一种电动汽车空调压缩机的电机控制系统

合集下载

新能源汽车空调电动压缩机的工作原理解析

新能源汽车空调电动压缩机的工作原理解析

新能源汽车空调电动压缩机的工作原理解析随着对环境保护意识的提高和对传统燃油车污染问题的重视,新能源汽车逐渐崭露头角,并成为了汽车产业的一个热门领域。

而新能源汽车的空调系统也在不断变革和创新中。

本文将对新能源汽车空调电动压缩机的工作原理进行详细解析,以便读者更好地了解这一创新技术。

一、电动压缩机简介电动压缩机是新能源汽车空调系统中的一个重要组成部分。

与传统汽车空调系统采用的机械压缩机不同,电动压缩机采用了电动机驱动的方式,能够更高效地将制冷剂压缩,并将制冷剂送到冷凝器中进行冷却。

电动压缩机作为一种新技术,具有体积小、重量轻、噪音低等特点,为新能源汽车的空调系统提供了更好的解决方案。

二、工作原理1. 压缩过程电动压缩机的工作首先从制冷剂的吸气开始。

当电动压缩机启动时,通过电动机的驱动,传动装置将制冷剂吸入压缩机的气缸内。

然后,在气缸内部的压缩腔中,电动机驱动的柱塞开始向上运动,将制冷剂逐渐压缩。

在这个过程中,电动压缩机会不断增加制冷剂的压力,并使制冷剂呈现高温高压的状态。

2. 冷却过程经过压缩的制冷剂被送入冷凝器中,冷凝器的主要功能是将高温高压的制冷剂冷却至较低的温度。

通常情况下,冷凝器与汽车的散热系统相连接,利用大气中的冷却介质(如风)进行制冷剂的冷却。

在冷却过程中,制冷剂的温度逐渐下降,压力也相应减小。

3. 膨胀过程经过冷却后的制冷剂进入膨胀阀,膨胀阀的作用是通过控制制冷剂的流量和压力来调节制冷剂的温度和压力,从而实现恒定的制冷效果。

经过膨胀阀的调节,制冷剂温度得到进一步降低。

4. 蒸发过程制冷剂经过膨胀阀后,进入蒸发器,蒸发器的主要作用是将低温低压的制冷剂与外界的空气进行换热,使制冷剂从液态转变为气态。

在这个过程中,蒸发器能够吸收空气中的热量,从而使车内的温度得到降低。

三、优势与展望新能源汽车空调电动压缩机相比传统空调系统的机械压缩机,具有一系列的优势。

首先,电动压缩机可以根据实时的需求进行自动调节,提高制冷效率,节约能源。

新能源汽车空调电动压缩机的原理和应用分析

新能源汽车空调电动压缩机的原理和应用分析

新能源汽车空调电动压缩机的原理和应用分析随着全球对环境问题的日益关注,新能源汽车的发展愈发受到人们的关注。

作为新能源汽车的重要组成部分之一,空调系统在提供舒适的驾乘环境的同时,也需要考虑能源的高效利用和环境的可持续发展。

在新能源汽车的空调系统中,电动压缩机扮演着至关重要的角色。

本文将对新能源汽车空调电动压缩机的原理和应用进行分析。

一、电动压缩机的原理电动压缩机是一种将电能转化为机械能的装置,用于提供制冷和制热功能。

相比传统的汽车压缩机,新能源汽车采用的电动压缩机具有以下几个优点:1. 高效性能:电动压缩机采用电能作为动力源,能够充分利用电能的高效特性。

相比传统的机械压缩机,在转化效率和能源利用率上具有明显的优势。

2. 可调性:电动压缩机的转速可以根据实际需求进行调整,实现制冷和制热功率的灵活调节。

这种可调性不仅提高了空调系统的性能,还有效减少了系统能耗。

3. 低噪音:传统的机械压缩机因为内部机械传动结构的存在,噪音较大。

而电动压缩机由于没有传动结构,运行时噪音较低,提供了更加舒适的驾乘环境。

在新能源汽车空调电动压缩机的工作原理中,关键是电机和压缩机的组合。

电机通过电能输入产生机械转动,传递给压缩机,从而实现对制冷剂的压缩,达到制冷或制热的效果。

电动压缩机通常采用交流电机或直流电机,具体类型根据具体需求而定。

二、电动压缩机的应用新能源汽车空调电动压缩机的应用主要体现在以下几个方面:1. 能源利用效率提升:传统汽车空调系统中,压缩机通常由发动机驱动,会造成一定的能源浪费。

而采用电动压缩机后,可以独立于发动机工作,提高能源的利用效率,减少碳排放。

2. 独立控制:新能源汽车的电动压缩机可以独立于发动机工作,实现独立控制。

这样可以根据驾驶员和乘客的需求,对温度、风量等进行精确调控,提供个性化舒适的驾乘环境。

3. 能量回收:一些新能源汽车的空调系统中,采用能量回收技术,将制冷过程中产生的热量转化为电能供电给电动压缩机。

新能源汽车空调电动压缩机控制技术的研究进展

新能源汽车空调电动压缩机控制技术的研究进展

新能源汽车空调电动压缩机控制技术的研究进展随着环保和能源危机问题的日益突出,新能源汽车作为一种低碳环保的交通工具获得了广泛关注。

而在新能源汽车中,空调系统作为提供车内舒适性的重要组成部分,其功耗占整车能量消耗的比例较大。

为了提高新能源汽车的续航里程和节能性能,研究人员开始将电动压缩机应用于新能源汽车空调系统中,并对其控制技术进行了广泛的研究与探索。

一、电动压缩机控制技术的意义传统汽车空调系统中的压缩机通常由发动机驱动,而在新能源汽车中,发动机的使用受限或完全被取代,因此需要一种独立的压缩机驱动技术。

电动压缩机由电动机驱动,可以实现独立控制和精确调节,具有较高的能量利用效率和调节灵活性。

因此,电动压缩机控制技术的研究对于提高新能源汽车空调系统的性能具有重要意义。

二、电动压缩机控制技术的关键问题1. 控制策略的选择电动压缩机控制技术的核心之一是选择合适的控制策略。

常见的控制策略包括传统的PID控制、模糊控制、神经网络控制等。

不同的控制策略适用于不同的工况和性能要求,研究人员需要根据实际情况选择最合适的控制策略,并对其进行优化和改进。

2. 控制系统的建模与仿真为了实现电动压缩机的精确控制,需要对控制系统进行建模与仿真。

通过建立电动压缩机的数学模型,可以对控制系统进行仿真和验证,优化控制策略,提高控制系统的稳定性和精度。

3. 故障诊断与容错控制在实际应用中,电动压缩机可能会发生各种故障,如电机故障、传感器故障等。

因此,研究人员还需要开展故障诊断与容错控制的研究,实现对故障电动压缩机的自动屏蔽和切换,保证系统的可靠性和安全性。

三、电动压缩机控制技术的研究进展目前,电动压缩机控制技术的研究已经取得了一定的进展。

一方面,学者们对电动压缩机的控制策略进行了广泛探索,提出了一系列有效的控制方法。

例如,基于模糊控制的电动压缩机控制策略,可以根据压缩机工作状态和运行条件自适应地调整控制参数,提高系统的稳定性和能效。

另一方面,研究人员还开展了电动压缩机的建模与仿真研究,利用计算机仿真软件对电动压缩机的性能进行分析和评估,为控制系统的设计和优化提供了参考。

新能源汽车空调电动压缩机的冷媒循环系统分析与优化控制策略

新能源汽车空调电动压缩机的冷媒循环系统分析与优化控制策略

新能源汽车空调电动压缩机的冷媒循环系统分析与优化控制策略随着环保意识的不断增强,新能源汽车作为一种环保型交通工具逐渐受到人们的重视。

而空调系统作为汽车的重要组成部分,其效能对于驾乘者的舒适度至关重要。

本文将围绕新能源汽车空调系统中的电动压缩机的冷媒循环系统进行分析与优化控制策略探讨。

一、冷媒循环系统分析新能源汽车空调系统的冷媒循环系统通常由电动压缩机、冷凝器、蒸发器和节流阀等组成。

其工作原理为:电动压缩机将低压低温的气体吸入压缩后放出高压高温的气体,通过冷凝器的散热作用使气体冷却成高压液体,然后经过节流阀降压形成低压低温液体,最后通过蒸发器吸热并蒸发成气体,从而实现空调系统的制冷效果。

目前,新能源汽车空调系统中的常见冷媒种类有R134a、R1234yf 等。

而针对电动压缩机的冷媒循环系统分析,除了考虑冷媒的选择外,还需关注以下几个方面:1. 电动压缩机的运行特性:电动压缩机在空调系统中负责压缩冷媒气体,因此其运行特性对整个系统的制冷效果和能耗有着直接影响。

需要关注电动压缩机的制冷能力、压缩比、高效性等性能指标,并与整个系统的气流、制冷负荷等因素相匹配。

2. 冷凝器和蒸发器的设计与优化:冷凝器和蒸发器作为制冷循环系统中的核心部件,其设计和优化对于系统的制冷效果具有重要影响。

需要考虑冷凝器和蒸发器的热传导、传热面积、流体阻力等因素,并进行合理的设计和优化,以提高系统的效率。

3. 节流阀的控制策略:节流阀在冷媒循环系统中起到压降和降压的作用,对于系统的制冷效果具有重要影响。

需要研究节流阀的开启及关闭程度与压力差、温度差以及制冷负荷的关系,并通过优化控制策略实现系统的高效运行。

二、优化控制策略为了提高新能源汽车空调系统中电动压缩机的冷媒循环系统的性能,可以采取以下优化控制策略:1. 电动压缩机的变频控制:传统空调系统中,电动压缩机通常采用恒频控制,存在能耗高、制冷效果不稳定等问题。

而通过变频控制电动压缩机的转速,可以根据实时制冷负荷的需求进行调整,达到提高制冷效果和节能的目的。

新能源汽车空调电动压缩机控制技术的智能化改进方案

新能源汽车空调电动压缩机控制技术的智能化改进方案

新能源汽车空调电动压缩机控制技术的智能化改进方案随着社会对环境保护意识的日益增强,新能源汽车正逐渐成为未来汽车行业的发展趋势。

而其中的核心技术之一便是新能源汽车空调的电动压缩机控制技术。

本文将探讨一种智能化的改进方案,旨在提高空调系统效率、降低能源消耗,以适应新能源汽车市场的需求。

一、现状分析1. 新能源汽车空调技术的发展随着新能源汽车市场的不断壮大,空调系统不仅需要满足舒适性要求,还需要兼顾能源消耗的控制。

传统空调系统中的机械压缩机已经难以适应新能源汽车的绿色要求,电动压缩机则成为了新能源汽车空调系统的核心。

2. 电动压缩机控制技术的挑战传统的电动压缩机控制技术在效率和响应速度上存在一定的不足。

例如,启动时间长、响应迟缓、能耗较高等问题。

这些问题不仅影响到用户的舒适体验,还限制了新能源汽车的市场竞争力。

二、智能化改进方案为了克服上述挑战,我们提出了以下智能化改进方案:1. 优化启动控制策略针对电动压缩机启动时间长、响应迟缓的问题,我们可以引入智能化启动控制策略。

通过对电动压缩机的启动时序进行优化,减少启动时间,并增加启动响应速度。

例如,可以通过预启动预热等方式,提前将电动压缩机带到工作状态,以降低启动时间。

2. 功率适应调节技术为了降低电动压缩机的能耗,我们可以引入功率适应调节技术。

该技术可以根据车辆的实际工况及空调负荷的变化,实时调节电动压缩机的转速和功率输出。

例如,在低负荷时降低转速,高负荷时提高转速,以实现能源的合理利用。

3. 温度感知与智能控制为了提高空调系统的效率和舒适性,我们可以引入温度感知与智能控制技术。

该技术可以通过传感器实时感知车内外的温度,并结合智能控制算法,对电动压缩机的工作状态进行动态调整。

例如,在车内温度高时,增加电动压缩机的工作频率以提高制冷效果;在车内温度较低时,降低工作频率以减少能耗。

4. 智能化系统集成为了实现电动压缩机控制技术的智能化改进,我们需要进行系统的集成。

新能源汽车空调电动压缩机控制技术分析

新能源汽车空调电动压缩机控制技术分析

新能源汽车空调电动压缩机控制技术分析摘要:空调压缩机是车用空调的核心部件,提供空调运行的动力,在传统汽车转向新能源汽车的过程中,驱动方式发生巨大改变,即发动机驱动变化成为电驱动的方式,压缩机控制也从原先的变量控制调整为节能高效的变频控制,这是重要车载系统。

本文重点分析汽车空调系统,分析汽车内部空调电动压缩机组成结构与工作原理,然后掌握通信接口设计与相关技术,为新能源汽车的合理应用起到积极的促进作用。

关键词:新能源汽车;空调电动压缩机;通信接口1电动压缩机自控制系统的构成及原理本次主要分析新能源汽车空调电动压缩机控制技术,以更好的了解设计基本原理和要求。

电动压缩机包含的组成结构比较多,比如压缩机、开关电路、控制器等,不同结构部分功能有着很大的差别,压缩机为核心部件。

电动机要以永久磁体作为基础来完成设计,达到磁通源的作用,在气隙磁场的影响之下能够形成电磁力,让电动机克服阻力进行运动,使得空调可以正常的运行。

计算公式如下:Fe=BLI=BINI。

2通信接口及相关技术2.1通信接口设计新能源汽车内部结构电气元件数量很多,通过传统设计方法进行数据传输会存在过多的干扰因素,通信质量与数据传输效率都无法达到要求。

控制器局域网需要进行通信接口合理设计,可以实现压缩机正常运行,确保系统运行效率合格,确保电动压缩机安全、稳定的运行。

2.2电动压缩机控制技术该技术的研发和应用基础就是三相电流,模拟直流电动机转矩控制的形式,把电磁原理作为该技术的基础进行应用,能够把定子电流矢量分为直轴电流,可以确保压缩机正常的工作。

在设计中,主要是通过空间矢量脉冲宽度调制算法的形式来满足要求。

在具体的设计中,定子电压空间矢量以U表示,角频率以w表示。

电流正弦波电压保持恒定的条件之下,二者以线性的形式存在。

3新能源汽车空调电动压缩机控制的设计与实现3.1电动压缩机控制系统硬件的设计与实现3.1.1DSP控制芯片本文以压缩机设计为例进行分析,控制芯片以DSP芯片为主,供电电压3.3V、CPU共32位,主频最高60MHz、最低40MHz、共包括22个可编程,系统模式统一,代码运行效率是比较高的,可以实现高价值的应用。

新能源汽车空调电动压缩机的电动机功率调节与控制策略研究

新能源汽车空调电动压缩机的电动机功率调节与控制策略研究

新能源汽车空调电动压缩机的电动机功率调节与控制策略研究近年来,随着环境污染和能源消耗问题的日益凸显,新能源汽车作为替代传统燃油汽车的重要选择逐渐受到人们的关注。

在新能源汽车的核心技术中,空调系统功耗以及其对电池能量的消耗和续航里程的影响成为研究的热点之一。

而电动压缩机作为空调系统的核心部件,其功率调节与控制策略的研究对于提高空调系统的能效化和电池续航里程具有重要意义。

一、电动压缩机的工作原理电动压缩机是利用电能驱动的一种压缩机装置,主要通过改变压缩机驱动电机的电动机功率来调节压缩机的工作状态。

典型的电动压缩机由电机、压缩机和电控系统三部分组成。

电机负责提供压缩机所需的动力,而电控系统则通过调节电机的电动机功率来实现对压缩机工作状态的控制。

二、电动机功率调节策略针对新能源汽车空调电动压缩机的电动机功率调节问题,目前主要有以下几种策略:1. 基于恒压控制策略恒压控制策略是通过控制压缩机的排气压力来实现空调系统的稳定工作。

该策略利用传感器监测压缩机的排气压力,然后通过调节电机的电动机功率来维持压缩机输出的恒定排气压力。

这种策略能够保证空调系统的整体稳定性,但缺点是电机功率无法灵活调节,电池能量可能会被浪费。

2. 基于恒流控制策略恒流控制策略是通过控制电动机输入电流的大小来实现空调系统的稳定工作。

该策略利用传感器监测电动机的电流,然后通过调节电机的电流大小来维持空调系统的稳定运行。

这种策略能够实现电动机功率的精确调节,但在某些情况下可能会导致系统的波动。

3. 基于模型预测控制策略模型预测控制策略是通过建立电动压缩机的动态数学模型,并通过预测和优化算法来实现电动机功率的调节。

该策略能够根据不同的工作状态实时调节电机功率,以达到最佳的能效化和续航里程。

然而,该策略涉及到复杂的数学模型和计算算法,实际应用中存在一定的实时性和计算复杂度的挑战。

三、电动机功率调节与控制策略的优化为了提高新能源汽车空调电动压缩机的能效和续航里程,研究者们一直在探索优化电动机功率调节与控制策略的方法。

北汽EV160电动汽车空调压缩机电控原理及故障

北汽EV160电动汽车空调压缩机电控原理及故障

分析北汽EV160电动汽车空调压缩机电控原理及故障北汽EV160纯电动汽车的空调压缩机由高压电驱动,压缩机控制器安装在压缩机上,受整车控制单元VCU控制。

压缩机是空调制冷系统制冷剂循环的动力。

压缩机的故障有机械故障和电气系统故障,电气系统故障又分为高压电故障和低压电控制系统故障,压缩机的高压上电受到低压电控制。

空调压缩机高压电不能上电,无法正常工作,往往是由于低压控制系统的故障引起的;因此,空调压缩机的电气故障诊断重点从低压电路控制系统着手。

当然压缩机的故障诊断关系到高压电,从业者一定要有相应的高压从业资格证,遵守高压维修的相关规范,才能确保人身安全。

一、北汽EV160纯电动汽车空调系统的结构组成及控制原理1.电动汽车空调系统的结构组成电动汽车的空调系统与传统动力汽车基本相同,由压缩机、冷凝器、蒸发器、冷却风扇、鼓风机、膨胀阀、储液干燥器和高低压管路附件等组成。

传统汽车压缩机由发动机传动带通过电磁离合器带动,而电动汽车采用电动压缩机,电动压缩机由动力电池提供高压电驱动。

2.纯电动汽车空调系统的控制原理整车控制器VCU采集到空调A/C开关信号、空调压力开关信号、蒸发器温度信号、风速信号以及环境温度信号,经过运算处理形成控制信号,通过CAN总线传输给空调控制器,由空调控制器控制空调压缩机高压电路的通断。

3.北汽EV160汽车空调电动压缩机电路原理空调继电器控制压缩机12V低压电源,低压电源电压是空调压缩机控制器的通信信号传输及控制功能得以正常运行的可靠保证。

整车控制器vCU通过数据总线“CANH、CANL”与空调压缩机控制器相连接,再由压缩机控制器控制空调压缩机的高压电源线“DC+与DC-”通断。

高压互锁信号线在高压上电前确保整个高压系统的完整性,使高压电处于一个封闭的环境下工作,提高安全性。

空调压缩机的高压线束与低压线束相互独立,线束的各个端子定义如图3和图4,其中高压端子B与DC+对应,为高压电源正极,A与DC-对应,为高压电源负极。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

名称:一种电动汽车空调压缩机的电机控制系统
申请人:芜湖博耐尔汽车电气系统有限公司
发明人:
权 利 要 求 书
1.一种电动汽车空调压缩机的电机控制系统,其特征在于:所述的控制系统包括功率模块IGBT(1)、MCU处理器(2)、位置检测电路(3)、电流检测电路(4)、功率模块驱动电路(5)和电机控制电路(6);所述的功率模块驱动电路(5)控制功率模块IGBT(1)的导通频率实现永磁同步电机线圈磁场顺序变化驱动电机运转;所述的位置检测电路(3)检测不导通线圈反向电动势的零点变化判断电机转子的磁极位置;所述的电流检测电路(4)通过实时检测电机线圈的相电流,并与MCU处理器(2)中电机理论模型进行比较,实现电机的闭环控制;所述的电机控制电路(6)使外界控制单元与电机驱动器MCU进行通讯。

请给出TGBT的中文释义!
一种晶体管 名称为绝缘栅双极型晶体管
2.根据权利要求1所述的一种电动汽车空调压缩机的电机控制系统,其特征在于:所述的电机控制电路(6)的控制软件采用磁场定向控制算法。

一种电动汽车空调压缩机的电机控制系统
技术领域
本实用新型涉及电动汽车空调领域,尤其是涉及一种电动汽车空调压缩机的电机控制系统。

背景技术
传统汽车的压缩机由发动机直接驱动,在电动汽车中由于发动机的取消,因此也要改为电机驱动。

永磁同步电机简称PMSM电机,采用正弦电流工作方式而具有的高效率和优良的调控性无疑是电动汽车空调压缩机驱动电机的最佳选择。

PMSM电机由电机和控制系统两部分构成,控制系统是PMSM电机的核心,其控制算法的设计水平和控制程序编制的好坏直接关系到PMSM电机的工作性能。

而目前还未有针对汽车空调压缩机开发的PMSM 电机控制系统,因此,急需提供一种可以实现电动压缩机PMSM电机的运转和调速功能的驱动器。

实用新型内容
本实用新型所要解决的技术问题是针对现有技术中存在的问题提供一种电动汽车空调压缩机的电机控制系统,其目的是使电动压缩机PMSM电机平稳运行并实现转速的线性调节。

本实用新型的技术方案是该种电动汽车空调压缩机的电机控制系统,所述的控制系统包括功率模块IGBT、MCU处理器、位置检测电路、电流检测电路、功率模块驱动电路和电机控制电路;所述的功率模块驱动电路控制功率模块IGBT的导通频率实现永磁同步电机线圈磁场顺序变化驱动电机运转;所述的位置检测电路检测不导通线圈反向电动势的零点变化判断电机转子的磁极位置;所述的电流检测电路通过实时检测电机线圈的相电流,并与MCU处理器中电机理论模型进行比较,实现电机的闭环控制;所述的电机控制电路使外界控制单元与电机驱动器MCU进行通讯。

所述的电机控制电路的控制软件采用磁场定向控制算法。

具有上述特殊结构的该种电动汽车空调压缩机的电机控制系统具有以下优点:
1.该种电动汽车空调压缩机的电机控制系统使得电机调速平稳并实现无极变速,解决了电动汽车空调压缩机动力PMSM电机的驱动问题,同时实现转速的无极调速。

2.该种电动汽车空调压缩机的电机控制系统能够实现电机转速精确控制,解决了电动压缩机电机无位置传感器的磁场定向控制,实现电机平稳启动,电机转速调节和控制,解决了大功率,变负载条件下的电机运行和控制。

附图说明
下面结合附图对本实用新型作进一步说明:
图1为本实用新型的电路图。

图2为本实用新型FOC算法软件算法逻辑原理图。

在图1-2中,1:功率模块IGBT;2:MCU处理器;3:位置检测电路;4:电流检测电路;5:功率模块驱动电路;6:电机控制电路。

具体实施方式
图1所示结构为本实用新型的电路图,该种电动汽车空调压缩机的电机控制系统,包括功率模块IGBT1、MCU处理器2、位置检测电路3、电流检测电路4、功率模块驱动电路5和电机控制电路6;功率模块驱动电路5控制功率模块IGBT1的导通频率实现永磁同步电机线圈磁场顺序变化驱动电机运转;位置检测电路3检测不导通线圈反向电动势的零点变化判断电机转子的磁极位置,控制电机按照设定的转速运行;电流检测电路4通过
实时检测电机线圈的相电流,并与MCU处理器2中电机理论模型进行比较,实现电机的闭环控制;电机控制电路6使外界控制单元与电机驱动器MCU 进行通讯,最终达到按照电动汽车空调系统的需求压缩机驱动器控制电动压缩机进行运转和无极调速。

电机控制电路6的控制软件采用磁场定向控制算法,如说明书附图2所示永磁同步电机磁场定向控制方框图
磁场定向控制流程说明如下
1 测量电机的参数(相电压和电流)
2 使用clarker 变换将他们转换为2相系统(αβ)
3 计算转子磁通矢量的大小和角度位置
4 用park转换将定子电流转换成d,q 坐标系统
5 定子电流的转矩和磁通分量由控制器进行分别控制
6 用去耦模块计算定子电压空间矢量的输出值
7 通过park反向转换将定子电压空间矢量从d,q坐标系统转换为固定
定子的2相系统。

8 用正旋调制生成三相输出电压
说明书附图
图1
图2
说明书摘要
本实用新型公开了一种电动汽车空调压缩机的电机控制系统,包括功率模块IGBT、MCU处理器、位置检测电路、电流检测电路、功率模块驱动电路和电机控制电路;功率模块驱动电路控制功率模块IGBT的导通频率实现永磁同步电机线圈磁场顺序变化驱动电机运转;位置检测电路检测不导通线圈反向电动势的零点变化判断电机转子的磁极位置;电流检测电路通过实时检测电机线圈的相电流,并与MCU处理器中电机理论模型进行比较,实现电机的闭环控制;电机控制电路使外界控制单元与电机驱动器MCU进行通讯。

具有上述特殊结构的该种控制系统使得电机调速平稳并实现无极变速,解决了PMSM电机的驱动问题,同时实现转速的无极调速。

摘要附图。

相关文档
最新文档