目的。
图像处理中,输入的是质量低的图像,输出的是改善质量后的图像,常用的图像处理方法有图像增强、复原、编码、压缩等。
首次获得实际成功应用的是美国喷气推进实验室(JPL),他们对航天探测器徘徊者7号在1964年发回的几千张月球照片使用了图像处理技术,如几何校正、灰度变换、去除噪声等方法进行处理,并考虑了太阳位置和月球环境的影响,由计算机成功地绘制出月球表面地图,获得了巨大的成功。
随后又对探测飞船发回的近十万张照片进行更为复杂的图像处理,以致获得了月球的地形图、彩色图及全景镶嵌图,获得了非凡的成果,为人类登月创举奠定了坚实的基础,也推动了数字图像处理这门学科的诞生。
在以后的宇航空间技术,医学技术中数字图像处理技术都发挥了巨大的作用。
从70年代中期开始,随着计算机技术和人工智能、思维科学研究的迅速发展,数字图像处理向更高、更深层次发展,人们已开始研究如何用计算机系统解释图像,实现类似人类视觉系统理解外部世界,这被称为图像理解或计算机视觉。
数字图像处理技术的探究论文_数字图像处理课程论文

数字图像处理技术的探究论文_数字图像处理课程论文数字图像处理技术的探究论文篇一《数字图像处理技术的探究》【摘要】目前,图像处理技术得到较好的发展,本文以数字图像处理技术为研究对象,对其发展与应用现状进行简述,并对此技术的优缺点以及制约因素进行系统的分析,概述了此项技术在日后发展中的应用范围。
通过对数字图像处理技术的分析,让我们更深入的了解此项技术,为日后的研究提供一定的理论基础。
【关键词】数字图像处理技术发展就图像处理技术而言,可分为模拟图像与数字图像处理两大类。
数字图像处理技术在发展的过程中,涉及多门学科,其中包括生物学、计算机、信息科学等。
因此,数理与边缘学科与图像处理技术的关系越来越密切。
在最近几年中,数字图像处理技术逐步趋于完善,在遥感、人工智能等多个领域中被广泛使用,并促进相关学科得到较好的发展。
1数字图像处理技术的发展与应用在上世纪六十年代,随着VLS与计算机的发展产生了数字图像处理技术,并不断完善、成熟的一项新技术。
不管是在理论还是实际方面,都取得了较好的进步。
在早期,图像处理主要是为了使图片的质量更加完善。
输入图像的质量较低,而输出图片的质量较高,通常采用复原、压缩等方式进行处理。
此项技术首次应用成功是在美国的喷气推进实验室中。
此后,在航空领域中得到很好的应用,促进了此门学科的发展。
除此之外,数字图像处理技术在医学上也得到了很好的应用。
自上世纪七十年代中期之后,计算机与智能化得到很好的发展,也促进了图像处理技术的进步。
人们开始研究怎样通过计算机,对图像进行系统的解释,这被称作计算机视觉或图像理解。
上世纪几十年代,数字图像处理技术得到大力发展。
截止目前,此项技术在医疗设备、地理信息系统等多个领域中被广泛使用。
2数字图像处理技术的特点2.1优点(1)再现性较好。
数字图像处理技术不会因为各种变换操作而造成图片出现质量退化的现象,始终确保图像可以真实的再现。
(2)处理精度高。
根据当前技术,基本上能够把一副模拟的图像通过数字化做各种二维数组,与图像数字化设备能力有直接的关系。
数字图像处理论文

数字图像处理论文数字图像处理论文篇一:数字图像增强技术摘要:数字图像处理是指利用计算机技术对图像进行各种操作和处理的过程。
图像增强是数字图像处理中的一项重要技术,旨在改善图像的质量和视觉效果。
本文针对数字图像增强技术进行了综述,包括直方图均衡化、滤波和锐化等常用方法。
此外,还介绍了一些新近提出的图像增强算法,如基于深度学习的方法。
最后,对数字图像增强技术的发展趋势进行了展望。
关键词:数字图像处理;图像增强;直方图均衡化;滤波;锐化;深度学习1.引言数字图像处理是计算机科学和图像处理领域的重要研究方向。
随着数字图像在各个领域的广泛应用,对图像质量和视觉效果的要求也越来越高。
图像增强是数字图像处理的一项基础技术,通过改善图像的对比度、亮度和细节等特征,提高图像的可视化效果。
图像增强技术已被广泛应用于医学影像、无人驾驶、图像识别等领域。
2.直方图均衡化直方图均衡化是一种常用的图像增强方法,通过调整图像的像素值分布,提高图像的对比度和显示效果。
其基本思想是将原始图像的像素值映射到一个新的像素值域,使得新图像具有均匀分布的像素值。
直方图均衡化可以有效地增强图像的细节和纹理特征,但在一些情况下会导致图像过度增强或噪声增加。
3.滤波技术滤波是图像处理中常用的一种方法,通过对图像进行平滑或者锐化处理,改善图像的质量和视觉效果。
常用的滤波方法有均值滤波、中值滤波和高斯滤波等。
均值滤波通过计算像素点周围邻域像素的平均值来更新像素的值,可用于图像的平滑处理。
中值滤波通过计算像素点周围邻域像素的中值来更新像素的值,可有效地去除图像中的椒盐噪声。
高斯滤波通过对图像进行加权平均处理,对图像进行平滑和去噪。
4.锐化技术锐化是图像处理中常用的一种技术,通过增加图像中的高频成分,提高图像的边缘和细节等特征。
常用的锐化方法有拉普拉斯算子、Sobel算子和Canny算子等。
拉普拉斯算子通过计算图像的二阶导数来增强图像的边缘和细节。
Sobel算子通过计算图像的一阶导数来提取图像的边缘特征。
数字图像处理相关论文

数字图像处理相关论⽂ “数字图像处理”是⼀门利⽤计算机解决图像处理的学科。
并且,现代多媒体计算机中⼜⼴泛采⽤了数字图像处理技术。
下⾯是店铺给⼤家推荐的数字图像处理相关论⽂,希望⼤家喜欢! 数字图像处理相关论⽂篇⼀ 浅谈“数字图像处理”课程教学改⾰实践 摘要:数字图像处理技术是⼀种发展迅速且应⽤⼴泛的新兴技术,就“数字图像处理”课程的特点,从教学内容、教学⼿段和⽅法、教学理论和实践等⽅⾯进⾏改⾰与实践,增强了学⽣的实践创新能⼒,提⾼了教学质量,收到良好的教学效果。
关键词:数字图像处理;教学⼿段;实践 作者简介:刘忠艳(1975-),⼥,⿊龙江依安⼈,⿊龙江科技学院计算机与信息⼯程学院,副教授;周波(1963-),男,⿊龙江绥化⼈,⿊龙江科技学院计算机与信息⼯程学院,教授。
(⿊龙江哈尔滨 150027) ⼀、“数字图像处理”概述 数字图像处理技术是集微电⼦学、光学、应⽤数学和计算机科学等学科的⼀门综合性边缘技术。
[1,2]是当今信息社会中发展迅速且应⽤⼴泛的新兴科学技术。
数字图像处理技术⼴泛应⽤到通信、计算机、交通运输、军事、医学和经济等各个领域,在各个领域发挥着越来越重要的作⽤。
随着计算机技术的迅速发展,图像处理的技术和理论不断完善和丰富,新的理论、技术也不断涌现,并逐渐进⾏应⽤。
⾯对这样⼀门理论与实际紧密结合的课程,在学习过程中,学⽣常常会遇到很多问题,既为数字图像处理技术应⽤的⼴泛前景所吸引,也时常对课程的抽象理论感到苦恼,渐渐失去学习兴趣。
为了激发学⽣的学习兴趣,提⾼教学质量,对该课程进⾏教学改⾰,势在必⾏。
经过两年半的教学改⾰与实践,取得了⼀定的教学效果。
⼆、教学改⾰措施 为了提⾼“数字图像处理”课程的教学质量,激发学⽣学习本课程的兴趣,对本门课程进⾏改⾰,采取以下措施: 1.整合教学内容 随着计算机技术的迅速发展,数字图像处理技术也得到快速发展。
近⼏年来,有很多新的应⽤点和研究涌现出来,在“数字图像处理”课程中加⼊新技术的介绍,对于学⽣了解国际的研究和应⽤热点,尽快地投⼊相应的研究与应⽤中去⼤有益处。
数字图像处理结课论文

数字图像处理结课作业--数字图像频域增强方法及在matlab中的实现学生姓名:学号:学院:理学院班级:电科班指导教师:摘要:图像增强的目的是使处理后的图像更适合于具体的应用,即指按一定的需要突出一幅图像中的某些信息,同时削弱或去除某些不需要的信息,使之改善图像质量,加强图像判读和识别效果的处理技术。
从总体上可以分为两大类:空域增强和频域增强。
频域处理时将原定义空间中的图像以某种形式转换到其他空间中,利用该空间的特有性质方便的进行图像处理。
而空域增强是在图像空间中借助模板对图像进行领域操作,处理图像每一个像素的取值都是根据模板对输入像素相应领域内的像素值进行计算得到的。
空域滤波基本上是让图像在频域空间内某个范围的分量受到抑制,同时保证其他分量不变,从而改变输出图像的频率分布,达到增强图像的目的。
本文主要从空域展开图像增强技术,重点阐明数字图像增强处理的基本方法,介绍几种空域图像增强方法。
关键词:图像增强 MATLAB 空域增强锐化空间滤波平滑空间滤波目录:1、何为数字图像处理及MATLAB的历史2、空间域图像增强技术研究的目的和意义3、空间域的增强3.1 背景知识3.2 空间域滤波和频域滤波之间的对应关系3.3 锐化滤波3.4 平滑滤波4、结论1、何为数字图像处理及MATLAB的历史数字图像处理(digital image processing),就是利用数字计算机或者其他数字硬件,对从图像信息转换而得到的电信号进行某些数学运算,以提高图像的实用性。
例如从卫星图片中提取目标物的特征参数,三维立体断层图像的重建等。
总的来说,数字图像处理包括运算、几何处理、图像增强、图像复原、图像形态学处理、图像编码、图像重建、模式识别等。
目前数字图像处理的应用越来越广泛,已经渗透到工业、医疗保健、航空航天、军事等各个领域,在国民经济中发挥越来越大的作用。
MATLAB是由美国Math Works公司推出的软件产品。
MATLAB是“Matric Laboratory”的缩写,意及“矩阵实验室”。
2024年数字图像处理论文doc

2024年数字图像处理论文doc标题:2024年数字图像处理论文doc一、引言随着技术的不断发展,数字图像处理在各个领域中的应用越来越广泛。
本文旨在探讨2024年数字图像处理领域的发展趋势,以及相关算法和技术的应用。
通过对数字图像处理的研究,希望能够为相关领域的发展提供一定的参考和帮助。
二、数字图像处理的基本原理数字图像处理是一种利用计算机对图像进行加工、处理和分析的技术。
数字图像处理的基本原理是将图像转换为数字信号,然后利用计算机对数字信号进行处理和分析。
数字图像处理技术包括图像增强、图像变换、图像滤波、图像恢复、图像分析等。
三、数字图像处理的应用范围数字图像处理技术的应用范围非常广泛,包括医学影像、安防监控、智能交通、工业生产、环境监测等领域。
随着技术的不断发展,数字图像处理的应用范围将会更加广泛。
四、数字图像处理的热点问题和研究方向目前,数字图像处理的热点问题和研究方向包括深度学习、人工智能、虚拟现实等。
其中,深度学习在数字图像处理中的应用已经得到了广泛的认可,其在图像识别、目标检测、人脸识别等方面的应用已经取得了显著的成果。
此外,人工智能在数字图像处理中的应用也在不断发展,包括机器学习、神经网络等。
虚拟现实技术在数字图像处理中的应用也在逐渐增加,其在虚拟现实游戏、电影制作等方面的应用已经得到了广泛的应用。
五、数字图像处理的发展趋势和未来前景随着技术的不断发展,数字图像处理的应用范围将会更加广泛。
未来,数字图像处理技术将会更加智能化、自动化和人性化,其在各个领域中的应用将会更加深入。
同时,数字图像处理技术也将会面临更多的挑战和机遇,包括如何提高图像处理的精度和速度、如何解决图像处理中的隐私和安全问题等。
六、总结本文对2024年数字图像处理领域的发展趋势进行了探讨,并介绍了相关算法和技术的应用。
数字图像处理技术已经成为各个领域中不可或缺的一部分,其未来的发展前景非常广阔。
希望本文能够对相关领域的发展提供一定的参考和帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字图像处理课程论文专业班级:指导老师:姓名:学号:图像增强与MATLAB实现一.数字图像处理的概念图像处理是指对图像信息进行加工,从而满足人类的心理、视觉或者应用的需求的一种行为。
图像处理方法一般有数字法和光学法两种,其中数字法的优势很明显,因此,已经被应用到了很多领域中,相信随着科学技术的发展,其应用空间将会更加广泛。
数字图像处理技术其实就是利用各种数字硬件与计算机,对图像信息通过转换而得到的电信号进行相应的数学运算,例如图像去噪、图像分割、提取特征、图像增强、图像复原等,以便提高图像的实用性。
其特点是处理精度比较高,并且能够对处理软件进行改进来优化处理效果,操作比较方便,但是由于数字图像需要处理的数据量一般很大,因此处理速度有待提高。
目前,随着计算机技术的不断发展,计算机的运算速度得到了很大程度的提高,这大大的推动着数字图像处理技术向前发展发展。
图像是人类获取和交换信息的主要来源,因此,图像处理的应用领域必然涉及到人类生活和工作的方方面面。
随着人类活动范围的不断扩大,图像处理的应用领域也将随之不断扩大。
,已在国家安全、经济发展、日常生活中充当越来越重要的角色,对国计民生的作用不可低估。
数字图像处理技术的优点:1)再现性好:模拟图像处理与数字图像处理最大的不同在于,数字图像象处理不会因为图像的存储、复制或传输等一系列操作而引起图像质量的降低。
2)适用面宽:图像可以来自许多的信息源。
它小可以小到电子显微镜的图像,大可以大到遥感图像、航空照片或者天文望远镜得图像。
3)灵活性高:数字图像处理技术不只可以完成线性运算,而且可以实现非线性的处理,即只要是能够用逻辑关系或数学公式来进行表达的所有运算都可以通过数字图像处理来实现。
4)信息压缩潜力大:由于数字图像中各个像素不是相互独立的,相关性大。
所以,在图像处理中信息压缩的潜力比较大。
二. 图像增强的概念图像增强是指依据图像所存在的问题,按特定的需要突出一幅图像中的某些信息,同时,削弱或去除某些冗余信息的处理方法。
其主要目的是使得处理后的图像对给定的应用比原来的图像更加有效同时可以有效的改善图像质量。
图像增强技术主要包含直方图修改处理、图像平滑化处理、图像尖锐化处理和彩色处理技术等。
图像增强单纯从技术上可分成两大类:一类是频域处理法;一类是空域处理法。
频域处理法的采用的是卷积定理,它利用修改图像傅立叶变换的方法实现对图像的增强处理;空域处理法则是对图像中的像素进行直接的处理,大多数是以灰度映射变换为基础的,所用的映射变换取决于增强的目的。
图像增强的方法是通过一定变换方法对原图像附加一些信息或变换数据,有选择地突出图像中感兴趣的特征或者抑制(掩盖)图像中某些不需要的特征,使图像与视觉响应特性相匹配。
在图像增强过程中,一般不分析图像降低质量的原因,处理后的图像不一定逼近原始图像。
图像增强技术根据增强处理过程所存在的空间不同,可分为基于空域的算法和基于频域的算法两大类。
基于空域的算法处理时直接对图像灰度级做运算基于频域的算法是在图像的某种变换域内对图像的变换系数值进行某种修正,是一种间接增强的算法。
基于空域的算法分为点运算算法和邻域去噪算法。
点运算算法即灰度级校正、灰度变换和直方图修正等,目的或使图像成像均匀,或扩大图像动态范围,扩展对比度。
邻域增强算法分为图像平滑和锐化两种。
平滑一般用于消除图像噪声,但是也容易引起边缘的模糊。
常用算法有均值滤波、中值滤波。
锐化的目的在于突出物体的边缘轮廓,便于目标识别。
常用算法有梯度法、算子、高通滤波、掩模匹配法、统计差值法等。
图像增强即增强图象中的有用信息,这个变换过程可以说是一个失真的过程,它的主要目的是加强图像的视觉效果。
依据给定图像的实际要求,有目标的突出图像的整体或者是局部特性,将原来不够清晰的图像变得较为清晰或凸显某些感兴趣的特征,扩大图像中不同事物特征之间的差别,剔除不感兴趣的特征,使之改善图像质量、丰富有用信息量,加强图像判读和识别效果,满足某些特殊分析的需要。
图像增强按所采用方法从技术上可以分成频率域法和空间域法。
频域法即为把图像看成一种二维信号,对其进行基于二维傅里叶变换的信号增强。
采用低通滤波(即只让低频信号通过)法,削弱图中的干扰噪声;采用高通滤波法,则可增强边缘等高频信号,使模糊的图片变得清晰。
具有代表性的空间域算法有局部求平均值法和中值滤波(取局部邻域中的中间像素值)法等,它们可用于去除或减弱噪声。
三.MATLAB简介MATLAB是建立在向量、数组和矩阵基础上的一种分析和仿真工具软件包,包含各种能够进行常规运算的“工具箱”,如常用的矩阵代数运算、数组运算、方程求根、优化计算及函数求导积分符号运算等;同时还提供了编程计算的编程特性,通过编程可以解决一些复杂的工程问题;也可绘制二维、三维图形,输出结果可视化。
目前,已成为工程领域中较常用的软件工具包之一。
它是一种用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境。
使用它,可以较使用传统的编程语言,如C、C++等,更快的解决技术计算问题。
高级语言可用于技术计算;开发环境可对代码、文件和数据进行管理;数学函数可用于线性代数、统计、傅立叶分析、筛选、优化以及数值积分等;二维和三维图形函数可用于可视化数据;各种工具可用于构建自定义的图形用户界面;各种函数可将基于matlab的算法与外部应用程序和语言;其应用范围非常广,包括信号和图像处理、通迅、控制系统设计、测试和测量等众多应用领域。
四.图像增强技术概述图像增强技术主要包括:直方图修改处理,图像平滑处理,图像尖锐化处理,彩色图像处理。
从纯技术上讲主要有两类:频域处理法和空域处理法。
频域处理法主要是卷积定理,采用修改图像傅立叶变换的方法实现对图像的增强处理技术;空域处理法:是直接对图像中的像素进行处理,基本上是以灰度映射变换为基础的。
4.1空域滤波增强使用空域模板进行的图像处理被称为空域滤波,模板本身被称为空域滤波器。
空域滤波器包括:线性滤波器和非线性滤波器。
空域滤波处理效果来分类,可以分为平滑滤波器,和锐化滤波器,平滑的目的在于消除混杂在图像中的干扰因素,改善图像质量,强化图像表现特征。
锐化的目的在于增强图像边缘,以及对图像进行识别和处理。
4.2 平滑滤波器用于模糊处理和减小噪声。
平滑线性空间滤波器的输出(响应)是包含在滤波掩模邻域内像素的简单平均值。
因此这些滤波器也被称为均值滤波器。
平滑滤波器的概念很简单:它是用滤波掩模确定的领域内像素的平均值去代替图像每个像素点的值。
这种处理减少了图像灰度的尖锐化。
每个掩模前边的乘数等于它的系数值的和,以计算平均值。
我们经常用这些极端类型的模糊处理来去除图像中的一些小物体。
例如:在matlab中利用线性平滑滤波器处理一副图像I=imread('eight.tif');J=imnoise(I,'salt & pepper',0.02);>> %添加椒盐噪声>> subplot(221)>> imshow(I)>> title('原图像')>> subplot(222)>> imshow(J)>> title('添加椒盐噪声图像')K1=filter2(fspecial('average',3),J)/255;>> %应用3*3邻域窗口法>> subplot(223),imshow(K1)>> K2=filter2(fspecial('average',7),J)/255;>> %应用7*7邻域窗口法>> subplot(224),imshow(K2)4.3 中值滤波器其原理是把数字图像或数字序列中某一点的值用该点的一个邻域中各点值的中值交换。
中值滤波器的窗口可以取方形,圆形,十字形等。
例如:滤波函数图像处理1smoothingMedianFilterMain.mclc;clear;fid = fopen('lenai.raw');temp= fread(fid, [256,256]);LenaRaw=uint8(temp');subplot(1,3,1)Imshow(LenaRaw);title('原始图像')subplot(1,3,2)Imshow(smoothingMedianFilter(LenaRaw,3));title('自制函数,使用用3*3模板,中值滤波图像')subplot(1,3,3)Imshow(medfilt2(LenaRaw,[3,3]));title('调用库函数medfilt2,使用3*3模板,中值滤波图像')4.4 锐化滤波器锐化处理主要目的是突出图像中的细节或者增强被模糊了的细节,这种模糊不是由于错误操作,就是特殊图像获取方法的固有影响。
常用的方法有两种即为微分法和模板匹配法。
其中微分法中梯度是图像处理常用的一次微分方法,在灰度骤变区域,梯度值大,在灰度相似区域,梯度值小。
在灰度级为常数的区域,梯度为零;Laplacian 算子是线性二次微分算子,与梯度算子一样,具有旋转不变性,从而满足不同走向的图像边界的锐化要求。
而对于模板匹配法则是出去能够增强图像边缘外,还具有平滑噪声的优点。
4.5 低通滤波器一幅图像的边缘,跳跃部分以及颗粒噪声代表图像信号的高频分量,而大面积的背景区域代表了图像信号的低频分量。
低通滤波器的作用就是滤除这些高频分量,保留低频分量,使图像信号平滑。
它包括:理想低通滤波器,巴特沃斯低通滤波器,指数低通滤波器等。
例如:频域增强I=imread('apple.png');>> J=imnoise(I,'salt & pepper',0.02);>> subplot(121),imshow(J)>> title('含噪声的图像')J=double(J);>> f=fft2(J);>> g=fftshift(f);>> [M,N]=size(f);>> n=3;d0=20;>> n1=floor(M/2);n2=floor(N/2);>> for i=1:Mfor j=1:Nd=sqrt(i-n1)^2+((i-n2)^2);h=1/(1+0.414*(d/d0)^(2*n));g(i,j)=h*g(i,j);endendg=ifftshift(g);>> g=uint8(real(ifft2(g)));>> subplot(122),imshow(g)>> title('三阶Butterworth滤波图像')4.6 高通滤波器与低通滤波器相反,它将高频信号通过,而抑制了低频信号。