最新:耐多黏菌素肺炎克雷伯菌的诊治进展

合集下载

肺炎克雷伯菌对抗生素的耐药性研究

肺炎克雷伯菌对抗生素的耐药性研究

肺炎克雷伯菌对抗生素的耐药性研究肺炎克雷伯菌(Klebsiella pneumoniae)是一种常见的病原菌,可引发多种感染,包括呼吸道感染、尿路感染和败血症等。

然而,近年来,肺炎克雷伯菌对抗生素的耐药性不断增强,给临床治疗带来了极大的挑战。

本文将对肺炎克雷伯菌对抗生素耐药性的研究进行探讨。

一、肺炎克雷伯菌对抗生素的耐药机制肺炎克雷伯菌对抗生素的耐药性主要有两种机制:靶标改变和药物耐药基因的表达。

1. 靶标改变肺炎克雷伯菌可以通过改变药物的作用靶点,降低药物对其的效果。

例如,一些菌株可通过改变靶标蛋白的结构或功能,使得抗生素无法有效结合,从而失去了杀菌作用。

这种耐药机制使得肺炎克雷伯菌对β-内酰胺类抗生素(如头孢菌素和氨苄青霉素等)呈现高水平的耐药性。

2. 药物耐药基因的表达肺炎克雷伯菌通过表达一系列耐药基因来降低对抗生素的敏感性。

这些耐药基因可以通过多种方式在菌体内进行水平传递,从而导致多重耐药。

其中最著名的耐药基因包括产β-内酰胺酶和外膜通道蛋白的缺失等。

二、肺炎克雷伯菌耐药性的流行状况肺炎克雷伯菌对抗生素的耐药性在全球范围内普遍存在,且呈逐年增加的趋势。

相关研究表明,耐氨苄青霉素酶型肺炎克雷伯菌是当前医院感染的主要致病菌之一。

此外,某些菌株还表现出对卡那霉素等多种抗生素的耐药性,增加了感染控制的难度。

因此,了解肺炎克雷伯菌耐药性的流行状况对临床治疗和感染预防具有重要意义。

三、抗生素耐药基因的研究进展近年来,对肺炎克雷伯菌抗生素耐药基因的研究取得了一些进展。

通过全基因组测序技术,研究人员发现了大量和抗生素耐药相关的基因,包括β-内酰胺酶基因和多重耐药泵基因等。

此外,一些研究还发现了新型的耐药基因,为进一步解释肺炎克雷伯菌抗生素耐药性的机制提供了新的线索。

此外,肺炎克雷伯菌耐药性的研究还涉及到基因表达调控、质粒传递和细菌遗传背景等方面。

通过深入研究这些机制,可以更好地理解肺炎克雷伯菌对抗生素的耐药性,为临床治疗提供更有效的策略。

肺炎克雷伯菌的临床分布及耐药性分析

肺炎克雷伯菌的临床分布及耐药性分析

肺炎克雷伯菌的临床分布及耐药性分析肺炎克雷伯菌(Klebsiella pneumoniae)是一种常见的致病菌,引起了全球范围内的严重感染和医疗相关感染。

本文将分析肺炎克雷伯菌在临床上的分布情况,并重点关注其耐药性。

一、肺炎克雷伯菌的临床分布肺炎克雷伯菌广泛存在于自然环境中,如土壤、水体、植物和动物肠道等。

然而,在医疗机构内,尤其是重症监护单位和长期护理机构,肺炎克雷伯菌感染明显增加。

在临床上,肺炎克雷伯菌是一种重要的病原体,主要引起下呼吸道感染(如肺炎)、尿路感染、血流感染和手术切口感染等。

由于其高度传染性和强烈的耐药性,肺炎克雷伯菌感染往往导致病情严重,并增加了治疗难度。

二、肺炎克雷伯菌的耐药性分析1. β-内酰胺酶产生肺炎克雷伯菌是β-内酰胺类抗生素的主要耐药细菌之一。

这些细菌通过产生β-内酰胺酶来破坏抗生素的作用,进而导致药物失效。

其中,产超广谱β-内酰胺酶(Extended-spectrum β-lactamases, ESBL)的肺炎克雷伯菌对多种抗生素,如第三代头孢菌素、氟喹诺酮类和氨基糖苷类等显示出高度耐药性,给治疗带来极大挑战。

2. 氨基糖苷酶产生另外,肺炎克雷伯菌也常出现产氨基糖苷酶(Aminoglycoside-modifying enzymes, AME)的情况。

这类酶能够修饰氨基糖苷类抗生素的结构,降低其对细菌的杀菌效果。

3. 硫酸肼抗性硫酸肼是一种常用于治疗结核病的抗生素。

然而,一些肺炎克雷伯菌菌株发生了对硫酸肼的耐药。

这主要是由于突变目标位点引起的,导致细菌对硫酸肼失去了敏感性。

4. 羟基磺胺类抗生素耐药羟基磺胺类抗生素是治疗呼吸道感染的常用药物。

然而,一些肺炎克雷伯菌对羟基磺胺类抗生素产生了耐药性。

这种耐药机制主要是通过细菌产生羟化酶来降解药物,从而降低了其疗效。

三、对策与建议1. 合理使用抗生素临床医生在治疗感染时应根据患者的具体情况,选择合适的抗生素,并遵循抗生素使用指南。

多重耐药肺炎克雷伯菌耐药表型及医院感染控制策略探讨

多重耐药肺炎克雷伯菌耐药表型及医院感染控制策略探讨

多重耐药肺炎克雷伯菌耐药表型及医院感染控制策略探讨摘要:目的:深入分析多重耐药肺炎克雷伯菌(MDRKP)耐药表型,同时制定控制医院感染策略,为后续工作中能够预防和控制医院感染提供参考。

方法:共计收集22株MDRKP临床分离株,对其进行分子分型,分析其耐药表型,同时制定医院感染控制策略。

结果:22株MDRKP对临床广泛应用的抗菌药物均存在耐药性,PFGE共分为8个谱型,K3为优势谱型,其次为K4,K5,K7,同源性≥80%中ICU数据为57.14%(4/7),呼吸内科为40%(2/5),总计81.82%(18/22)。

结论:MDRKP呈现同源分布,具有同源爆发风险,故应加强细菌耐药监测和控制医院感染策略。

关键词:MDRKP;耐药表型;医院感染;控制策略肺炎克雷伯菌是医院感染的致病菌之一,伴随着广谱抗菌药物,如:β-内酰胺类药物、碳青霉烯类药物的临床广泛应用,已经出现了极其严重的多重耐药性,即多重耐药肺炎克雷伯菌(multidrug resistant klebsiella pneumonia,简称:MDRKP),就美罗培南和亚胺培南而言,2005年多重耐药性自2.9%和3.0%到2017年的24.0%和20.9%,耐药数据提升了8倍之多[1],形势非常严峻,肺炎克雷伯菌能够在医院内环境中存活,30%医院感染是通过环境、医护人员手得以传播,并迅速扩散,故了解肺炎克雷伯菌的定植、传播特征,对防控医院感染意义深远。

基于此,特分离出22株MDRKP进行研究,实施同源性鉴定,分析其传播途径的同时制定相应的控制策略,如下。

1资料与方法1.1菌株来源22株肺炎克雷伯菌来自我院9个科室,分别通过脓液、痰、尿液、血液等标本培养,分别为7株呼吸内科,4株ICU,2株感染科,2株急诊科,1株普外科,1株泌尿科,2株神经内科,2株脑外科,1株消化内科。

1.2药敏试验将分离后的细菌进行微生物鉴定以及药敏试验,并将抗生素(三类或三类以上)的MDRKP行低温保存(-80℃)。

肺炎克雷伯菌的感染临床特征及耐药性研究

肺炎克雷伯菌的感染临床特征及耐药性研究

临床探索肺炎克雷伯菌的感染临床特征及耐药性研究任绪红,钱冬萌* (青岛大学基础医学院,山东青岛 266000)摘要:目的:分析沂南县人民医院各科室肺炎克雷伯菌(KP)感染分布情况及对抗生素的耐药程度。

方法:选取2020年9月~2021年9月沂南县人民医院临床分离的无重复的145株肺炎克雷伯菌为对象,菌株源于重症监护室(ICU)、急诊病房、呼吸内科、神经外科。

分析各科室的KP感染分布情况,并通过药敏试验分析KP对不同抗生素的耐药情况。

结果:145株KP标本中98株分离自痰液,占比67.59%;分离自血液占比18.62%,分离自尿液占比10.34%,分离自脓液与其他标本分别占比2.07%和1.38%。

科室分布以ICU分离的KP数量最多。

KP对头孢曲松的耐药率最高,且对复方新诺明、哌拉西林、头孢他啶、头孢呋辛及左旋氧氟沙星等抗生素均具有较高耐药率。

KP对替加环素、阿米卡星、厄他培南的耐药率均低于10%。

结论:我院各科室KP对多种抗菌药物具有较高耐药率,且多重耐药性较为严重,临床及感控部门应对其引起重视。

关键词:肺炎克雷伯菌;药敏试验;抗生素;耐药性;耐药基因肺炎克雷伯菌(Klebsiella pneumoniae,KP)又称肺炎杆菌,是革兰阴性杆菌,属细菌域、变形菌门、肠杆菌科、克雷伯菌属[1]。

肺炎克雷伯菌不仅是自然界中广泛存在的菌株,而且是医院感染中常见的致病菌。

肺炎克雷伯菌作为条件致病菌和院内感染主要致病菌,由其引发的感染在细菌感染学疾病中的占比呈逐渐升高趋势,并且在耐药机制方面较为复杂多样,从而导致抗感染治疗的难度逐渐加大[2]。

当前,如何预防和控制KP感染已成为当务之急。

而这就要求对肺炎克雷伯菌感染分布及耐药性情况予以了解和充分掌握,为临床有效治疗KP提供支持和依据。

目前,在不同的标本中均可检出肺炎克雷伯菌,且在医院各科室的检出率都比较高。

本文通过对2020年9月~2021年9月我院肺炎克雷伯菌在不同标本和医院各科室的分布情况予以了解,同时对其耐药性情况进行分析,从而为防控和临床治疗提供有益指导。

肺炎克雷伯杆菌多重耐药性发生及其机理分析

肺炎克雷伯杆菌多重耐药性发生及其机理分析

肺炎克雷伯杆菌多重耐药性发生及其机理分析肺炎克雷伯杆菌(Multidrug-resistant Klebsiella pneumoniae, MDRO-KP)是一种人体内常见的致病菌,也是医院感染的主要病原体之一。

近年来,MDRO-KP的发生率和病死率呈上升趋势,给公共卫生安全带来了严重威胁。

本文将从MDRO-KP的定义、多重耐药性的机制及其发生原因进行探讨,以期能更好地理解这一问题。

一、定义肺炎克雷伯杆菌是一种革兰氏阴性杆菌,是革兰氏阴性菌中最常见的致病菌之一。

多重耐药性肺炎克雷伯杆菌(Multidrug-resistant Klebsiella pneumoniae, MDRO-KP)指对常用抗生素存在多种耐药性的肺炎克雷伯杆菌。

目前,MDRO-KP的多重耐药性已经成为公共卫生领域的一个严重问题。

二、多重耐药性机制MDRO-KP的多重耐药性主要是由于其自身染色体或质粒中携带了多个异源性抗性决定子(Resistance Determinant, RD),这些RD在多个抗菌药物中均具有耐药性。

抗生素通过不同的机制抑制细菌生长或杀灭细菌,然而,抗生素耐药菌通过各种途径抵御抗生素的杀菌作用,使细菌不被抗生素所破坏。

主要的多重耐药机制包括:生物膜形成、外座糖基化修饰、质粒介导传递、药物外排泵和酶催化降解等。

三、多重耐药性发生原因MDRO-KP的多重耐药性与目前医疗卫生体系中的多种因素有关,主要包括抗生素的过量和滥用、医疗操作错误、患者免疫力下降和环境应激等。

1.抗生素的过量和滥用抗生素过量和滥用是导致MDRO-KP发生的最主要因素。

临床上,抗生素常被用于预防或治疗感染,但由于其广谱性和剂量不当,导致抗菌药物耐药性的发生。

此外,很多人对抗生素的需求超出了治疗范围,医生过于依赖抗生素,而忽略了预防措施的必要性,以及免疫力提高的关键因素。

2.医疗操作错误医疗操作错误也是导致MDRO-KP的一个重要因素。

可能的错误包括医疗器具的污染、卫生环境的缺乏、手术操作的不当、抗生素的间断和不规律及患者的过度用药。

肺炎克雷伯菌耐药机制和毒力因子研究进展

肺炎克雷伯菌耐药机制和毒力因子研究进展

肺炎克雷伯菌耐药机制和毒力因子研究进展耿响;刘希望;李剑勇【期刊名称】《中兽医医药杂志》【年(卷),期】2024(43)1【摘要】肺炎克雷伯菌是寄生于人和动物的皮肤、呼吸道、肠道等处的机会致病菌,具有较高的致病性,常引起呼吸系统、泌尿系统等感染,甚至出现败血症、脑炎等。

肺炎克雷伯菌可分为经典肺炎克雷伯菌(cKP)与高毒力肺炎克雷伯菌(hvKP),hvKP能导致更严重、散播性更强的感染。

目前,肺炎克雷伯菌的耐药性增强,耐药菌株的流行呈全球性和多样化的趋势,已引发关注。

除了外排泵,肺炎克雷伯菌对抗菌药产生耐药性的机制有很多种,并且可以随着可移动遗传元件快速传播。

本文详细阐述了肺炎克雷伯菌对β-内酰胺类、喹诺酮类、氨基糖苷类、替加环素、多黏菌素等抗菌药物的耐药机制。

肺炎克雷伯菌的毒力因子多样,包括荚膜、脂多糖、黏附素、PEG-344、铁载体(肠杆菌素、沙门菌素、耶尔森菌素、气杆菌素)、外膜蛋白等。

目前,对肺炎克雷伯菌的致病性和耐药性的研究越来越深入,在治疗方面也不断推进,主要的策略包括老药新用、纳米化抗菌药、新型抗菌药研发、噬菌体疗法、抗体疗法等。

对肺炎克雷伯菌耐药机制、毒力因子进行详细、全面的综述,可为肺炎克雷伯菌的防控和临床用药提供参考。

肺炎克雷伯菌的生物学特性、精准诊断、与宿主不同组织细胞的互作机制、宿主免疫应答机制等方面仍需深入研究。

【总页数】10页(P29-38)【作者】耿响;刘希望;李剑勇【作者单位】中国农业科学院兰州畜牧与兽药研究所农业农村部兽用药物创制重点实验室甘肃省新兽药工程重点实验室【正文语种】中文【中图分类】S855.1;R378【相关文献】1.肺炎克雷伯菌耐药性和毒力相关因子研究进展2.高毒力肺炎克雷伯菌的毒力因子和耐药机制研究进展3.高毒力肺炎克雷伯菌毒力和耐药机制研究进展4.肺炎克雷伯菌毒力因子及耐药研究进展5.高毒力肺炎克雷伯菌毒力和耐药机制研究进展因版权原因,仅展示原文概要,查看原文内容请购买。

肺炎克雷伯菌血流感染研究进展

肺炎克雷伯菌血流感染研究进展

血流感染 (bloodstream infection,BSI)是细菌、 真菌等病原微生物侵入血流生长繁殖并产生大量 毒素和代谢产物引起的严重全身性感染综合征,可 导致 感 染 性 休 克、急 性 呼 吸 窘 迫 综 合 征、弥 散 性 血 管内凝血甚至多器官功能障碍综合征等一系列并 发症,是感染性疾病最严重的表现形式之一。近年 来,由 肺 炎 克 雷 伯 菌 引 起 的 血 流 感 染 越 来 越 多,同 时肺炎克雷伯菌的耐药性也不断增高,由多重耐药 肺炎克雷伯菌所致血流感染有逐步增多的趋势,给 临床治疗带来巨大挑战。 1 病原学
肺炎克雷伯菌(Klebsiellapneumoniae)是克雷伯 菌属 7个种中的一个种,可分为 3个遗传谱系,革兰 阴性兼性厌氧,广泛存在于自然环境及人的呼吸道 和胃肠道中,常可导致肺炎、血流感染、泌尿系感染 及腹腔内感染等,是临床常见的条件致病菌和医院 感染重要 的 致 病 菌 之 一[1]。 其 毒 力 因 子 包 括 荚 膜 多糖、菌毛、外 膜 脂 多 糖、蛋 白 和 铁 载 体 等,其 中 荚 膜多糖具有抗吞噬功能及抗血清补体的溶解作用,
Abstract:Klebsiellapneumoniaisacommonopportunisticpathogenandanimportantnosocomialpathogen.Inrecentyears,multidrug resistantKlebsiellapneumoniabloodstreaminfections,whichbringaboutgreatchallengestoclinicalcare,areincreasing.Thisarticlewill reviewtheprogressesintheresearchesonthedrugresistantmechanismsofKlebsiellapneumoniaandKlebsiellapneumoniabloodstream infections. Keywords:Klebsiellapneumoniae;Bloodstream infection;Antimicrobialagent;Multidrugresistantbacterium

肺炎克雷伯菌的耐药机制及药物治疗课件

肺炎克雷伯菌的耐药机制及药物治疗课件

肺炎克雷伯菌的耐药机制及药物治疗课件肺炎克雷伯菌(Klebsiella pneumoniae)是一种常见的革兰氏阴性杆菌,可以引起各种感染,包括肺炎、尿路感染、创伤感染等。

近年来,肺炎克雷伯菌产生了广泛的耐药性,使得治疗变得困难。

在本课件中,我们将探讨肺炎克雷伯菌的耐药机制以及目前的药物治疗方法。

一、肺炎克雷伯菌的耐药机制1. β-内酰胺类酶的产生:β-内酰胺酶是肺炎克雷伯菌耐药的主要机制之一。

这种酶能够降低β-内酰胺类抗生素(如头孢菌素和氨苄青霉素)的作用,从而使得这些抗生素无法有效抑制细菌的生长。

2. 外膜通道蛋白的改变:肺炎克雷伯菌的外膜是一层具有高度通透性的屏障,用于阻止抗生素的进入。

然而,菌株通过改变外膜通道蛋白的表达量或结构来减少对抗生素的敏感性,从而获得耐药性。

3. 活性泵的过度表达:活性泵是细菌抵抗抗生素的重要机制之一,它可以将抗生素从细胞内排出。

肺炎克雷伯菌通过过度表达活性泵,增加抗生素的外排,从而降低抗生素对其的杀菌作用。

4. 其他耐药基因的存在:肺炎克雷伯菌通过获得耐药基因,如AmpC酶、ESBL、NDM-1等,增加对多种抗生素的耐药能力。

这些基因可以通过水平转移的方式传递给其他菌株,进一步加剧耐药问题。

二、肺炎克雷伯菌的药物治疗由于肺炎克雷伯菌的耐药性不断增强,目前对其的治疗变得更加困难。

以下是一些可能有效的药物治疗方法:1. β-内酰胺类酶抑制剂联合应用:由于β-内酰胺类酶是肺炎克雷伯菌耐药的主要机制之一,将β-内酰胺类抗生素与β-内酰胺酶抑制剂联合使用可以有效抑制菌株的生长。

常用的联合药物包括阿米卡星/克拉维酸、头孢他啶/舒巴坦等。

2. 多药联合治疗:对于有严重感染的患者,可以考虑采用多药联合治疗的方式。

这样可以增加抗生素的覆盖范围,减少耐药菌株的出现。

常用的联合方案包括氨苄西林/替加环素/甲氧西林等组合。

3. 抗生素选择性使用:针对不同的菌株,需要根据其对抗生素的敏感性进行有针对性的治疗。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新:耐多黏菌素肺炎克雷伯菌的诊治进展摘要近年来,多耐药及泛耐药的肺炎克雷伯菌检出率日益上升,因此,多黏菌素作为对大多数多耐药菌株依然敏感的抗生素,获得了越来越多的关注。

然而,多黏菌素的广泛使用可能会对肺炎克雷伯菌产生诱导作用,使其产生耐药性。

同时,异质性耐药现象的出现也增加了临床上对耐多黏菌素肺炎克雷伯菌的防治难度。

目前临床上除了依赖多黏菌素联合其他抗生素来治疗耐多黏菌素肺炎克雷伯菌感染之外,新型抗菌药物的研发也成为研究的热点。

同时探索对多黏菌素耐药性的早期检出方法有助于优化和完善耐多黏菌素肺炎克雷伯菌的诊疗策略。

本文综述了近年来有关耐多黏菌素肺炎克雷伯菌的流行现状、产生机制、检出方法及其防治措施。

肺炎克雷伯菌是一种革兰阴性菌,属肠杆菌科(Enterobacteriaceaefami1y\克雷伯菌属(KIebSiei1aSPeCieS),主要存在于人类肠道、呼吸道及泌尿生殖道中,可与宿主共生,也可作为机会性病原体或病原体引发感染。

根据中国疾控中心发布的2009-2023年间全国急性呼吸道感染患者的病原学检测结果,肺炎克雷伯菌是我国常见的呼吸道革兰阴性致病菌之一[11肺炎克雷伯菌引发的感染多为机会性感染的医疗相关感染,死亡率较高,为临床诊治带来了较大困难,因此,对肺炎克雷伯菌防治措施的研究成为了临床上关注的重点。

目前针对肺炎克雷伯菌的经验性治疗仍常用β-内酰胺类、氨基糖苗类及喋诺酮类抗生素,然而由于抗生素滥用带来的选择压力,近些年来肺炎克雷伯菌的耐药问题日益严重。

根据中国细菌耐药监测网(CHINET)公布的2005—2023年的监测数据,肺炎克雷伯菌的耐药性逐年上升,耐药谱逐渐变广,这一现象大大限制了抗生素的使用。

为了应对临床上愈发严重的耐药现象,多黏菌素作为一类对目前大多数多重耐药菌株敏感的抗生素,在临床上得到了广泛的应用。

它是一种由多黏芽泡杆菌产生的环肽类阳离子抗生素,包括A s B、C、D、E五种类型,目前临床上仅使用多黏菌素B和多黏菌素E进行抗菌治疗[21多黏菌素可与革兰阴性菌外膜脂多糖(1PS)中脂质A的磷酸基团结合,将自身疏水部分插入细胞膜,改变其通透性,随后通过自发摄取机制透过外膜并将其破坏,导致细胞渗透失衡,达到杀菌目的。

多黏菌素的杀菌机制还包括[3]:(1)使内外膜的磷脂小叶产生接触并发生磷脂交换,导致细胞渗透失衡;(2)诱导细菌产生羟基自由基,导致Fe3+流失和铁硫依赖蛋白失活;(3)抑制细菌内膜上的二型NADH脱氢酶(NDH2)活性,扰乱细菌新陈代谢;(4)以剂量依赖的方式与1PS分子结合,抑制脂质A的内毒素活性。

然而,多黏菌素的使用可能会对肺炎克雷伯菌产生诱导作用,使其产生多黏菌素耐药性。

多黏菌素类药物的耐药性最早主要由染色体介导进行垂直转移,而随着质粒介导多黏菌素耐药基因(mobi1eco1istinresistance,mcr)在多国被检出后,多黏菌素耐药性的水平转移也成为关注的焦点,鉴于质粒介导耐药性水平转移的广泛性,加强对多黏菌素类药物耐药性的防范已刻不容缓。

一、耐多黏菌素肺炎克雷伯菌流行情况过去十年间,全球碳青霉烯类耐药肺炎克雷伯菌(CRKP)的多黏菌素耐药率从不超过2%增至9%[4]o美国、加拿大、南美和欧洲均报道了多次耐多黏菌素肺炎克雷伯菌的暴发流行。

2013年来,欧洲的碳青霉烯类耐药菌株对多黏菌素的耐药率已上升至33%以上,意郑IJ的CRKP多黏菌素耐药性高达43%,希腊为20.8%,西班牙为31%[5]o根据2017年我国的一项多中心研究显示,我国临床分离到的耐多黏菌素肺炎克雷伯菌少而散发检出率约为0.7%。

图1为CH1NET统计的2017年至2023年全国1000余所医院中采集到的克雷伯菌属对多黏菌素的耐药情况。

目前数据显示,我国的耐多黏菌素克雷伯菌检出数逐年增高,但总体的耐药率仍较低,多黏菌素依然是目前治疗多耐药肺炎克雷伯菌感染的强有力手段。

二、肺炎克雷伯菌中常见的耐多黏菌素机制(-)作用靶点结构的改变多黏菌素作用靶点为细菌外膜1PS的脂质A,其耐药机制多与脂质A的结构改变有关,例如在脂质A中插入带正电荷的结构(如磷酸乙醇胺,pEtN和1-4-阿拉伯糖,1-Ara4N等)可减少与多黏菌素的静电相互作用,从而降低细菌对多黏菌素的敏感性[6]o介导这一过程的基因可位于染色体上,也可位于质粒等可移动遗传元件上。

1. 双组分调控系统(two-componentregu1ationsystem):双组分调控系统是细菌中一种重要的信号传递系统及基因表达调节系统,可介导细菌在阳离子抗菌肽环境中产生适应性。

与多黏菌素耐药性相关的双组分调控系统包括pmrAB系统、phoPQ系统和ccrAB系统,它们之间还存在相互调控关系,共同介导耐药性的表达[7]o如图2所示,pmrAB系统和phoPQ系统被环境中的多黏菌素激活,具有组氨酸激酶活性的组分PmrB和PhoQ便催化效应调节蛋白PmrA和PhoP发生磷酸化,磷酸化的PhoP可上调pmrD基因的表达,进一步促进并使PmrA稳定于磷酸化状态,进而激活编码PEtN磷酸转移酶的pmrCAB操纵子、参与脂多糖修饰过程的pmrE基因以及参与1-Ara4N合成的PmrHFIJK1M操纵子从而将pEtN 或1-Ara4N插入脂质A[2]o同时,磷酸化的PhoP也可直接激活PmrHFIJK1M ocrrAB系统主要通过调控下游的crrC基因(又名H239,3062基因)来影响细菌的多黏菌素耐药性。

其组分crrB基因发生突变时会上调crrC的转录进而导致PmrAB系统过表达[7以及PmrHF11K1M操纵子、PmrC和pmrE基因的激活。

此外,crrC还会与周围基因共转录,其中便包括编码RND型外排泵的H239_3064基因,该基因转录上调会导致菌株对多黏菌素、四环素及替加环素的耐药性增加。

因而相比于其他耐药机制,crrB的突变可导致肺炎克雷伯菌产生更强的耐药性[7]o2. mgrB基因:mgrB基因可通过抑制PhoQ的表达及抑制PhoP的磷酸化对phoPQ系统进行负反馈调节[8],因此该基因的失活可导致PhoPQ系统表达上调,使菌株产生多黏菌素耐药性。

mgrB常见的失活机制包括插入序列介导的基因重组以及基因突变导致的氨基酸序列改变或翻译过程提早终止,由于在临床上此类突变的检出率较高,因而一般认为mgrB基因突变是导致多黏菌素耐药性产生的重要机制。

3. mcr基因:该基因编码的pEtN转移酶可介导pEtN结构插入脂质A,降低细胞膜与多黏菌素的结合亲和力[91目前在自然界中已有多种重要的mcr等位基因检出,肺炎克雷伯菌中常见亚型为mcr-1x mcr-7和mcr-8omcr-1的转移通常由插入序列ISAPI1介导,当基因两端存在该插入序列时,mcr-1会与之形成复合转座子,通过〃复制粘贴(copy-out,paste-in)〃机制进行转移,如转座子Tn6330(ISApII-mcr-1-Orf1SApH)从质粒上被切下后形成的ISApII-mcr-1-orf中间产物可整合到其他携带ISApII的质粒中,造成耐药性的播散[20]0插入序列IS1也可出现在mcr-1上游,协助其转座[21]相比mcr-1,mcr-7与mcr-8的检出率较低。

研究发现,目前检出的此两种基因常与NaNDM等碳青霉烯酶基因共存于同一菌株中,如2023年中国报道了一株同时携带mcr-8、NaNDM及tme×CD1-toprJ1基因的肺炎克雷伯菌[22],通常情况下这三种抗性基因均位于不同类型的质粒上,但在环境中多黏菌素的选择压力作用下,这三种抗性基因所在的质粒可在插入序列£26和ItrA的介导下发生偶联,并且,多黏菌素的存在还提高了杂交质粒的稳定性。

这一现象说明多黏菌素的使用可能会加速多耐药菌株的形成,为今后的临床诊治敲响了警钟。

(二)屏障系统改变——荚膜多糖(CPS)的生成增多研究表明,CPS携带的负电荷可与多黏菌素携带的正电荷结合,从而阻止多黏菌素与脂多糖的结合,提高细菌的耐药性,这种保护作用与CPS的血清型或化学成分均无关,而是仅取决于菌株产生的CPS量。

因而当CPS生成增多(如多黏菌素和乳铁蛋白可诱导CPS操纵子的表达上调)时,肺炎克雷伯菌对多黏菌素的耐药性便会增加[23]0(三)RamA基因与AcrAB.OqxAB外排泵的活化RamA基因可在革兰阴性杆菌中调控多种药物耐药性的表达。

该基因可与编码耗能型外排泵的acrAB基因和OqXAB基因的启动子结合,介导其表达上调,从而将多黏菌素从细胞质中排出,降低多黏菌素对细菌的杀伤作用[241三、异质性耐药异质性耐药是指同一分离株的不同亚群对抗菌药物表现出不同敏感性的现象,出现耐药性的亚群可逃逸抗菌药物的杀伤继续繁殖[25],若异质性耐药株在抗菌药物压力下持续被选择,便会使该分离株对此类抗生素的抗性不断增加[26]o异质性耐药菌无法通过常规药敏试验发现,常被临床忽略,存在隐形危害。

肺炎克雷伯菌多黏菌素异质性耐药的产生多与PhoPQ双组分系统的表达上调相为27],当PmrAB及ph。

PQ系统组分发生突变或PhoP、PhoQ、PmrD编码的mRNA显著过表达时,肺炎克雷伯菌亚群便会获得多黏菌素耐药性,出现异质性耐药。

另外,日本学者于2023年报道了一株mutS基因突变介导产生多黏菌素异质耐药性的肺炎克雷伯菌SMKP03β该菌株上编码DNA错配修复酶的mutS 活性区域被无义突变截断,使菌株自发性产生多黏菌素耐药性的概率大大提高,从而更易产生多黏菌素异质耐药性[281同时,介导1PS表达的IpxM基因与yciM 基因缺失突变在表达异质性耐药的菌株中也有报道,说明1PS的表达上调也可导致多黏菌素异质性耐药现象的产生[29]o四、耐多黏菌素肺炎克雷伯菌的快速检出目前多黏菌素的药敏检测方法和结果判定仍存在诸多争议。

2016年欧洲抗菌药物敏感性试验委员会(EUCAST齐口美国临床实验室标准协会(C1SI)的多黏菌素折点联合工作小组共同推荐使用ISO-20776标准微量肉汤稀释法作为测定肠杆菌、铜绿假单胞菌和不动杆菌属对多黏菌素类药物体外敏感性的参考方法,2023年针对肠杆菌和铜绿假单胞菌又新增了多黏菌素E肉汤纸片洗脱法和多黏菌素E琼脂实验[25]o但以上检测方法均用时较长、准确性低,难以广泛在常规医疗机构中开展,且目前临床上暂无统一的多黏菌素药物敏感性试验折点标准,为临床诊治带来了较大困难。

为了快速评估细菌对多黏菌素的敏感性,国内外的学者在现有的检验技术上不断发展,探索出了一些更为高效的药敏早期评估方法。

1 .快速多黏菌素NP试验[30]:该试验利用细菌生长时会进行糖酵解的特点,在已知浓度的多黏菌素中通过监测体系PH值的变化来测定葡萄糖发酵后产生的酸性代谢物浓度,反映细菌的生长状况,侧面评估细菌对多黏菌素的抗性。

相关文档
最新文档