新能源汽车空调电动压缩机控制技术研究
新能源汽车空调控制系统研究

新能源汽车空调控制系统研究1. 引言1.1 新能源汽车空调控制系统研究的背景传统燃油车的空调系统一直存在能源消耗大、污染环境等问题,为了提高新能源汽车的竞争力和适用性,研究新能源汽车空调控制系统成为当今研究的热点之一。
新能源汽车空调控制系统的研究不仅可以提高车辆的能源利用率,减少对环境的污染,还可以提升驾驶者和乘客的舒适感受,从而推动新能源汽车的普及和发展。
目前,随着技术的不断创新和发展,新能源汽车空调控制系统的研究正逐步深入,涉及到空调系统的智能化、节能化、环保化等方面,将为新能源汽车的发展打下坚实的基础。
加强对新能源汽车空调控制系统的研究具有重要的意义和价值。
1.2 新能源汽车空调控制系统研究的意义新能源汽车空调控制系统研究的意义在于提高新能源汽车的整体性能和舒适性,为用户提供更好的驾驶体验。
通过对空调系统的研究和优化,可以提高新能源汽车的能效和节能性能,减少能源消耗和碳排放。
同时,优化空调控制系统还可以提高车辆的安全性和稳定性,保障驾驶员和乘客的舒适度和健康。
另外,新能源汽车空调控制系统的研究也有助于推动新能源汽车产业的发展,促进技术创新和产业升级。
通过不断改进和完善空调控制系统,可以提升新能源汽车的市场竞争力,推动新能源汽车产业健康快速发展。
因此,研究新能源汽车空调控制系统的意义重大且深远,对推动环保、节能和可持续发展具有重要意义。
1.3 新能源汽车空调控制系统研究的现状新能源汽车空调控制系统研究的现状十分值得关注。
随着新能源汽车的快速发展,空调控制系统作为汽车舒适性和能效性不可或缺的部分,也受到了广泛关注。
目前,新能源汽车空调控制系统的研究主要集中在提高系统的效率和稳定性上。
当前的新能源汽车空调控制系统在节能方面取得了较大进展。
通过优化系统结构和控制算法,新能源汽车空调控制系统能够更加精准地控制温度和风量,从而实现能耗的降低。
采用新型的压缩机和冷媒技术也为系统的节能提供了支持。
新能源汽车空调控制系统在智能化方面也有所突破。
新能源汽车空调电动压缩机的噪音控制技术分析

新能源汽车空调电动压缩机的噪音控制技术分析随着环境问题和能源危机的日益加剧,新能源汽车作为一种环保、节能的交通工具,正逐渐成为未来汽车发展的主流趋势。
然而,新能源汽车在使用过程中,特别是在空调系统运行时,普遍存在噪音问题。
本文将针对新能源汽车空调电动压缩机的噪音进行技术分析,并探讨噪音控制的相关解决方案。
一、新能源汽车空调电动压缩机的工作原理新能源汽车空调电动压缩机通过电力驱动转子实现空气压缩,将低温低压气体转化为高温高压气体,为空调系统提供制冷或加热功能。
在运行过程中,电动压缩机会产生不同程度的噪音,噪音主要来源于电机振动和当量部件运动引起的空气流动噪声。
二、电动压缩机噪音的影响因素1. 电机振动:电动压缩机中的电机在运行时会产生一定的震动,震动会传导到其他部件,进而引起噪音。
电机的结构设计和制造工艺的优化,以及减震措施的采取,都能够有效降低电机振动带来的噪音影响。
2. 空气流动噪声:当电动压缩机工作时,气体在压缩室内部发生快速流动,产生较大的气流干扰和振动噪音。
减小气流速度和改善气流方向,可以有效降低空气流动带来的噪音。
3. 结构共振:电动压缩机的工作频率与其机械结构的固有频率相接近,可能引发结构共振,进而导致噪音的产生。
通过对电动压缩机的结构设计和材料选择进行优化,可以减小共振效应,降低噪音水平。
三、噪音控制技术解决方案1. 电机噪音控制技术优化电机设计,采用合理的电机结构和制造工艺,减小电机振动;采用低噪音电机,通过电机转子的轴向和径向磁通制造去磁噪音的方法;采用电机动平衡技术,调整电机转子的质量分布,降低不平衡振动引起的噪音。
2. 气流噪声控制技术优化气流导向结构,减小气体在压缩室内部的湍流和噪音;采用减震措施,降低气体与压缩室壁面之间的接触噪声;加装吸音材料,降低气体流过部件时的噪音传播。
3. 结构共振解决方案通过改变电动压缩机的结构参数,避免工作频率与结构固有频率相接近,以减小共振噪音;优化结构材料的选择,提高材料的阻尼特性,减小共振效应。
新能源汽车空调电动压缩机控制技术的故障诊断与排除

新能源汽车空调电动压缩机控制技术的故障诊断与排除随着全球对环境保护的关注日益增加,新能源汽车作为一种环保、可持续发展的交通工具,受到了越来越多消费者的青睐。
而新能源汽车的空调系统作为提供舒适驾乘环境的重要组成部分,其中的电动压缩机控制技术直接影响着整个系统的工作效果。
然而,由于电动压缩机控制技术的复杂性,在实际使用过程中,难免会出现故障问题。
本文将围绕新能源汽车空调电动压缩机控制技术的故障诊断与排除展开讨论,为相关从业人员提供参考。
一、新能源汽车空调电动压缩机控制技术的原理在混合动力汽车和纯电动汽车中,电动压缩机控制技术被广泛应用于空调系统中。
其主要原理是通过电动压缩机控制器对电动压缩机的启停、转速和工作模式进行控制,以实现空调系统的运行和控制。
电动压缩机控制器通常由电动压缩机控制单元、传感器、控制策略和电源等组成。
新能源汽车空调电动压缩机控制技术的工作原理可以简要概括如下:当温度传感器检测到车内温度过高时,控制器将根据设定的温度范围来判断是否需要启动电动压缩机。
当判断为需要启动时,控制器将向电动压缩机发送启动指令,电动压缩机开始工作,提供制冷功能。
当传感器检测到车内温度降低到设定范围内时,控制器则会向电动压缩机发送停止指令,电动压缩机停止工作。
二、新能源汽车空调电动压缩机控制技术故障的常见原因1. 电动压缩机控制器故障:电动压缩机控制器作为整个控制系统的核心部件,一旦出现故障,将导致电动压缩机无法正常启停或转速不稳定。
2. 传感器故障:传感器是控制系统中的重要组成部分,如温度传感器、压力传感器等。
当传感器发生故障时,将导致控制器无法准确获取车内的温度和压力信息,从而影响到电动压缩机的工作状态。
3. 电源故障:电动压缩机控制系统的正常运行离不开稳定可靠的电源供应。
电源故障将导致电动压缩机控制器无法正常运行,从而影响到空调系统的工作效果。
三、新能源汽车空调电动压缩机控制技术故障的诊断方法1. 检查电动压缩机控制器:首先需要检查电动压缩机控制器是否正常工作。
新能源汽车空调电动压缩机控制技术的研究进展

新能源汽车空调电动压缩机控制技术的研究进展随着环保和能源危机问题的日益突出,新能源汽车作为一种低碳环保的交通工具获得了广泛关注。
而在新能源汽车中,空调系统作为提供车内舒适性的重要组成部分,其功耗占整车能量消耗的比例较大。
为了提高新能源汽车的续航里程和节能性能,研究人员开始将电动压缩机应用于新能源汽车空调系统中,并对其控制技术进行了广泛的研究与探索。
一、电动压缩机控制技术的意义传统汽车空调系统中的压缩机通常由发动机驱动,而在新能源汽车中,发动机的使用受限或完全被取代,因此需要一种独立的压缩机驱动技术。
电动压缩机由电动机驱动,可以实现独立控制和精确调节,具有较高的能量利用效率和调节灵活性。
因此,电动压缩机控制技术的研究对于提高新能源汽车空调系统的性能具有重要意义。
二、电动压缩机控制技术的关键问题1. 控制策略的选择电动压缩机控制技术的核心之一是选择合适的控制策略。
常见的控制策略包括传统的PID控制、模糊控制、神经网络控制等。
不同的控制策略适用于不同的工况和性能要求,研究人员需要根据实际情况选择最合适的控制策略,并对其进行优化和改进。
2. 控制系统的建模与仿真为了实现电动压缩机的精确控制,需要对控制系统进行建模与仿真。
通过建立电动压缩机的数学模型,可以对控制系统进行仿真和验证,优化控制策略,提高控制系统的稳定性和精度。
3. 故障诊断与容错控制在实际应用中,电动压缩机可能会发生各种故障,如电机故障、传感器故障等。
因此,研究人员还需要开展故障诊断与容错控制的研究,实现对故障电动压缩机的自动屏蔽和切换,保证系统的可靠性和安全性。
三、电动压缩机控制技术的研究进展目前,电动压缩机控制技术的研究已经取得了一定的进展。
一方面,学者们对电动压缩机的控制策略进行了广泛探索,提出了一系列有效的控制方法。
例如,基于模糊控制的电动压缩机控制策略,可以根据压缩机工作状态和运行条件自适应地调整控制参数,提高系统的稳定性和能效。
另一方面,研究人员还开展了电动压缩机的建模与仿真研究,利用计算机仿真软件对电动压缩机的性能进行分析和评估,为控制系统的设计和优化提供了参考。
新能源汽车空调电动压缩机的控制算法研究

新能源汽车空调电动压缩机的控制算法研究随着对环境污染和能源危机的日益关注,新能源汽车作为替代传统燃油汽车的重要选择,逐渐受到人们的青睐。
而新能源汽车的空调系统在提供舒适驾乘环境的同时,对于电池寿命和能源消耗有着很大的影响。
因此,对新能源汽车空调电动压缩机的控制算法进行研究具有重要意义。
1. 现状分析1.1 新能源汽车空调电动压缩机技术发展现状在新能源汽车领域,空调系统电动压缩机的发展已经较为成熟。
传统的机械压缩机已逐渐被电动压缩机取代,电动压缩机具有启动快、节能环保等优势。
1.2 空调电动压缩机控制算法的研究现状目前,已有研究者对空调电动压缩机的控制算法进行了较为深入的研究。
其中,PID控制算法、模糊逻辑控制算法和模型预测控制算法等得到了广泛应用。
2. 空调电动压缩机控制算法的选择和设计2.1 控制算法选择的原则在选择适合的控制算法时,需要考虑电动压缩机的特性、实际运行环境和对能耗的要求等因素。
此外,算法的实时性和稳定性也是选择的关键考量因素。
2.2 PID控制算法设计PID控制算法是一种经典的控制算法,包括比例、积分和微分三个环节。
通过调整PID参数,可以实现对电动压缩机的精确控制。
但是PID算法对系统模型的要求较高,存在对参数调整敏感的问题。
2.3 模糊逻辑控制算法设计模糊逻辑控制算法可以通过模糊化处理来处理参数不确定性和非线性的问题。
通过建立模糊规则库,实现对电动压缩机的控制。
模糊逻辑控制算法具有较好的实时性和鲁棒性,适用于复杂的非线性系统。
2.4 模型预测控制算法设计模型预测控制算法是基于对系统建立数学模型的基础上进行预测和优化控制的方法。
通过预测未来时刻的状态,得到控制策略,以调整电动压缩机的运行状态。
但是模型预测控制算法需要准确的模型,存在计算复杂度高的问题。
3. 算法实验和评估3.1 实验平台的建立为了验证各种控制算法的性能,需要建立相应的实验平台。
包括新能源汽车空调系统的模拟环境、控制器的选择和传感器的布置等。
新能源汽车空调电动压缩机控制技术的智能化调试方法

新能源汽车空调电动压缩机控制技术的智能化调试方法随着新能源汽车的快速发展,空调系统也变得越来越重要。
其中,电动压缩机是空调系统的关键组件之一。
为了提高新能源汽车空调系统的效能和性能,智能化调试方法应运而生。
本文将介绍新能源汽车空调电动压缩机控制技术的智能化调试方法。
一、新能源汽车空调电动压缩机控制技术的发展现状随着环保意识的增强和汽车行业的发展,新能源汽车成为了市场的热点。
空调系统是新能源汽车中不可或缺的部分,其中电动压缩机作为空调系统的核心,控制技术的发展对于空调系统的稳定运行和能效的提升至关重要。
目前,新能源汽车空调电动压缩机控制技术的发展主要表现在以下几个方面:1. 电动压缩机的调节精度不断提高,可以根据车内温度和外界温度的变化进行智能调节,提供更舒适的车内环境。
2. 控制策略的优化,使得电动压缩机在工作过程中更加高效,能耗更低。
3. 与车辆其他系统的集成,实现全方位的控制和管理,提高车辆的整体性能。
二、智能化调试方法的意义与要求智能化调试方法的引入可以有效提高新能源汽车空调电动压缩机控制技术的稳定性和性能。
智能化调试方法应满足以下几个要求:1. 快速调试:智能化调试方法应该能够迅速对空调系统进行调试和优化,节约时间和人力成本。
2. 精准调试:智能化调试方法要能够准确地识别出电动压缩机工作状态的不足,并提供相应的调整方案。
3. 自动化调试:智能化调试方法应该能够自动进行调试,减少人为干预的影响。
三、基于数据分析的智能化调试方法基于数据分析的智能化调试方法是一种高效且准确的调试方式。
它通过收集和分析大量的实时数据,将其与设定的调试标准进行比对,从而得出电动压缩机控制参数的优化方案。
具体步骤如下:1. 数据采集:通过传感器等设备,实时采集电动压缩机运行的各项数据,包括但不限于温度、电压、电流等。
2. 数据分析:将采集到的数据进行处理和分析,得到电动压缩机在不同工况下的性能表现。
3. 调试参数优化:根据数据分析的结果,结合设定的调试标准,优化电动压缩机的控制参数,提高工作效率和能效。
新能源汽车空调电动压缩机控制技术分析

新能源汽车空调电动压缩机控制技术分析摘要:空调压缩机是车用空调的核心部件,提供空调运行的动力,在传统汽车转向新能源汽车的过程中,驱动方式发生巨大改变,即发动机驱动变化成为电驱动的方式,压缩机控制也从原先的变量控制调整为节能高效的变频控制,这是重要车载系统。
本文重点分析汽车空调系统,分析汽车内部空调电动压缩机组成结构与工作原理,然后掌握通信接口设计与相关技术,为新能源汽车的合理应用起到积极的促进作用。
关键词:新能源汽车;空调电动压缩机;通信接口1电动压缩机自控制系统的构成及原理本次主要分析新能源汽车空调电动压缩机控制技术,以更好的了解设计基本原理和要求。
电动压缩机包含的组成结构比较多,比如压缩机、开关电路、控制器等,不同结构部分功能有着很大的差别,压缩机为核心部件。
电动机要以永久磁体作为基础来完成设计,达到磁通源的作用,在气隙磁场的影响之下能够形成电磁力,让电动机克服阻力进行运动,使得空调可以正常的运行。
计算公式如下:Fe=BLI=BINI。
2通信接口及相关技术2.1通信接口设计新能源汽车内部结构电气元件数量很多,通过传统设计方法进行数据传输会存在过多的干扰因素,通信质量与数据传输效率都无法达到要求。
控制器局域网需要进行通信接口合理设计,可以实现压缩机正常运行,确保系统运行效率合格,确保电动压缩机安全、稳定的运行。
2.2电动压缩机控制技术该技术的研发和应用基础就是三相电流,模拟直流电动机转矩控制的形式,把电磁原理作为该技术的基础进行应用,能够把定子电流矢量分为直轴电流,可以确保压缩机正常的工作。
在设计中,主要是通过空间矢量脉冲宽度调制算法的形式来满足要求。
在具体的设计中,定子电压空间矢量以U表示,角频率以w表示。
电流正弦波电压保持恒定的条件之下,二者以线性的形式存在。
3新能源汽车空调电动压缩机控制的设计与实现3.1电动压缩机控制系统硬件的设计与实现3.1.1DSP控制芯片本文以压缩机设计为例进行分析,控制芯片以DSP芯片为主,供电电压3.3V、CPU共32位,主频最高60MHz、最低40MHz、共包括22个可编程,系统模式统一,代码运行效率是比较高的,可以实现高价值的应用。
新能源汽车空调电动压缩机控制技术的性能评估与验证

新能源汽车空调电动压缩机控制技术的性能评估与验证随着环境污染和能源危机的不断加剧,新能源汽车作为绿色环保的代表,在汽车行业中得到了广泛的关注和推广。
而新能源汽车空调系统作为车辆中重要的组成部分,对于提供乘坐舒适度和保证车内空气品质至关重要。
其中,电动压缩机控制技术在新能源汽车空调系统中占据着重要地位。
本文将对新能源汽车空调电动压缩机控制技术的性能进行评估与验证。
一、新能源汽车空调电动压缩机控制技术的概述新能源汽车空调系统的主要功能是调节车内的温度、湿度和空气流通状态,为乘坐者提供舒适的驾驶和乘坐环境。
而电动压缩机作为空调系统中的核心部件之一,其控制技术在新能源汽车中起到了至关重要的作用。
电动压缩机控制技术是通过电子控制单元(ECU)对电动压缩机的转速、运行模式和工作状态等进行精确控制,以达到节能降耗、提高效率和保证舒适性的目标。
二、新能源汽车空调电动压缩机控制技术性能评估的方法为了准确评估与验证新能源汽车空调电动压缩机控制技术的性能,有以下几种常用的方法:1. 实验验证法:通过搭建实验测试台,利用实际的新能源汽车空调系统对电动压缩机控制技术进行验证。
该方法可通过对比实测数据和理论模型计算结果,评估电动压缩机控制技术的准确性和稳定性。
2. 数值模拟法:基于新能源汽车空调系统的工作原理以及电动压缩机的运行特性,采用数值仿真软件对电动压缩机控制技术进行模拟分析。
通过对模拟结果的比对和分析,评估控制技术的优劣和改进方向。
3. 性能参数测试法:设计一系列性能参数测试,包括转速范围、制冷量、制热量、能效比等指标的测量。
通过对这些测试结果的分析,可以评估电动压缩机控制技术在不同工况下的性能表现。
三、新能源汽车空调电动压缩机控制技术性能评估结果分析基于以上方法,我们对新能源汽车空调电动压缩机控制技术进行了性能评估与验证,并得出以下结果:1. 控制精度高:通过对电动压缩机控制技术在实际工况下的测试,可以有效控制压缩机的转速,实现对空调系统的精确调节,大大提高了驾乘者的舒适度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
同步 电机 。阐 述了 矢量 变 频控 制技术的原理与空间矢量脉冲宽度调制( SVPWM) 的计算 方法。在
MATLAB/ SI MULI NK的环境中,搭建控制系统及组件仿真模型,其结果证明了该方法的有效性,为实
际压缩机控制的设计和调试提供理论依据。
永磁同步电动机;矢量控制技术;空间矢量脉冲宽度调 制;MATLAB
2驱动控制系统
控制 系统接 收到相 关的指 令数 据,并 控制压 缩 机按 照当前 热负 荷所需 转速运 转,当 热负 荷与压 缩 机的 制冷量 平衡后 ,压缩 机应当平 稳维持 低转速 以 保持 车厢内 的舒 适温度 ;因此 ,压缩 机的 变频控 制 至关重要- 2。。 2.1 矢量变频 控制技术
1 通信接口
目前, 由于新 能源汽车能 量存储 量的限制 ,整 车能 源必须 兼顾 动力源 与舒适 性要求 合理 分配, 空 调压 缩机作 为大 耗能部 件,其 自身能 耗情 况与运 转 数据 需要快 速准确 地反馈 给汽车主 控微控 制单元 , 即要 求数据 传输快 速准确 ;同时, 考虑到 汽车内 部 电磁 环境较 复杂, 该通信 方式还需 能抗干 扰,与 车 载网络兼容;因此,选择控制器局域网( Cont r ol l er Ar ea Ne t wor k,CAN) 通信作压缩机控制系统的通 信接 口,便 于实 现压缩 机的控 制与监 测。 此外, 空 调压 缩机作 为新 能源汽 车的关 键零部 件, 设计初 期 还需 考虑后 期的 诊断服 务,需 要按照 一定 的标准 开 发诊断功能。基于CAN的车载故障诊断标准I S( ) 15765是许多汽车厂商采用的诊断通信标准l 1。
1674 - 540X( 2013) 02 - 28 - 05
新能源 汽车空调电动压缩 机控制技术研究
李风雷 李玉欣
上海日立电器有限公司,上海201206
摘要:针对新能源汽车空调电动压缩机控制系统,对其通信接口、驱动控制系统的技术进行设计
和研究。通信接口采用适用于汽车部件的控制器局域网( CAN) 通信;驱动控制部分基于目前高效永磁
第2期
李风雷,等:新能源汽车空 调电动压缩机控制技术研究
29
控制 ,作为 车载 网络的 重要节 点参与 总线 通信; 因 此, 新能源 汽车 空调系 统的压 缩机基 本具 有两个 子 系统 :通信 控制 系统与 压缩机 电机驱 动系 统。本 文 设计了一种基于空问矢量脉宽调制( Spac e Vect or Pul s e Wi dt h Modul a t i on,SVPWM) 技术的直流变 频空 调永磁 同步 压缩机 控制系 统,并 对通 信控制 系 统与压缩机电机驱动系统进行设计,在MATLAB/ SI MU—I 。I NK环境下搭建了永磁同步电机矢量控制 的仿 真模型 ,验证 了控制 系统设计 的可行 性,为 系 统的硬件实现提供思路。
空间矢量脉冲宽度调制算法的目的就是产生 逆变器( 见图1) 的6个开关管的控制信号,通过控 制开 关管的 通断 形成类 似于正 弦波的 驱动 信号, 供 给永 磁同步 电动 机的三 相线圈 使用, 且产 生满足 上 面条件的 电压矢量U; 因此,算法的核 心为如何产生 满足条件的6路开关信号,以得到任意时刻的空间 电压矢量【,一,其中,V。~V。为开关电压。
对三相对称绕组的永磁同步电机,A、B、C j 相 绕组 中通入 对称 的正弦 波电压 ,按照 三相 系统向 两 相系 统变换 保持 幅值不 变的原 则,定 子电 压空间 矢 量【,表达式
0
U一÷[ UA( f ) +UH( t ) e 弘“+U【、( f ) e’“3] ( 1) ')
计算得u是一个旋 转的空间向量,角频率为叫一 2兀,。( f 为三相电源的频率),其端点的轨迹为图1所 示的红色圆 ,电压矢量u产生的 磁链轨迹也为圆;因 此, 空间矢 量脉 冲宽度 调制算 法就是 产生 随电源 频 率旋转的电压矢量,达到逼近磁链圆的效果。
矢量变换控制理论最早由德国的Bl as chke¨一等 人于 1971年 提出 ,它解 决了交 流电机 的非 线性强 耦 合问 题,实 现了 转矩性 能的控 制,其 基本 思想是 在 普通的i 相交流电动机上设法模拟直流电动机转 矩控 制的规 律, 在转子 磁场定 向坐标 上, 通过坐 标 变换,将定子电流矢量分解成产生磁通的直轴电 流分量i ,,和产生转矩的交轴电流分量i 。,并使两 个分 量互相 垂直, 彼此独 立,可进 行单独 的调节 , 这样交流电动机的转矩控制就与直流电动机相类 似,这决定了交流电机需要进行双闭环( 速度环与
电流环) 控制;但在实际的定子电流控制过程中, 还需要将虚拟的直轴电流分量i 。和产生转矩的交 轴电流分量i 。,通过坐标逆变换等转化为所需的j 相交流 电。
实际 永磁同 步电动 机的 矢量控 制,需 要对速 度 环与电流环调节、坐标变换和空间矢量控制技术 SVPwM都有深入研究。考虑到压缩机内电动机 工作 环境十 分恶 劣,不 便转子 位置速 度传 感器的 安 装, 还需实 现无传 感器转 子速度位 置的估 计功能 。 其中速度环与电流环采用含积分限幅的PI 控制;坐 标变换包括三相静止坐标到两相静止坐标的Cl ar k 变换,两相静止坐标到两相旋转坐标的Pa r k;转子 位置 与速度 估计 采用滑 模观测 器实现 01; 空间矢 量 脉冲宽度调制算法将产生6路控制信号,使逆变器 的输 出近似 为正弦 波;因 此,实际 的控制 系统离 不 开微控制器对各种技术的实现。 2.2 空间矢量脉冲宽度调制算法
U4 6 4 . 1 4 1
A
Res ear ch on Cont r ol Technol ogy f or Compr essor of EV AC Syst e m
LI Fe ngl 李风雷(1970 - ),男,本科,工程师,主要从事直流变频压缩机变频驱动控制器的开发工作, E- ma i l : l i f l @she c. c om. cn