计算机图形的基本概念
计算机图形学基础知识重点整理

计算机图形学基础知识重点整理一、图形学的概念计算机图形学简单来说,就是让计算机去生成、处理和显示图形的学科。
它就像是一个魔法世界,把一堆枯燥的数字和代码变成我们眼睛能看到的超酷图形。
你看那些超炫的3D游戏里的场景、超逼真的动画电影,那可都是计算机图形学的功劳。
这个学科就是想办法让计算机理解图形,然后把图形按照我们想要的样子呈现出来。
二、图形的表示1. 点点是图形里最基本的元素啦。
就像盖房子的小砖头一样,很多个点组合起来就能变成各种图形。
一个点在计算机里就是用坐标来表示的,就像我们在地图上找一个地方,用经度和纬度一样,计算机里的点就是用x和y坐标(如果是3D图形的话,还有z坐标呢)来确定它在空间里的位置。
2. 线有了点,就能连成线啦。
线有各种各样的类型,直线是最简单的,它的方程可以用我们学过的数学知识来表示。
比如说斜截式y = kx + b,这里的k就是斜率,b就是截距。
还有曲线呢,像抛物线、双曲线之类的,在图形学里也经常用到。
这些曲线的表示方法可能会复杂一点,但也很有趣哦。
3. 面好多线围起来就形成了面啦。
面在3D图形里特别重要,因为很多3D物体都是由好多面组成的。
比如说一个正方体,就有六个面。
面的表示方法也有不少,像多边形表示法,就是用好多条边来围成一个面。
三、图形变换1. 平移平移就是把图形在空间里挪个位置。
这就像我们把桌子从房间的这头搬到那头一样。
在计算机里,平移一个图形就是把它每个点的坐标都加上或者减去一个固定的值。
比如说把一个点(x,y)向右平移3个单位,向上平移2个单位,那这个点就变成(x + 3,y + 2)啦。
2. 旋转旋转就更有意思啦。
想象一下把一个图形像陀螺一样转起来。
在计算机里旋转图形,需要根据旋转的角度和旋转中心来计算每个点新的坐标。
这就得用到一些三角函数的知识啦,不过也不难理解。
比如说以原点为中心,把一个点(x,y)逆时针旋转θ度,新的坐标就可以通过一些公式计算出来。
3. 缩放缩放就是把图形变大或者变小。
计算机图形学教案

计算机图形学教案【引言】计算机图形学是研究计算机如何生成、处理和显示图像的一门学科。
随着计算机技术的迅猛发展,图形学在多个领域都有着广泛的应用,比如游戏开发、动画制作、虚拟现实等。
本教案旨在介绍计算机图形学的基础知识和应用,帮助学生全面了解图形学的概念、原理和技术。
【一、基础知识】1. 图形学概念图形学是指通过计算机生成、处理和显示图像的学科领域。
它不仅包括了对形状、颜色和纹理的描述方法,还包括了图像的渲染、动画和交互等技术。
2. 图像表示方法介绍了图像的表示方法,包括位图(bitmap)和矢量图(vector)。
位图是将图像划分成像素点,每个像素点可以用颜色值表示;矢量图是通过描述图形的几何属性和参数来表示图像。
3. 基本几何图形讲解了常见的基本几何图形,比如点、线段、多边形等,并介绍了它们在计算机图形学中的表示方法和应用。
【二、图形生成】1. 二维图形生成介绍了二维图形的生成算法,包括直线生成算法、圆生成算法和多边形生成算法等。
通过这些算法,可以实现在计算机屏幕上绘制各种几何图形。
2. 三维图形生成讲解了三维图形的生成方法,包括线框模型生成、曲面生成和立体图形生成等。
通过这些方法,可以构建出逼真的三维图像,并进行灯光渲染和纹理映射。
【三、图形处理】1. 图像变换介绍了图像的平移、旋转、缩放和翻转等基本变换操作。
通过这些变换,可以改变图像在屏幕上的位置、大小和方向。
2. 图像剪裁讲解了图像剪裁算法,包括直线裁剪、多边形裁剪和曲线裁剪等。
通过这些算法,可以实现对图像进行裁剪,去除不需要显示的部分。
3. 图像填充介绍了图像填充算法,包括扫描线填充和种子填充等。
通过这些算法,可以实现对闭合图形的填充,使其显示出实心的效果。
【四、图形显示】1. 数字化显示讲解了如何将图像数字化,通过将图像分成像素点,并使用颜色值来表示每个像素点的方法,实现在计算机屏幕上显示图像。
2. 图像渲染介绍了图像渲染算法,包括光栅化渲染和线框渲染等。
计算机图形学

计算机图形学1. 简介计算机图形学是研究如何使用计算机来生成、处理和显示图像的一门学科。
它主要涉及图像的几何和物理特性的建模,以及图像的渲染和表示。
计算机图形学在各个领域中都有广泛的应用,包括游戏开发、电影制作、虚拟现实、医学成像等。
2. 图形学的基本概念图形学的基本概念包括点、线、多边形和曲线等基本元素,以及相应的数学方法和算法。
这些方法和算法用于描述和处理图像的几何特性,包括位置、方向、大小和形状等。
2.1 点和线在计算机图形学中,点是图像中最基本的元素,可以通过坐标系来表示。
线是由两个点之间的连接所形成的,可以通过直线方程或参数方程来描述。
2.2 多边形和曲线多边形是由多个线段连接而成的封闭图形,可以通过顶点的集合来描述。
曲线是由多个点按照一定规律连接而成的,可以通过控制点和插值方法来表示。
3. 图形的几何建模图形的几何建模是计算机图形学中的一个重要研究方向,它涉及如何使用数学模型来表示和描述物体的几何特性。
常用的几何建模方法包括点、线、面、体和曲面等。
3.1 点云和网格模型点云模型是一组离散的点的集合,它可以用于表示不规则形状的物体。
网格模型是一组由三角形或四边形面片组成的表面模型,它可以用于表示规则形状的物体。
3.2 曲面建模曲面建模是基于数学曲面的建模方法,它将物体表面抽象为由曲线和曲面组成的,可以通过控制点和插值方法来表示。
常用的曲面建模方法包括贝塞尔曲线和贝塞尔曲面等。
4. 图形的渲染和表示图形的渲染和表示是计算机图形学中的另一个重要研究方向,它涉及如何将图像的几何信息转化为可视的图像。
常用的渲染和表示方法包括光栅化、光线追踪和纹理映射等。
4.1 光栅化光栅化是将几何对象转化为像素的过程,它涉及将线段或多边形映射到屏幕上的像素点,并进行相应的着色和填充。
常用的光栅化算法包括Bresenham算法和扫描线算法等。
4.2 光线追踪光线追踪是一种以物理光线为基础的渲染方法,它从观察者的视角出发,沿着光线的路径跟踪物体的相交和反射,最终得到图像。
计算机图形学的基本原理和应用

计算机图形学的基本原理和应用计算机图形学是一门研究计算机如何呈现和处理图像的学科,它涉及到图像的生成、显示和修改等方面。
在现代社会中,计算机图形学的应用越来越广泛,涵盖了多个领域,如动画制作、游戏开发、虚拟现实等。
本文将详细介绍计算机图形学的基本原理和应用,并列举一些相关的步骤。
一、计算机图形学的基本原理1. 坐标系统:计算机图形学使用二维或三维的坐标系统来表示图像中的点或物体。
二维坐标系统由x轴和y轴组成,三维坐标系统还包括z轴。
2. 图形学基本元素:点、线、面是计算机图形学中最基本的元素,它们可以用来构建更复杂的图像。
3. 几何变换:几何变换是计算机图形学中常用的技术,它可以改变图像的位置、尺寸、旋转角度等特征,常见的几何变换包括平移、缩放、旋转等。
4. 颜色和着色:计算机图形学中不仅涉及到图像的形状,还包括颜色的处理。
颜色可以通过RGB色彩模式来表示,并且可以应用不同的着色技术,如灰度着色、阴影着色等。
5. 投影和照明:投影和照明是计算机图形学中用于实现逼真效果的重要技术。
其中,投影可以将三维物体映射到二维图像中,而照明则决定了光照效果的表现。
二、计算机图形学的应用1. 动画制作:计算机图形学在动画制作中有着广泛的应用,可以实现逼真的角色造型、精细的动作表现和丰富的背景设计等。
通过计算机生成的动画,可以呈现出无法通过传统手绘的方式实现的特效和场景。
2. 游戏开发:计算机图形学是游戏开发的核心领域之一,它可以实现游戏中各种角色、场景和特效的渲染。
利用计算机图形学的技术,游戏开发人员可以创建出逼真的游戏世界,提供更好的视觉体验。
3. 虚拟现实:虚拟现实是一种通过计算机生成的仿真环境,它可以让用户身临其境地感受到虚拟世界。
计算机图形学在虚拟现实中扮演着重要角色,它可以实现逼真的场景呈现、真实的物体交互等效果,使用户得到更加身临其境的体验。
4. 医学影像:计算机图形学在医学影像处理中起到了关键作用。
计算机图形学基础知识重点整理

计算机图形学基础知识重点整理一、图形学基础知识1、图形学的定义:图形学是一门研究图形的计算机科学,它研究如何使用计算机来生成、处理和显示图形。
2、图形学的应用:图形学的应用非常广泛,它可以用于计算机游戏、虚拟现实、图形用户界面、图形设计、图形处理、图形建模、图形分析等。
3、图形学的基本概念:图形学的基本概念包括图形、坐标系、变换、光照、纹理、投影、深度缓冲、抗锯齿等。
4、图形学的基本算法:图形学的基本算法包括几何变换、光照计算、纹理映射、投影变换、深度缓冲、抗锯齿等。
5、图形学的基本技术:图形学的基本技术包括OpenGL、DirectX、OpenCL、CUDA、OpenGL ES等。
二、图形学的基本原理1、坐标系:坐标系是图形学中最基本的概念,它是一种用来表示空间位置的系统,它由一系列的坐标轴组成,每个坐标轴都有一个坐标值,这些坐标值可以用来表示一个点在空间中的位置。
2、变换:变换是图形学中最重要的概念,它指的是将一个图形从一个坐标系变换到另一个坐标系的过程。
变换可以分为几何变换和光照变换,几何变换包括平移、旋转、缩放等,光照变换包括颜色变换、照明变换等。
3、光照:光照是图形学中最重要的概念,它指的是将光照投射到物体表面,从而产生颜色和纹理的过程。
光照可以分为环境光照、漫反射光照和镜面反射光照。
4、纹理:纹理是图形学中最重要的概念,它指的是将一张图片映射到物体表面,从而产生纹理的过程。
纹理可以分为纹理映射、纹理坐标变换、纹理过滤等。
5、投影:投影是图形学中最重要的概念,它指的是将一个三维图形投射到二维屏幕上的过程。
投影可以分为正交投影和透视投影,正交投影是将三维图形投射到二维屏幕上的过程,而透视投影是将三维图形投射到二维屏幕上,从而产生透视效果的过程。
计算机图形学的基本原理和应用

计算机图形学的基本原理和应用计算机图形学是一门研究计算机如何生成、处理和显示图像的学科。
它涵盖了许多领域,包括几何学、渲染、动画和用户界面设计等。
本文将介绍计算机图形学的基本原理和应用。
一、图形学的基本原理计算机图形学的基本原理包括几何学、光照模型和渲染技术等。
1. 几何学计算机图形学中的几何学涉及到坐标系、向量、矩阵等基本概念。
通过几何学的知识,我们可以描述和计算物体的位置、大小和形状。
2. 光照模型光照模型是计算机图形学中模拟光线对物体的影响的方法。
常用的光照模型包括环境光、漫反射和镜面反射等。
通过计算光照模型,可以使生成的图像更加真实和逼真。
3. 渲染技术渲染技术是将三维模型转化为二维图像的过程。
渲染技术可以通过光照计算、纹理映射和阴影生成等方法提高图像的质量和真实感。
二、计算机图形学的应用计算机图形学在许多领域都有广泛的应用,包括游戏开发、虚拟现实、动画电影制作和工业设计等。
1. 游戏开发计算机图形学在游戏开发中起到关键的作用。
通过计算机图形学技术,可以实现游戏中的动态场景、真实光影效果和逼真的物理模拟。
2. 虚拟现实虚拟现实是一种通过计算机图形学技术模拟现实环境的技术。
它在建筑设计、航空航天和医疗等领域有广泛的应用,可以提供更直观和真实的体验。
3. 动画电影制作计算机图形学是动画电影制作中不可或缺的技术。
通过计算机图形学技术,可以生成逼真的角色、场景和特效,提高动画电影的质量和观赏性。
4. 工业设计计算机图形学在工业设计中的应用越来越广泛。
通过计算机图形学技术,可以进行产品的虚拟设计、仿真和可视化展示,提高设计效率和产品质量。
总结:计算机图形学是一门研究计算机如何生成、处理和显示图像的学科。
它涵盖了几何学、光照模型和渲染技术等基本原理。
计算机图形学在游戏开发、虚拟现实、动画电影制作和工业设计等领域有广泛的应用。
随着技术的不断发展,计算机图形学将在更多的领域发挥重要作用,为人们带来更好的视觉体验。
计算机图形学的基本概念与算法

计算机图形学的基本概念与算法计算机图形学是研究如何利用计算机生成、处理和显示图像的学科。
它在许多领域中都有广泛应用,例如电影制作、游戏开发、医学成像等。
本文将介绍计算机图形学的基本概念和算法,并分步详细列出相关内容。
一、基本概念1. 图像表示:计算机图形学中,图像通常使用像素(Pixel)来表示。
每个像素包含了图像上一个特定位置的颜色或灰度值。
2. 坐标系统:计算机图形学使用不同的坐标系统来表示图像的位置。
常见的坐标系统有笛卡尔坐标系、屏幕坐标系等。
3. 颜色模型:计算机图形学中常用的颜色模型有RGB模型(红、绿、蓝)和CMYK模型(青、品红、黄、黑)等。
RGB模型将颜色表示为三个分量的组合,而CMYK模型用于打印颜色。
4. 变换:变换是计算机图形学中常用的操作,包括平移、旋转、缩放和剪切等。
通过变换,可以改变图像的位置、大小和方向。
5. 插值:在计算机图形学中,插值是指通过已知的数据点来推测未知位置的值。
常见的插值方法有双线性插值和双三次插值等。
二、基本算法1. 线段生成算法:线段生成是图形学中最基本的操作之一。
常见的线段生成算法有DDA算法(Digital Differential Analyzer)和Bresenham算法。
DDA算法通过计算线段的斜率来生成线段上的像素,而Bresenham算法通过绘制画板上的一个像素来逐渐描绘出整条直线。
2. 多边形填充算法:多边形填充是将一个多边形内的区域用颜色填充的过程。
常见的多边形填充算法有扫描线算法和边界填充算法。
扫描线算法通过扫描多边形的每一条水平线,不断更新当前扫描线下方的活动边并进行填充。
边界填充算法从某点开始,向四个方向延伸,逐渐填充整个多边形。
3. 圆弧生成算法:生成圆弧是计算机图形学中常见的操作之一,常用于绘制圆形和曲线。
常见的圆弧生成算法有中点圆生成算法和Bresenham圆弧生成算法。
中点圆生成算法通过计算圆弧中的每个点与圆心的关系来生成圆弧上的像素,而Bresenham圆弧生成算法通过在八个特定的扫描区域内绘制圆弧上的像素。
计算机图形学基础课后部分习题答案

xi+1 xi+2
第四象限
-6-
d0=F(x0+1,y0-0.5)=-(k+0.5) 令 Di=2dxdi,得 D0=-(dx+2dy),D 与 d 同号 当 Di≥0,下一点(xi,yi-1),Di+1=Di-2dy 当 Di≤0,下一点(xi+1,yi-1),Di+1=Di-2(dx+dy)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算机图形的基本概念
1图形表现—位图与矢量图
在二维平面领域,对图形的表现方式有两种方式,一种是位图形式,即由像素点构成的图形,每个像素是图形横向和竖向分成的像素方块,每个方块记录像素图形的颜色和亮度值,这类图形色彩表现细腻、层次分明,能丰富、细腻、准确的进行设计表现,是建筑装饰设计师首选的图形表现形式,但位图图形有图像精度要求,在原有画面品质的基础上,图形显示经不起放大处理,存储文件大。
另外一种是矢量图形,矢量图形是描述性的结构记录片,记录能力取决于记录的种类,常见的记录种类有直线、曲线、多个线段连成的折线、圆、椭圆、多边形等,每一种记录类型包含一些属性,如颜色、线宽、是否填充、是否透明等,取决于图片的复杂程度,画面质量不受图形大小的限制,所需文件的存储空间小。
但矢量图通常针对表现线条类的图像使用,当图形色彩要求细腻、变化有层次时便无能为力了。
在二维位图编辑软件中,Photoshop是首选的功能最为强大的位图处理软件。
2图形颜色——黑白、灰度和彩色
如果每个图片的方块中的颜色只有两种,,即黑色和白色,这种图片叫黑白图。
如果一张图片的所有方格中颜色都是深浅不同的灰色,将这些灰色用一个8位二进制数据来记录,最小是0,表示黑色,最大是255,表示白色,其中的中间调分别用0到255间的数值来表示,颜色越深,数值越小,颜色越浅,数值越大,这种图片叫灰度图。
彩色图比较复杂,常用的色彩表现方法是RGB方法和CMYK方法,R、G、B分别代表红、绿、兰三种颜色,每个颜色有0-255阶亮度变化。
C、M、Y、K分别代表青、品红、柠黄、黑四种染料,是印刷工业常用的颜色表示方法,在计算机图形处理时经常使用。
若使用RGB方式表示每个像素方格的颜色,可以表现约1600万种颜色,这些颜色中,有些是人眼所不能分辨的。
还有HSB表现方法、Lab方法等,因不常使用和换算复杂,在此不做介绍。
上述几种色彩表示方法的色彩范围不同,一般来说,Lab方法表示的色彩范围最大。
这些色彩表现方法可以相互转换,,但在转换过程中会丢失部分像素,产生部分失真,也可以转换为灰度图,但会丢失色彩数据,转换过程是不可逆的;灰度图也可以转换为黑白图,同样是不可逆的。
3 图像的尺寸、像素与分辨率
位图图形的尺寸是指位图图形横向和竖向的尺寸大小。
像素是指被图形横向和竖向分成的像素方块,是位图图形显示的最小单位,每个像素可以是黑白、灰色和不同彩色的颜色。
分辨率是指每英寸、每厘米或每毫米的像素数量,分辨率越高,图形清晰度越好,但图形文件就越大,处理图形的时间也越长。
4 效果图输出设置——像素尺寸
效果图的图形尺寸和像素是依据设计要求由渲染图形的软件来决定的,渲染输出的图形尺寸以像素为单位设置,设置依据是图形尺寸确定后的分辨率值,由于效果图多数是喷绘或打印输出,一般来说以分辨率为150作为效果图渲染输出的参考尺寸。
效果图渲染输出的像素尺寸是可以从Photoshop中推算出来的。
例:某效果图输出尺寸为297mm×210mm(A4幅面),打印输出分辨率为150,那么该效果图的渲染图形输出尺寸是多少?
进入Photoshop的操作界面,使用【文件】/【新建】命令, 弹出【新建】对话框,输入宽度210mm、高度297mm和分辨率150,按【确定】进入操作界面,然后单击【图像】/【图像大小】命令,弹出【图像大小】对话框,该对话框上部显示出该图像尺寸、分辨率所对应的像素尺寸,这个尺寸就可以作为效果图渲染输出的像素尺寸。
5 图形文件的常用格式
对数字图像进行存储、处理、传播必须采用一定的图像格式,也就是把图像的像素按照一定的方式进行组织和存储,把图像数据存储成文件就得到图像文件。
图像文件格式决定了应该在文件中存放何种类型的信息,文件如何与各种应用软件兼容,文件如何与其它文件交换数据。
在效果图应用中,常用的图形格式有以下几种:
BMP图像文件格式
BMP是一种与硬件设备无关的图像文件格式,使用非常广。
它采用位映射存储格式,除了图像深度可选以外,不采用其他任何压缩,因此,BMP文件所占用的空间很大。
BMP文件的图像深度可选lbit、4bit、8bit及24bit。
BMP文件存储数据时,图像的扫描方式是按从左到右、从下到上的顺序。
由于BMP文件格式是Windows环境中交换与图有关的数据的一种标准,因此在Windows环境中运行的图形图像软件都支持BMP图像格式。
BMP 是Windows 位图可以用任何颜色深度(从黑白到 24 位颜色)存储单个光栅图像。
Windows 位图文件格式与其他 Microsoft Windows 程序兼容。
它不支持文件压缩,也不适用于 Web 页。
TIFF图像文件格式
TIFF (TaglmageFileFormat)图像文件是由Aldus和Microsoft公司为桌上出版系统研制开发的一种较为通用的图像文件格式。
TIFF格式灵活易变,它又定义了四类不同的格式:TIFF-B适用于二值图像:TIFF-G适用于黑白灰度图像;TIFF-P适用于带调色板的彩色图像:TIFF-R适用于RGB真彩图像。
TIFF支持多种编码方法,其中包括RGB无压缩、RLE压缩及JPEG压缩等。
TIFF是现存图像文件格式中最复杂的一种,它具有扩展性、方便性、可改性,可以提供给IBMPC等环境中运行、图像编辑程序。
GIF文件格式
GIF(Graphics Interchange Format)的原义是"图像互换格式",是CompuServe 公司在1987年开发的图像文件格式。
GIF文件的数据,是一种基于LZW算法的连续
色调的无损压缩格式。
其压缩率一般在50%左右,它不属于任何应用程序。
目前几乎所有相关软件都支持它,公共领域有大量的软件在使用GIF图像文件。
GIF图像文件的数据是经过压缩的,而且是采用了可变长度等压缩算法。
所以GIF 的图像深度从lbit到8bit,也即GIF最多支持256种色彩的图像。
GIF格式的另一个特点是其在一个GIF文件中可以存多幅彩色图像,如果把存于一个文件中的多幅图像数据逐幅读出并显示到屏幕上,就可构成一种最简单的动画。
JPEG文件格式
JPEG是joint Photographic Experts Group(联合图像专家组)的缩写,文件后辍名为".jpg"或".jpeg",是最常用的图像文件格式,是一种有损压缩格式,能够将图像压缩在很小的储存空间,它的压缩技术十分先进,是用有损压缩方式去除冗余的图像数据,在获得极高的压缩率的同时能展现十分丰富生动的图像,换句话说,就是可以用最少的磁盘空间得到较好的图像品质。
而且 JPEG是一种很灵活的格式,具有调节图像质量的功能,允许用不同的压缩比例对文件进行压缩,压缩比越大,品质就越低。
JPEG格式的应用非常广泛,特别是在网络和光盘读物上,都能找到它的身影。
目前各类浏览器均支持JPEG这种图像格式,因为JPEG格式的文件尺寸较小,下载速度快。
JPEG 不适用于所含颜色很少、具有大块颜色相近的区域或亮度差异十分明显的较简单的图片。
TGA格式
TGA格式(Tagged Graphics)是由美国Truevision公司为其显示卡开发的一种图像文件格式,文件后缀为".tga",已被国际上的图形、图像工业所接受。
TGA的结构比较简单,属于一种图形、图像数据的通用格式,在多媒体领域有很大影响,是计算机生成图像向电视转换的一种首选格式。
TGA图像格式最大的特点是可以做出不规则形状的图形、图像文件,一般图形、图像文件都为四方形,若需要有圆形、菱形甚至是缕空的图像文件时,TGA可就派上用场了! TGA格式支持压缩,使用不失真的压缩算法。
是一种比较好的图片格式用PSD文件格式
这是Photoshop图像处理软件的专用文件格式,文件扩展名是.psd,可以支持图层、通道、蒙板和不同色彩模式的各种图像特征,是一种非压缩的原始文件保存格式。
扫描仪不能直接生成该种格式的文件。
PSD文件有时容量会很大,但由于可以保留所有原始信息,在图像处理中对于尚未制作完成的图像,选用PSD格式保存是最佳的选择。