2013年内蒙古赤峰市中考数学试卷及答案(Word解析版)

合集下载

赤峰市中考数学试卷及答案(Word解析版)

赤峰市中考数学试卷及答案(Word解析版)

内蒙古赤峰市中考数学试卷一、选择题(共8小题,每小题3分,共24分)1.(3分)(•赤峰)有理数﹣3的相反数是()A.3B.﹣3 C.D.﹣考点:相反数.专题:计算题;压轴题.分析:根据相反数的意义,只有符号不同的数为相反数.解答:解:﹣3的相反数是3.故选A.点评:本题考查了相反数的意义.只有符号不同的数为相反数,0的相反数是0.2.(3分)(•赤峰)下面的几何体中,主(正)视图为三角形的是()A.B.C.D.考点:简单几何体的三视图分析:主视图是从几何体的正面看所得到的图形,根据主视图所看的方向,写出每个图形的主视图及可选出答案.解答:解:A、主视图是长方形,故此选项错误;B、主视图是长方形,故此选项错误;C、主视图是三角形,故此选项正确;D、主视图是正方形,中间还有一条线,故此选项错误;故选:C.点评:此题主要考查了简单几何体的三视图,关键是掌握主视图所看的位置.3.(3分)(•赤峰)赤峰市开放以来经济建设取得巨大成就,全市GDP总值为1686.15亿元,将1686.15亿元用科学记数法表示应为()A.168615×102元B.16.8615×104元C.1.68615×108元D.1.68615×1011元考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:1686.15亿=1686 1500 0000=1.68615×1011,故选:D.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(•赤峰)下面是扬帆中学九年八班43名同学家庭人口的统计表:家庭人口数(人) 3 4 5 6 2学生人数(人)15 10 8 7 3这43个家庭人口的众数和中位数分别是()A.5,6 B.3,4 C.3,5 D.4,6考点:众数;中位数分析:利用众数及中位数的定义解答即可.解答:解:数据3出现了15次,故众数为3;43人的中位数应该是排序后的第22个学生的家庭人数,、故中位数为家庭人数为4人,故选B.点评:本题考查了众数及中位数的知识,解题的关键是了解其定义,难度较小.5.(3分)(•赤峰)如图,把一块含有30°角(∠A=30°)的直角三角板ABC的直角顶点放在矩形桌面CDEF的一个顶点C处,桌面的另一个顶点F与三角板斜边相交于点F,如果∠1=40°,那么∠AFE=()A.50°B.40°C.20°D.10°考点:平行线的性质;三角形的外角性质专题:计算题.分析:由四边形CDEF为矩形,得到EF与DC平行,利用两直线平行同位角相等求出∠AGE 的度数,根据∠AGE为三角形AGF的外角,利用外角性质求出∠AFE的度数即可.解答:解:∵四边形CDEF为矩形,∴EF∥DC,∴∠AGE=∠1=40°,∵∠AGE为△AGF的外角,且∠A=30°,∴∠AFE=∠AGE﹣∠A=10°.故选D.点评:此题考查了平行线的性质,熟练掌握平行线的性质是解本题的关键.6.(3分)(•赤峰)如图,AB是⊙O的直径,C,D是⊙O上两点,CD⊥AB.若∠DAB=65°,则∠BOC=()A.25°B.50°C.130°D.155°考点:圆周角定理;垂径定理分析:由CD⊥AB.若∠DAB=65°,可求得∠D的度数,又由圆周角定理,即可求得∠AOC 的度数,继而求得答案.解答:解:∵CD⊥AB.∠DAB=65°,∴∠ADC=90°﹣∠DAB=25°,∴∠AOC=2∠ADC=50°,∴∠BOC=180°﹣∠AOC=130°.故C.点评:此题考查了圆周角定理以及直角三角形的性质.此题难度不大,注意掌握数形结合思想的应用.7.(3分)(•赤峰)化简结果正确的是()A.a b B.﹣ab C.a2﹣b2D.b2﹣a2考点:约分.分析:首先将分式的分子因式分解,进而约分求出即可.解答:解:==﹣ab.故选:B.点评:此题主要考查了约分,正确分解因式是解题关键.8.(3分)(•赤峰)如图,一根长5米的竹杆AB斜立于墙AC的右侧,底端B与墙角C的距离为3米,当竹杆顶端A下滑x米时,底端B便随着向右滑行y米,反映y与x变化关系的大致图象是()A.B.C.D.考点:动点问题的函数图象.分析:利用勾股定理列式求出AC,再根据勾股定理列式表示出y与x的函数关系式,然后判断出函数图象即可得解.解答:解:由勾股定理得,AC===4m,竹杆顶端A下滑x米时,底端B便随着向右滑行y米后,AC=4﹣x,BC=3+y,所以,y+3==,所以,y=﹣3,当x=0时,y=0,当A下滑到点C时,x=4,y=2,由函数解析式可知y与x的变化不是直线变化.故选A.点评:本题考查了动点问题的函数图象,主要利用了勾股定理,列出y与x的函数关系式是解题的关键,难点在于正确区分A、B选项.二、填空题(共8小题,每小题3分,共24分)9.(3分)(•赤峰)化简:2x﹣x=x.考点:合并同类项.分析:利用合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,直接得出答案.解答:解:2x﹣x=x.故答案为:x.点评:此题主要考查了合并同类项,正确掌握合并同类项法则是解题关键.10.(3分)(•赤峰)一只蚂蚁在如图所示的矩形地砖上爬行,蚂蚁停在阴影部分的概率是.考点:几何概率分析:根据矩形的性质求出阴影部分占整个面积的,进而得出答案.解答:解:由题意可得出:图中阴影部分占整个面积的,∴一只蚂蚁在如图所示的矩形地砖上爬行,蚂蚁停在阴影部分的概率是:.故答案为:.点评:本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.11.(3分)(•赤峰)下列四个汽车图标中,既是中心对称图形又是轴对称图形的图标有1个.考点:中心对称图形;轴对称图形.分析:根据中心对称图形定义把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心;轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,可分析出答案.解答:解:第一个图不是轴对称图形,不是中心对称图形,故不合题意;第二个图形是中心对称图形,也是轴对称图形,故符合题意;第三个图形不是中心对称图形,是轴对称图形,故不合题意;第三个图形不是中心对称图形,是轴对称图形,故不合题意.故答案为:1.点评:此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.12.(3分)(•赤峰)如图,E的矩形ABCD中BC边的中点,将△ABE沿AE折叠到△AEF,F在矩形ABCD内部,延长AF交DC于G点.若∠AEB=55°,求∠DAF=20°.考点:翻折变换(折叠问题)分析::由△ABE沿AE折叠到△AEF,得出∠BAE=∠FAE,由∠AEB=55°,∠ABE=90°,求出∠BAE,利用∠DAF=∠BAD﹣∠BAE﹣∠FAE求解.解答:解:∵△ABE沿AE折叠到△AEF,∴∠BAE=∠FAE,∵∠AEB=55°,∠ABE=90°,∴∠BAE=90°﹣55°=35°,∴∠DAF=∠BAD﹣∠BAE﹣∠FAE=90°﹣35°﹣35°=20°.故答案为:20点评:本题主要考查了折叠问题,解题的关键是利用折叠图形的角相等求解.13.(3分)(•赤峰)如图,反比例函数y=(k>0)的图象与以原点(0,0)为圆心的圆交于A,B两点,且A(1,),图中阴影部分的面积等于.(结果保留π)考点:反比例函数图象的对称性;扇形面积的计算分析:根据反比例函数的图象关于坐标原点对称,是中心对称图形可得:图中两个阴影面积的和等于扇形OAB的面积,又知A(1,),即可求出圆的半径.解答:解:如图,∵A(1,),∴∠AOD=60°,OA=2.又∵点A、B关于直线y=x对称,∴∠AOB=2(60°﹣45°)=30°.又∵反比例函数的图象关于坐标原点对称,是中心对称图形,∴S阴影=S扇形AOB==.故答案是:.点评:本题主要考查反比例函数图象的对称性的知识点,解决本题的关键是利用反比例函数的对称性得到阴影部分与圆之间的关系.14.(3分)(•赤峰)如图所示,在象棋盘上建立平面直角坐标系,使“马”位于点(2,2),“炮”位于点(﹣1,2),写出“兵”所在位置的坐标(﹣2,3).考点:坐标确定位置分析:以“马”的位置向左2个单位,向下2个单位为坐标原点建立平面直角坐标系,然后写出兵的坐标即可.解答:解:建立平面直角坐标系如图,兵的坐标为(﹣2,3).故答案为:(﹣2,3).点评:本题考查了坐标确定位置,确定出原点的位置并建立平面直角坐标系是解题的关键.15.(3分)(•赤峰)直线l过点M(﹣2,0),该直线的解析式可以写为y=x+2.(只写出一个即可)考点:一次函数的性质.专题:开放型.分析:设该直线方程为y=kx+b(k≠0).令k=1,然后把点M的坐标代入求得b的值.解答:解:设该直线方程为y=kx+b(k≠0).令k=1,把点M(﹣2,0)代入,得0=﹣2+b=0,解得b=2,则该直线方程为:y=x+2.故答案是:y=x+2(答案不唯一,符合条件即可).点评:本题考查了一次函数的性质.一次函数图象上所有点的坐标都满足直线方程.16.(3分)(2014•赤峰)平移小菱形◇可以得到美丽的“中国结”图案,下面四个图案是由◇平移后得到的类似“中国结”的图案,按图中规律,第20个图案中,小菱形的个数是800个.考点:规律型:图形的变化类.分析:仔细观察图形发现第一个图形有2×12=2个小菱形;第二个图形有2×22=8个小菱形;第三个图形有2×32=18个小菱形;由此规律得到通项公式,然后代入n=20即可求得答案.解答:解:第一个图形有2×12=2个小菱形;第二个图形有2×22=8个小菱形;第三个图形有2×32=18个小菱形;…第n个图形有2n2个小菱形;第20个图形有2×202=800个小菱形;故答案为:800.点评:本题考查了图形的变化类问题,解题的关键是仔细观察图形的变化,并找到图形的变化规律.三、解答题(共10小题,满分102分)17.(6分)(•赤峰)计算:(π﹣)0+﹣8sin45°﹣()﹣1.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值专题:计算题.分析:原式第一项利用零指数幂法则计算,第二项化为最简二次根式,第三项利用特殊角的三角函数值计算,最后一项利用负指数幂法则计算即可得到结果.解答:解:原式=1+4﹣8×﹣4=﹣3.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(6分)(•赤峰)求不等式组的正整数解.考点:一元一次不等式组的整数解.分析:先解每一个不等式,求出不等式组的解集,再求出正整数解即可.解答:解:由①得4x+4+3>x解得x>﹣,由②得3x﹣12≤2x﹣10,解得x≤2,∴不等式组的解集为﹣<x≤2.∴正整数解是1、2.点评:此题主要考查了不等式组的解法,并会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值.19.(10分)(•赤峰)如图,已知△ABC中AB=AC.(1)作图:在AC上有一点D,延长BD,并在BD的延长线上取点E,使AE=AB,连AE,作∠EAC的平分线AF,AF交DE于点F(用尺规作图,保留作图痕迹,不写作法);(2)在(1)的条件下,连接CF,求证:∠E=∠ACF.考点:全等三角形的判定与性质;等腰三角形的性质;作图—复杂作图专题:作图题;证明题.分析:(1)以A为圆心,以AB长为半径画弧,与BD的延长线的交点即为点E,再以点A 为圆心,以任意长为半径画弧,分别与AC、AE相交,然后以这两点为圆心,以大于它们长度为半径画弧,两弧相交于一点,过点A与这一点作出射线与BE的交点即为所求的点F;(2)求出AE=AC,根据角平分线的定义可得∠EAF=∠CAF,再利用“边角边”证明△AEF和△ACF全等,根据全等三角形对应角相等可得∠E=∠ACF.解答:(1)解:如图所示;(2)证明:∵AB=AC,AE=AB,∴AE=AC,∵AF是∠EAC的平分线,∴∠EAF=∠CAF,在△AEF和△ACF中,,∴△AEF≌△ACF(SAS),∴∠E=∠ACF.点评:本题考查了全等三角形的判断与性质,等腰三角形的性质,作一条线段等于已知线段,角平分线的作法,确定出全等三角形的条件是解题的关键.20.(10分)(•赤峰)自从公布“八项规定”以来,光明中学积极开展“厉行节约,反对浪费”活动,为此,学校学生会对九年八班某日午饭浪费饭菜情况进行调查,调查内容分为四种:A.饭和菜全部吃光;B.有剩饭但菜吃光;C.饭吃光但菜有剩;D.饭和菜都有剩.学生会根据统计结果,绘制了如图两个统计图,根据统计图提供的信息回答下列问题:(1)九年八班共有多少名学生?(2)计算图2中B所在扇形的圆心角的度数,并补全条形统计图;(3)光明中学有学生2000名,请估计这顿午饭有剩饭的学生人数,按每人平均剩10克米饭计算,这顿午饭将浪费多少千克米饭?考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)用A的人数除以相对应的百分比就是总学生数;(2)B的人数=总人数﹣A的人数﹣C的人数﹣D的人数,B所在扇形的圆心角的度数为:×360°=72°,再根据B的人数为10,补全条形统计图;(3)先求出这顿午饭有剩饭的学生人数为:2000×=600(人),再用人数乘每人平均剩10克米饭,把结果化为千克.解答:解:(1)九年八班共有学生数为:30÷60%=50(人);(2)B有剩饭但菜吃光的人数为:50﹣30﹣5﹣5=10(人),B所在扇形的圆心角的度数为:×360°=72°,补全条形统计图如图1:(3)这顿午饭有剩饭的学生人数为:2000×=600(人),600×10=6000(克)=6(千克).点评:本题主要考查了条形统计图,扇形统计图及样本估计总数,解题的关键是能把条形统计图和扇形统计图结合起来解决问题.21.(10分)(•赤峰)位于赤峰市宁城的“大明塔”是我国辽代的佛塔,距今已有1千多年的历史.如图,王强同学为测量大明塔的高度,在地面的点E处测得塔基BC上端C的仰角为30°,他又沿BE方向走了26米,到达点F处,测得塔顶端A飞仰角为52°,已知塔基是以OB为半径的圆内接正八边形,B点在正八边形的一个顶点上,塔基半径OB=18米,塔基高BC=11米,求大明塔的高OA(结果保留到整数,≈1.73,tan52°≈1.28).考点:解直角三角形的应用-仰角俯角问题分析:在直角△CBE中利用三角函数首先求得EC的长,则OF即可求解,然后在直角△AOF 中,利用三角函数即可求解.解答:解:∵在直角△CBE中,∠CEB=30°,BC=11,∴EC=22,则EB==11≈19,∵在直角△AOF中,∠AFO=52°,OF=18+19+26=63,∴OA=OF•tan∠AFO≈63×1.28=81(米).答:大明塔高约81米.点评:本题考查仰角的定义,要求学生能借助仰角构造直角三角形并解直角三角形.22.(10分)(•赤峰)某养殖专业户计划购买甲、乙两种牲畜,已知乙种牲畜的单价是甲种牲畜单价的2倍多200元,买3头甲种牲畜和1头乙种牲畜共需5700元.(1)甲、乙两种牲畜的单价各是多少元?(2)若购买以上两种牲畜50头,共需资金9.4万元,求甲、乙两种牲畜各购买多少头?(3)相关资料表明:甲、乙两种牲畜的成活率分别为95%和99%,若使这50头牲畜的成活率不低于97%且购买的总费用最低,应如何购买?考点:一次函数的应用;一元一次方程的应用分析:(1)设甲种牲畜的单价是x元,列方程3x+2x+200=5700,求出甲种牲畜的单价,再求出乙种牲畜的单价即可.(2)设购买甲种牲畜y头,列方程1100y+(50﹣y)=94000求出甲种牲畜购买20头,乙种牲畜购买30头,(3)设费用为m,购买甲种牲畜n头,则m=1100n+240(50﹣n)=﹣1300n+120000依题意得:n+(50﹣n)≥×50,据m随n的增大而减小,求得n=25时,费用最低.解答:解:(1)设甲种牲畜的单价是x元,依题意得,3x+2x+200=5700解得:x=1100乙种牲畜的单价是:2x+200=2400元,即甲种牲畜的单价是1100元,乙种牲畜的单价是2400元.(2)设购买甲种牲畜y头,依题意得,1100y+(50﹣y)=94000解得y=20,50﹣20=30,即甲种牲畜购买20头,乙种牲畜购买30头.(3)设费用为m,购买甲种牲畜n头,则m=1100n+240(50﹣n)=﹣1300n+120000依题意得:n+(50﹣n)≥×50,解得:n≤25,k=﹣1300<0,m随n的增大而减小,∵当n=25时,费用最低,所以各购买25头时满足条件.点评:本题主要考查了一次函数的应用,理解题意,抓住题目蕴含的数量关系是解决问题的关键.23.(12分)(•赤峰)如图,矩形OABC的顶点A,C分别在x轴和y轴上,点B的坐标为(﹣4,6),双曲线y=(x<0)的图象经过BC的中点D,且于AB交于点E.(1)求反比例函数解析式和E点坐标;(2)若F是OC上一点,且以∠OAF和∠CFD为对应角的△FDC、△AFO相似,求F点的坐标.考点:反比例函数综合题.专题:综合题.分析:(1)由ABCD为矩形,D为BC中点,根据B坐标确定出D坐标,代入反比例解析式求出中k的值,确定出反比例解析式,将x=﹣4代入反比例解析式求出y的值,确定出E坐标即可;(2)如图所示,设F(0,y),根据以∠OAF和∠CFD为对应角的△FDC、△AFO 相似,列出比例式,求出y的值,即可确定出F坐标.解答:解:(1)∵四边形ABCD为矩形,D为BC中点,B(﹣4,6),∴D(﹣2,6),设反比例函数解析式为y=,将D(﹣2,6)代入得:k=﹣12,∴反比例解析式为y=﹣,将x=﹣4代入反比例解析式得:y=3,则E(﹣4,3);(2)设F(0,y),如图所示,连接DF,AF,∵∠OAF=∠DFC,△AOF∽△FDC,∴=,即=,整理得:y2﹣6y+8=0,即(y﹣2)(y﹣4)=0,解得:y1=2,y2=4,则F坐标为(0,2)或(0,4).点评:此题属于反比例函数综合题,涉及的知识有:坐标与图形性质,待定系数法确定函数解析式,相似三角形的性质,以及一元二次方程的解法,熟练掌握待定系数法是解本题的关键.24.(12分)(•赤峰)如图1,E是直线AB,CD内部一点,AB∥CD,连接EA,ED.(1)探究猜想:①若∠A=30°,∠D=40°,则∠AED等于多少度?②若∠A=20°,∠D=60°,则∠AED等于多少度?③猜想图1中∠AED,∠EAB,∠EDC的关系并证明你的结论.(2)拓展应用:如图2,射线FE与矩形ABCD的边AB交于点E,与边CD交于点F,①②③④分别是被射线FE隔开的4个区域(不含边界,其中区域③、④位于直线AB上方,P是位于以上四个区域上的点,猜想:∠PEB,∠PFC,∠EPF的关系(不要求证明).考点:平行线的性质专题:阅读型;分类讨论.分析:(1)①根据图形猜想得出所求角度数即可;②根据图形猜想得出所求角度数即可;③猜想得到三角关系,理由为:延长AE与DC交于F点,由AB与DC平行,利用两直线平行内错角相等得到一对角相等,再利用外角性质及等量代换即可得证;(2)分四个区域分别找出三个角关系即可.解答:解:(1)①∠AED=70°;②∠AED=80°;③猜想:∠AED=∠EAB+∠EDC,证明:延长AE交DC于点F,∵AB∥DC,∴∠EAB=∠EFD,∵∠AED为△EDF的外角,∴∠AED=∠EDF+∠EFD=∠EAB+∠EDC;(2)根据题意得:点P在区域①时,∠EPF=360°﹣(∠PEB+∠PFC);点P在区域②时,∠EPF=∠PEB+∠PFC;点P在区域③时,∠EPF=∠PEB﹣∠PFC;点P在区域④时,∠EPF=∠PFC﹣∠PEB.点评:此题考查了平行线的性质,熟练掌握平行线的性质是解本题的关键.25.(12分)(•赤峰)阅读下列材料:如图1,圆的概念:在平面内,线段PA绕它固定的一个端点P旋转一周,另一个端点A所形成的图形叫做圆.就是说,到某个定点等于定长的所有点在同一个圆上,圆心在P(a,b),半径为r的圆的方程可以写为:(x﹣a)2+(y﹣b)2=r2,如:圆心在P(2,﹣1),半径为5的圆方程为:(x﹣2)2+(y+1)2=25(1)填空:①以A(3,0)为圆心,1为半径的圆的方程为(x﹣3)2+y2=1;②以B(﹣1,﹣2)为圆心,为半径的圆的方程为(x+1)2+(y+2)2=3.(2)根据以上材料解决下列问题:如图2,以B(﹣6,0)为圆心的圆与y轴相切于原点,C是⊙B上一点,连接OC,作BD⊥OC 垂足为D,延长BD交y轴于点E,已知sin∠AOC=.①连接EC,证明EC是⊙B的切线;②在BE上是否存在一点P,使PB=PC=PE=PO?若存在,求P点坐标,并写出以P为圆心,以PB为半径的⊙P的方程;若不存在,说明理由.考点:圆的综合题分析:(1)根据阅读材料中的定义求解;(2)①根据垂径定理由BD⊥OC得到CD=OD,则BE垂直平分OC,再根据线段垂直平分线的性质得EO=EC,则∠EOC=∠ECO,加上∠BOC=∠BCO,易得∠BOE=∠BCE=90°,然后根据切线的判定定理得到EC是⊙B的切线;②由∠BOE=∠BCE=90°,根据圆周角定理得点C和点O偶在以BE为直径的圆上,即当P点为BE的中点时,满足PB=PC=PE=PO,利用同角的余角相等得∠BOE=∠AOC,则sin∠BOE=sin∠AOC=,在Rt△BOE中,利用正弦的定义计算出BE=10,利用勾股定理计算出OE=8,则E点坐标为(0,8),于是得到线段AB的中点P的坐标为(﹣3,4),PB=5,然后写出以P(﹣3,4)为圆心,以5为半径的⊙P的方程.解答:(1)解:①以A(3,0)为圆心,1为半径的圆的方程为(x﹣3)2+y2=1;②以B(﹣1,﹣2)为圆心,为半径的圆的方程为(x+1)2+(y+2)2=3;故答案为(x﹣3)2+y2=1;(x+1)2+(y+2)2=3;(1)①证明:∵BD⊥OC,∴CD=OD,∴BE垂直平分OC,∴EO=EC,∴∠EOC=∠ECO,∵BO=BC,∴∠BOC=∠BCO,∴∠EOC+∠BOC=∠ECO+∠BCO,∴∠BOE=∠BCE=90°,∴BC⊥CE,∴EC是⊙B的切线;②存在.∵∠BOE=∠BCE=90°,∴点C和点O偶在以BE为直径的圆上,∴当P点为BE的中点时,满足PB=PC=PE=PO,∵B点坐标为(﹣6,0),∴OB=6,∵∠AOC+∠DOE=90°,∠DOE+∠BEO=90°,∴∠BOE=∠AOC,∴sin∠BOE=sin∠AOC=,在Rt△BOE中,sin∠BOE=,∴=,∴BE=10,∴OE==8,∴E点坐标为(0,8),∴线段AB的中点P的坐标为(﹣3,4),PB=5,∴以P(﹣3,4)为圆心,以5为半径的⊙P的方程为(x+3)2+(y﹣4)2=25.点评:本题了圆的综合题:熟练掌握垂径定理、切线的判定定理、圆周角定理和等腰三角形的性质;阅读理解能力也是本题考查的重点;会运用锐角三角函数的定义和勾股定理进行几何计算.26.(14分)(2014•赤峰)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣1,0),B (3,0)两点,与y轴交于点C(0,﹣3).(1)求该抛物线的解析式及顶点M坐标;(2)求△BCM面积与△ABC面积的比;(3)若P是x轴上一个动点,过P作射线PQ∥AC交抛物线于点Q,随着P点的运动,在抛物线上是否存在这样的点Q,使以A,P,Q,C为顶点的四边形为平行四边形?若存在,请求出Q点坐标;若不存在,请说明理由.考点:二次函数综合题分析:(1)有抛物线与x轴交于点A(﹣1,0),B(3,0)两点,则可设抛物线解析式为y=a(x+1)(x﹣3).由与y轴交于点C(0,﹣3),则代入易得解析式,顶点易知.(2)求△BCM面积与△ABC面积的比,由两三角形不为同高或同底,所以考虑求解求出两三角形面积再作比即可.因为S△BCM=S梯形OCMD+S△BMD﹣S△BOC,S△ABC=•AB•OC,则结论易得.(3)由四边形为平行四边形,则对边PQ、AC平行且相等,过Q点作x轴的垂线易得Q到x轴的距离=OC=3,又(1)得抛物线解析式,代入即得Q点横坐标,则Q点可求.解答:解:(1)设抛物线解析式为y=a(x+1)(x﹣3),∵抛物线过点(0,3),∴﹣3=a(0+1)(0﹣3),∴a=1,∴抛物线解析式为y=(x+1)(x﹣3)=x2﹣2x﹣3,∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴M(1,4).(2)如图1,连接BC、BM、CM,作MD⊥x轴于D,∵S△BCM=S梯形OCMD+S△BMD﹣S△BOC=•(3+4)•1+•2﹣4﹣•3•3=+﹣=3S△ABC=•AB•OC=•4•3=6,∴S△BCM:S△ABC=3:6=1:2.(3)存在,理由如下:①如图2,当Q在x轴下方时,作QE⊥x轴于E,∵四边形ACQP为平行四边形,∴PQ平行且相等AC,∴△PEQ≌△AOC,∴EQ=OC=3,∴﹣3=x2﹣2x﹣3,解得x=2或x=0(与C点重合,舍去),∴Q(2,﹣3).②如图3,当Q在x轴上方时,作QF⊥x轴于F,∵四边形ACPQ为平行四边形,∴QP平行且相等AC,∴△PFQ≌△AOC,∴FQ=OC=3,∴3=x2﹣2x﹣3,解得x=1+或x=1﹣,∴Q(1+,3)或(1﹣,3).综上所述,Q点为(2,﹣3)或(1+,3)或(1﹣,3)点评:本题考查了二次函数图象与性质、平行四边形及坐标系中求不规则图形面积等基础考点,难度适中,适合学生练习.。

内蒙古赤峰市2013年中考数学试卷(解析版)

内蒙古赤峰市2013年中考数学试卷(解析版)

内蒙古赤峰市2013年中考数学试卷一.选择题:(每小题给出的四个选项中,只有一个正确选项,请将正确选项的标号填入题后的括号内.每小题3分,共24分))=1 =a÷=3.(3分)(2013•赤峰)如图,4×4的方格中每个小正方形的边长都是1,则S四边形ABCD与S四边形ECDF的大小关系是()4.(3分)(2013•赤峰)如图所示,几何体的俯视图是( )B5.(3分)(2013•赤峰)学校教学楼从每层楼到它上一层楼都要经过20级台阶,小明从一6.(3分)(2013•赤峰)目前,我国大约有1.3亿高血压病患者,占15岁以上总人口数的10%﹣15%,预防高血压不容忽视.“千帕kpa ”和“毫米汞柱mmHg ”都是表示血压的单位,前者是法定的国际计量单位,而后者则是过去一直广泛使用的惯用单位.请你根据下表所提,7.(3分)(2013•赤峰)从某校九年级中随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分,4分,5分.将测量的结果制成如图所示的扇形统计图和条形统计图,根据图中提供的信息,这些学生分数的中位数是()8.(3分)(2013•赤峰)如图,ABCD是平行四边形,AB是⊙O的直径,点D在⊙O上AD=OA=1,则图中阴影部分的面积为(B∴图中阴影部分的面积为:×.二、填空题(请把答案填在题中横线上,每小题3分,共计24分)9.(3分)(2013•赤峰)一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即1.496×108千米,以亿千米为单位表示这个数是 1.496亿千米.10.(3分)(2013•赤峰)请你写出一个大于0而小于1的无理数﹣1.的无理数有,故答案为:11.(3分)(2013•赤峰)一艘轮船顺水航行的速度是20海里/小时,逆水航行的速度是16海里/小时,则水流的速度是2海里/小时.=212.(3分)(2013•赤峰)样本数据3,2,5,a,4的平均数是3,则a=1.13.(3分)(2013•赤峰)已知圆锥底面半径为5cm,高为12cm,则它的侧面展开图的面积是65πcm2.∴圆锥的母线长为:=13cm14.(3分)(2013•赤峰)如图,矩形ABCD中,E是BC的中点,矩形ABCD的周长是20cm,AE=5cm,则AB的长为4cm.BE=BC=BE=BC=(15.(3分)(2013•赤峰)如图,在平面直角坐标系中,⊙O的半径为1,∠BOA=45°,则过A点的双曲线解析式是y=.y=,,y=×,y=.16.(3分)(2013•赤峰)在等腰三角形中,马彪同学做了如下研究:已知一个角是60°,则另两个角是唯一确定的(60°,60°),已知一个角是90°,则另两个角也是唯一确定的(45°,45°),已知一个角是120°,则另两个角也是唯一确定的(30°,30°).由此马彪同学得出结论:在等腰三角形中,已知一个角的度数,则另两个角的度数也是唯一确定的.马彪同学的结论是错误的.(填“正确”或“错误”)三、解答题(解答时要写出必要的文字说明、证明过程或演算步骤,共9个题,满分102分)17.(12分)(2013•赤峰)(1)计算:sin60°﹣|1﹣|+﹣1(2)化简:(a+3)2﹣(a﹣3)2.﹣(﹣﹣+318.(10分)(2013•赤峰)如图,在平面直角坐标系中,已知点A(0,3),B(2,4),C (4,0),D(2,﹣3),E(0,﹣4).写出D,C,B关于y轴对称点F,G,H的坐标,并画出F,G,H点.顺次而平滑地连接A,B,C,D,E,F,G,H,A各点.观察你画出的图形说明它具有怎样的性质,它象我们熟知的什么图形?19.(10分)(2013•赤峰)如图,数学实习小组在高300米的山腰(即PH=300米)P处进行测量,测得对面山坡上A处的俯角为30°,对面山脚B处的俯角60°.已知tan∠ABC=,点P,H,B,C,A在同一个平面上,点H,B,C在同一条直线上,且PH⊥HC.(1)求∠ABP的度数;(2)求A,B两点间的距离.ABC=m20.(10分)(2013•赤峰)甲、乙两位同学玩摸球游戏,准备了甲、乙两个口袋,其中甲口袋中放有标号为1,2,3,4,5的5个球,乙口袋中放有标号为1,2,3,4的4个球.游戏规则:甲从甲口袋摸一球,乙从乙口袋摸一球,摸出的两球所标数字之差(甲数字﹣乙数字)大于0时甲胜,小于0时乙胜,等于0时平局.你认为这个游戏规则对双方公平吗?请说明理由.若不公平,请你对本游戏设计一个对双方都公平的游戏规则.=,=,>,21.(10分)(2013•赤峰)如图,直线L经过点A(0,﹣1),且与双曲线c:y=交于点B(2,1).(1)求双曲线c及直线L的解析式;(2)已知P(a﹣1,a)在双曲线c上,求P点的坐标.,坐标代入得:,,22.(12分)(2013•赤峰)某校家长委员会计划在九年级毕业生中实施“读万卷书,行万里路,了解赤峰,热爱家乡”主题活动,决定组织部分毕业生代表走遍赤峰全市12个旗、县、区考察我市创建文明城市成果,远航旅行社对学生实行九折优惠,吉祥旅行社对20人以内(含20人)学生旅行团不优惠,超过20人超出的部分每人按八折优惠.两家旅行社报价都是2000元/人.服务项目、旅行路线相同.请你帮助家长委员会策划一下怎样选择旅行社更省钱.23.(12分)(2013•赤峰)如图,已知MN是⊙O的直径,直线PQ与⊙O相切于P点,NP 平分∠MNQ.(1)求证:NQ⊥PQ;(2)若⊙O的半径R=3,NP=,求NQ的长.MNP==,×=24.(12分)(2013•赤峰)如图,已知△OAB的顶点A(﹣6,0),B(0,2),O是坐标原点,将△OAB绕点O按顺时针旋转90°,得到△ODC.(1)写出C,D两点的坐标;(2)求过A,D,C三点的抛物线的解析式,并求此抛物线顶点E的坐标;(3)证明AB⊥BE.﹣﹣﹣(25.(14分)(2013•赤峰)如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.AC=×CD=2tt=.。

2013年内蒙古呼伦贝尔市中考数学试题及参考答案(word解析版)

2013年内蒙古呼伦贝尔市中考数学试题及参考答案(word解析版)

2013年内蒙古呼伦贝尔市中考数学试题及参考答案一、选择题(本大题共12小题,每小题3分,共36分)1.-5的相反数是()A.5 B.-5 C.15-D.152.下列各式计算正确的是()A.(a-b)2=a2-b2B.(-a4)3=a7C.2a•(-3b)=6ab D.a5÷a4=a(a≠0)3.下列几何体中,俯视图为矩形的是()A.B.C.D.4.据报道,今年“五•一”期间某市旅游总收入达到5630000元,用科学记数法表示为()A.5.63×104元B.5.63×105元C.5.63×106元D.5.63×107元5.下列图形中是中心对称图形的是()A.B.C.D.6.下列调查工作适合采用全面调查方式的是()A.学校在给学生订做校服前进行的尺寸大小的调查B.电视台对正在播出的某电视节目收视率的调查C.质检部门对各厂家生产的电池使用寿命的调查D.环保部门对某段水域的水污染情况的调查7.如图AB∥CD,AC⊥BC,图中与∠CAB互余的角有()A.1个B.2个C.3个D.4个8.已知代数式-3x m-1y3与52x n y m+n是同类项,那么m、n的值分别是()A.21mn=⎧⎨=-⎩B.21mn=-⎧⎨=-⎩C.21mn=⎧⎨=⎩D.21mn=-⎧⎨=⎩9.用配方法解方程x2-2x-5=0时,原方程应变形为()A.(x+1)2=6 B.(x-1)2=6 C.(x+2)2=9 D.(x-2)2=910.生物工作者为了估计一片山林中雀鸟的数量,设计了如下方案:先捕捉100只雀鸟,给它们做上标记后放回山林;一段时间后,再从中随机捕捉500只,其中有标记的雀鸟有5只.请你帮助工作人员估计这片山林中雀鸟的数量约为( ) A .1000只 B .10000只 C .5000只 D .50000只11.如图,在Rt △ABC 中,∠ACB=90°,∠A=30°,BC=2,将△ABC 绕点C 顺时针方向旋转60°后得到△EDC ,此时点D 在斜边AB 上,斜边DE 交AC 于点F .则图中阴影部分的面积为( )A .2B .CD 12.若一个圆锥的侧面积是10,圆锥母线l 与底面半径r 之间的函数关系图象大致是( )A .B .C .D .二、填空题(本大题共5小题,每小题3分,共15分)13.在函数y =x 的取值范围是 . 14.分解因式:12m 2-3n 2= .15.在平面直角坐标系中,点A (2,-3)关于y 轴对称的点的坐标为 . 16.150°的圆心角所对的弧长是5πcm ,则此弧所在圆的半径是 cm .17.观察下面的一列单项式:x ,-2x 2,4x 3,-8x 4,…根据你发现的规律,第n 个单项式为 . 三、解答题(本大题共9小题,共69分)18.(6分)计算:()1201316cos3013-⎛⎫︒+- ⎪⎝⎭.19.(6分)解不等式组213315x x +⎧⎨-+-⎩>≤.20.(6分)小明和小刚用如图所示的两个转盘做游戏,游戏规则如下:分别旋转两个转盘,当两个转盘指针指向的数字之积为奇数时,小明获胜;数字之积为偶数时,小刚获胜(若指针恰好指在等分线上时重新转动转盘).(1)分别求出小明和小刚获胜的概率(用列表法或树形图); (2)这个游戏规则是否公平?说明理由.21.(6分)如图,线段AB、DC分别表示甲乙两座建筑物的高,AB⊥BC,DC⊥BC,两建筑物的水平距离BC为30米,若甲建筑物的高AB=28米,在点A处观察乙建筑物顶部D的仰角为60°,求乙建筑物的高度(结果保留1 1.73).22.(7分)某校初三学生开展踢毽子活动,每班派5名学生参加,按团体总分排列名次,在规定时间内每人踢100个以上(含100)为优秀.下表是成绩最好的甲班和乙班5名学生的比赛成绩.经统计发现两班5名学生踢毽子的总个数相等.此时有学生建议,可以通过考查数据中的其它信息作为参考.请你回答下列问题:(1)甲乙两班的优秀率分别为、;(2)甲乙两班比赛数据的中位数分别为、;(3)计算两班比赛数据的方差;(4)根据以上三条信息,你认为应该把团体第一名的奖状给哪一个班?简述理由.23.(7分)如图,在菱形ABCD中,对角线AC、BD相交于点O.(1)平移△AOB,使得点A移动到点D,画出平移后的三角形(不写画法,保留画图痕迹);(2)在第(1)题画好的图形中,除了菱形ABCD外,还有哪种特殊的平行四边形?请给予证明.24.(8分)如图,AB是⊙O的直径,AC是弦,DE和⊙O相切于点D,DE⊥AC,交AC的延长线于点E.(1)求证:∠CAD=∠BAD ;(2)若AE=8,⊙O 的半径为5,求DE 的长.25.(10分)某工程队(有甲、乙两组)承包一项工程,规定若干天内完成.(1)已知甲组单独完成这项工程所需时间比规定时间多30天,乙组单独完成这项工程所需时间比规定时间多12天,如果甲乙两组先合做20天,剩下的由甲组单独做,恰好按规定的时间完成,那么规定的时间是多少天?(2)实际工作中,甲乙两组合做完成这项工程的56后,工程队又承包了新工程,需要抽调一组过去,从按时完成任务考虑,你认为留下哪一组更好?说明理由.26.(13分)已知:在平面直角坐标系中,抛物线2134y x bx =-++交x 轴于A 、B 两点,交y 轴于点C ,且对称轴为x=-2,点P (0,t )是y 轴上的一个动点. (1)求抛物线的解析式及顶点D 的坐标.(2)如图1,当0≤t ≤4时,设△PAD 的面积为S ,求出S 与t 之间的函数关系式;S 是否有最小值?如果有,求出S 的最小值和此时t 的值.(3)如图2,当点P 运动到使∠PDA=90°时,Rt △ADP 与Rt △AOC 是否相似?若相似,求出点P 的坐标;若不相似,说明理由.参考答案与解析一、选择题(本大题共12小题,每小题3分,共36分) 1.-5的相反数是( ) A .5 B .-5 C .15- D .15【知识考点】相反数.【思路分析】根据只有符号不同两个数互为相反数,可得-5的相反数.【解答过程】解:-5的相反数是5,故选:A.【总结归纳】本题考查了相反数,理解只有符号不同的数是相反数是解题关键.2.下列各式计算正确的是()A.(a-b)2=a2-b2B.(-a4)3=a7C.2a•(-3b)=6ab D.a5÷a4=a(a≠0)【知识考点】完全平方公式;幂的乘方与积的乘方;同底数幂的除法;单项式乘单项式.【思路分析】根据完全平方公式、积的乘方、单项式乘单项式的计算法则和同底数幂的除法法则计算即可求解.【解答过程】解:A、(a-b)2=a2-2ab+b2,故选项错误;B、(-a4)3=-a12,故选项错误;C、2a•(-3b)=-6ab,故选项错误;D、a5÷a4=a(a≠0),故选项正确.故选:D.【总结归纳】考查了完全平方公式、积的乘方、单项式乘单项式和同底数幂的除法,熟练掌握计算法则是解题的关键.3.下列几何体中,俯视图为矩形的是()A.B.C.D.【知识考点】简单几何体的三视图.【思路分析】分别找出几何体从上面看所得到的视图即可.【解答过程】解:A、圆柱的俯视图是矩形,故此选项正确;B、三棱柱的俯视图是三角形,故此选项错误;C、圆锥的俯视图是圆,故此选项错误;D、球的俯视图是圆,故此选项错误;故选:A.【总结归纳】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.4.据报道,今年“五•一”期间某市旅游总收入达到5630000元,用科学记数法表示为()A.5.63×104元B.5.63×105元C.5.63×106元D.5.63×107元【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答过程】解:5 630 000=5.63×106,故选:C.【总结归纳】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.。

13年内蒙古赤峰数学试题详解版

13年内蒙古赤峰数学试题详解版

2013年内蒙古赤峰市中考数学试卷参考答案与试题解析一.选择题:(每小题给出的四个选项中,只有一个正确选项,请将正确选项的标号填入题后的括号内.每小题3分,共24分)1.(3分)()0是()A.B.1 C.D.﹣1【考点】零指数幂M119.【难度】容易题.【分析】本题考查零指数幂的运算法则,考生需记住一个非零数的零指数幂:a0=1(a≠0),故()0=1,故选:B.【解答】B.【点评】此题是一道基础题,只考察了零指数幂这一个知识点,关键要记住非零数的零指数幂才为1.2.(3分)下列等式成立的是()A.|a|•=1 B.=a C.÷=D.a﹣2a=﹣a【考点】分式的运算M11I;绝对值M113;二次根式的化简M11H;合并同类项M11D.【难度】容易题.【分析】此题中的四个选项分别考察了分式的运算、二次根式的化简、合并同类项等三个知识点,考生需要掌握这四种运算法则,然后依此判断各个选项即可.对于A项,因为存在绝对值,原式分情况讨论,当a>0时,|a|=a,原式=1;当a<0时,|a|=﹣1,原式=﹣1,本选项错误;对于B项,利用二次根式的化简公式计算得到原式=|a|,本选项错误;对于C 项,利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到原式=1,本选项错误;对于D项,原式合并同类项得到a﹣2a=﹣a,本选项正确,【解答】D【点评】本题需要考生依此对选项中的运算进行核算,特别要注意存在绝对值和根式化简的知识点,要分情况进行讨论,考生在掌握所出现的四种运算的基础上,还需要掌握诸如零指数幂,整数指数幂等运算.3.(3分)如图,4×4的方格中每个小正方形的边长都是1,则S四边形ABCD与S四边形ECDF的大小关系是()A.S四边形ABDC=S四边形ECDFB.S四边形ABDC<S四边形ECDFC.S四边形ABDC=S四边形ECDF+1D.S四边形ABDC=S四边形ECDF+2【考点】矩形的性质与判定M333;四边形的面积M331;平行四边形的性质与判定M332;平行线之间的距离M312.【难度】容易题.【分析】本题需要根据矩形和平行四边形的面积计算方法进行求解,矩形的面积公式=长×宽,平行四边形的面积公式=边长×高,因为矩形和平行四边形的底边长均为1,高均为4,S四边形ABDC=CD•AC=1×4=4,S四边形ECDF=CD•AC=1×4=4,故选:A.【解答】A.【点评】此题需要考生正确的读懂题图,结合矩形和平行四边形的面积公式进行求解,然后进行比较,关键是掌握面积的计算公式.4.(3分)如图所示的几何体的俯视图是()【考点】简单组合体的三视图M415.【难度】容易题.【分析】本题要求找出俯视图,即找到从上面看到的所有的棱构成的图形即可,从上面看可得3个小正方形,分成3列,每一列一个正方形.故选C.【解答】C.【点评】本题需要考生结合题中给出的几何体的特点找出所求的俯视图,需要掌握的是从上面看得到的图形为俯视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图.5.(3分)学校教学楼从每层楼到它上一层楼都要经过20级台阶,小明从一楼到五楼要经过的台阶数是()A.100 B.80 C.50 D.120【考点】有理数的运算法则M115;数学综合与实践M611.【难度】容易题.【分析】本题是对实际问题的数学应用,考生要首先弄清楚从一楼到五楼共经过四层楼,而不是五层,从一楼到五楼要经过的台阶数为:20×(5﹣1)=80.故选B.【解答】B.【点评】本题考查了有理数的运算法则,正确解答本题需要考生在实际生活中多观察,要知道从一层到五层要经过四层楼的楼梯,不要误认为是五层楼梯.6.(3分)目前,我国大约有1.3亿高血压病患者,占15岁以上总人口数的10%﹣15%,预防高血压不容忽视.“千帕kpa”和“毫米汞柱mmHg”都是表示血压的单位,前者是法定的国际计量单位,而后者则是过去一直广泛使用的惯用单位.请你根据下表所提供的信息,判断下列各组换算正确的是()A.13kpa=100mmHg B.21kpa=150mmHgC.8kpa=60mmHg D.22kpa=160mmHg【考点】一次函数的应用M144;求一次函数的关系式M143.【难度】容易题.【分析】本题需要考生找出千帕和毫米汞柱之间的函数关系,那么就需要观察题中给出的这几组数据,千帕每增加2,毫米汞柱升高15,可得这两个数据为一次函数关系,那么设千帕与毫米汞柱的关系式为y=kx+b(k≠0),则,解得,所以y=7.5x,对四个选项依次进行核算,对于A项,x=13时,y=13×7.5=97.5,即13kpa=97.5mmHg,故本选项错误;对于B项,x=21时,y=21×7.5=157.5,所以,21kpa=157.5mmHg,故本选项错误;对于C项,x=8时,y=8×7.5=60,即8kpa=60mmHg,故本选项正确;对于D项,x=22时,y=22×7.5=165,即22kpa=165mmHg,故本选项错误.故选C.【解答】C.【点评】本题是对两组数据之间关系的考查,那么考生就需要找出两组数据的函数规律,利用函数关系式表示出来,然后对题干四个选项依次进行核算即可,本题是基础题.7.(3分)从某校九年级中随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分,4分,5分.将测量的结果制成如图所示的扇形统计图和条形统计图,根据图中提供的信息,这些学生分数的中位数是()A.1 B.2 C.3 D.4【考点】统计图(折线、扇形、条形)M217;中位数、众数M211.【难度】中等题.【分析】本题要求考生能够在题干给出的两个统计图中获取必要的信息进行解题,首先考生结合扇形图和条形图求出总人数为6÷10%=60(人),进而求得2分的小组的人数有60×20%=12(人),得4分的有60﹣6﹣12﹣15﹣9=18(人),结合条形统计图知第30与31个数据都是3分,根据中位数的定义,那么这些学生分数的中位数是(3+3)÷2=3.故选C.【解答】C.【点评】解答本题的基础工作是从统计图中获取正确的信息并求出各个小组的人数,考生要能够读懂统计图,并转化为解答问题的信息.中位数的求法是将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.8.(3分)如图,ABCD是平行四边形,AB是⊙O的直径,点D在⊙O上AD=OA=1,则图中阴影部分的面积为()A.B.C. D.【考点】等边三角形的判定与性质M326;扇形面积的计算M343;勾股定理M329;特殊角三角函数的值M32B;四边形的面积M331;平行四边形的性质与判定M332.【难度】较难题.【分析】本题是一道几何综合体,考生做出辅助线,根据题图找出阴影部分的面积组成,根据平行四边形的性质以及等边三角形的判定得出作出的几个三角形的特点,连接DO,EO,BE,过点D作DF⊥AB于点F,∵AD=OA=1,∴AD=AO=DO,∴△AOD是等边三角形,∵四边形ABCD是平行四边形,∴DC∥AB,且∠CDO=∠DOA=60°,∴△ODE是等边三角形,同理可得出△OBE是等边三角形且3个等边三角形全等,∴阴影部分面积等于△BCE面积,∵DF=ADsin60°=,DE=EC=1,∴图中阴影部分的面积为:××1=.故选:A.【解答】A.【点评】此题要求阴影部分的面积,就需要我们做出辅助线找出阴影部分与题图其他部分的关系,考生要能够在做出辅助线后确定图中的三个三角形为等边三角形,关键是得出阴影部分面积等于△BCE面积.二、填空题(请把答案填在题中横线上,每小题3分,共计24分)9.(3分)一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即1.496×108千米,以亿千米为单位表示这个数是亿千米.【考点】科学记数法M11G.【难度】容易题.【分析】本题是科学记数法的延伸求解,考生要清楚1亿怎样用科学记数法怎样表示,由于1亿=108,那么就可将1.496×108千米写为1.496亿千米,故答案为1.496.【解答】1.496.【点评】此题是科学记数法的逆序使用,考生要掌握科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.10.(3分)请你写出一个大于0而小于1的无理数.【考点】估算无理数的大小M116.【难度】容易题.【分析】本题答案不唯一,考生只需要找出大于1的无理数,然后减掉一个有理数即可,那么可得到一个大于0而小于1的无理数有﹣1,﹣1等,故答案为:﹣1.【解答】﹣1.【点评】本题需要进行无理数的大小估算,要掌握无理数是指无限不循环小数,按照题中分析所给出的方法可容易得出题干所求,此题是一道开放型的题目,答案不唯一.11.(3分)一艘轮船顺水航行的速度是20海里/小时,逆水航行的速度是16海里/小时,则水流的速度是海里/小时.【考点】二元一次方程组的应用M12C;解二元一次方程组M12B.【难度】容易题.【分析】本题中给出了顺水航行的速度是20海里/小时,逆水航行的速度是16海里/小时,考生要根据顺水航速等于水速加船在静水中航速和逆水航速等于船在静水中航速减去水速,则可以得出二元一次方程组,即静水船速+水速=20,静水船速-水速=16,∴水流的速度是=2(海里/小时);故答案为:2.【解答】2.【点评】此题考是一道利用二元一次方程解决实际问题的应用,解决本题的关键找到所求的量的等量关系,即水流速度=(顺水速度﹣逆水速度)÷2.12.(3分)样本数据3,2,5,a,4的平均数是3,则a= .【考点】方差、极差、平均数M213.【难度】容易题.【分析】本题给出了存在一个未知数的一组数据和这组数据的平均数,那么就要根据平均数的计算公式和数据的平均数是3列出算式进行求解,∵数据3,2,5,a,4的平均数是3,∴(3+2+5+a+4)÷5=3,则解得a=1;故答案为:1.【解答】1.【点评】此题是一道基础题,重点需要掌握算术平均数的计算公式,即数据的各项和除以本组数据的个数.13.(3分)已知圆锥底面半径为5cm,高为12cm,则它的侧面展开图的面积是cm2.【考点】勾股定理M329;圆锥的计算M341;扇形面积的计算M343.【难度】容易题.【分析】本题是根据题干给出的圆锥的特点求其侧面积,需要用到圆锥的相关计算,重点是考生要知道利用勾股定理易得圆锥的母线长,然后利用圆锥的侧面积的计算公式,即π×底面半径×母线长,把相应数值代入即可求解.解答过程如下,∵圆锥的高为12cm,底面半径为5cm,∴圆锥的母线长为:=13cm,∴圆锥的侧面展开图的面积为:π×5×13=65πcm2.故答案为:65π【解答】65π【点评】本题需要考生掌握圆锥母线长度与其底面半径和高的关系,注意圆锥的高,母线长,底面半径组成直角三角形这个知识点,本题重点考察圆锥侧面积计算公式,需要考生记住.14.(3分)如图,矩形ABCD中,E是BC的中点,矩形ABCD的周长是20cm,AE=5cm,则AB 的长为cm.【考点】矩形的性质与判定M333;勾股定理M329;解一元二次方程M124.【难度】容易题.【分析】本题给出了矩形的周长,但未知其长与宽的长度,观察题干可在△ABE中列出长与宽的关系式,从而求得AB长度,那么设AB=x,则可得BC=10﹣x,E是BC的中点,则BE=BC=,在Rt△ABE中,利用勾股定理AB2+BE2=AE2,即x2+()2=52,解得:x=4.即AB的长为4cm.故答案为:4.【解答】4.【点评】本题的重点是要表示出矩形的长与宽的关系,在直角三角形ABE中利用勾股定理即可进行求解,考生解答此题需关注解题的方向,根据给出直角三角形ABE斜边的长度确定解题思路.15.(3分)如图,在平面直角坐标系中,⊙O的半径为1,∠BOA=45°,则过A点的双曲线解析式是.【考点】特殊角三角函数的值M32B;圆的性质M342;用待定系数法求函数关系式M133;求反比例函数的关系式M152;勾股定理M329.【难度】中等题.【分析】本题需要知道位于双曲线上的点A点的坐标,利用待定系数法求出双曲线的解析式,因为点A位于圆O上,且圆的半径为1,∠BOA=45°,那么可设A(m,m),根据勾股定理则有m2+m2=12,解得m=,则A(,),再设反比例函数解析式为y=(k≠0),由于图象经过A点,可得k=×=,∴反比例函数解析式为y=.故答案为:y=.【解答】y=.【点评】此题目的是求反比例函数的函数式,关键是要能够根据点A 的位置及圆的半径长度,利用勾股定理求出A点坐标.16.(3分)在等腰三角形中,马彪同学做了如下研究:已知一个角是60°,则另两个角是唯一确定的(60°,60°),已知一个角是90°,则另两个角也是唯一确定的(45°,45°),已知一个角是120°,则另两个角也是唯一确定的(30°,30°).由此马彪同学得出结论:在等腰三角形中,已知一个角的度数,则另两个角的度数也是唯一确定的.马彪同学的结论是的.(填“正确”或“错误”)【考点】等腰三角形的性质与判定M325;三角形的内角和外角M321.【难度】容易题.【分析】本题考查等腰三角形的性质,等腰三角形的两个底角是相等的,所以要分情况把已知角看做等腰三角形的顶角和底角,分两种情况考虑,利用三角形内角和是180度计算,比如已知一个角=70°.当70°为顶角时,另外两个角是底角,它们的度数是相等的,为(180°﹣70°)÷2=55°,当70°为底角时,另外一个底角也是70°,顶角是180°﹣140°=40°.故答案为:错误.【解答】错误.【点评】本题需要考生理解题干叙述,考生要根据等腰三角形的性质进行分析,即等腰三角形的两个底角是相等的,考生要要注意分两种情况考虑,不能马虎大意漏掉任意一种.三、解答题(共9个题,满分102分)17.(12分)1)计算:sin60°﹣|1﹣|+﹣1(2)化简:(a+3)2﹣(a﹣3)2.【考点】实数的运算M118;特殊角的三角函数值M32B;绝对值M113;整数指数幂M11A;提公因式法与公式法M11K;多项式运算M11M;合并同类项M11D.【难度】容易题.【分析】(1)本小问涉及到的知识点较多,考生需要知道每个考点的概念及计算方法,在计算时,需要针对每个考点分别进行计算,对于第一项利用特殊角三角函数求解为,第二项求绝对值为﹣1,第三项求得结果为2,此小问较简单.(2)本小问中的两项均需要利用公式法展开,然后观察展开后得到的各项,将同类项合并即可,此小问较简单.【解答】解:(1)原式=﹣(﹣1)+2 ...................4分=﹣+1+2 ...................5分=﹣+3; ...................6分(2)原式=a2+6a+9﹣(a2﹣6a+9) ...................8分=a2+6a+9﹣a2+6a﹣9 ...................10分=12a. ...................12分【点评】此题考查了考生对实数的运算法则和多项式计算的掌握程度,考生要熟练掌握题干中给出的特殊角的三角函数值、绝对值、整数指数幂等的概念和计算方法,并做到运算仔细.18.(10分)如图,在平面直角坐标系中,已知点A(0,3),B(2,4),C(4,0),D(2,﹣3),E(0,﹣4).写出D,C,B关于y轴对称点F,G,H的坐标,并画出F,G,H点.顺次而平滑地连接A,B,C,D,E,F,G,H,A各点.观察你画出的图形说明它具有怎样的性质,它象我们熟知的什么图形?【考点】不同位置的点的坐标的特征M135;尺规作图M313;点到坐标轴及原点的距离M136;轴对称图形与中心对称图形M411.【难度】容易题.【分析】本题需要考生根据题干中给出的点的坐标求出其关于y轴对称的点,两点关于Y轴对称,其特点是纵坐标相等,横坐标互为相反数,根据这个特点即可得出F,G,H的坐标,然后顺次连接各点即可.【解答】解:由题意得,F(﹣2,﹣3),G(﹣4,0),H(﹣2,4),..........6分..........8分这个图形关于y轴对称,是我们熟知的轴对称图形. ..........10分【点评】本题考查了不同位置点的坐标特征,考生要知道关于y轴对称的两个点的坐标关系,当然还要知道轴对称图形的特点及判定方法,考生要具备找出轴对称图形的对称轴的能力.19.(10分)如图,数学实习小组在高300米的山腰(即PH=300米)P处进行测量,测得对面山坡上A处的俯角为30°,对面山脚B处的俯角60°.已知tan∠ABC=,点P,H,B,C,A在同一个平面上,点H,B,C在同一条直线上,且PH⊥HC.(1)求∠ABP的度数;(2)求A,B两点间的距离.【考点】余角、补交、对顶角、零补角M315;平行线的判定及性质M311;解直角三角形M32C;直角三角形的性质与判定M327;特殊角三角函数的值特殊角三角函数的值;勾股定理M329.【难度】容易题.【分析】(1)本题给出了∠DPB的度数及tan∠ABC=,考生要根据PD与BC平行得出∠PBC=180°-∠DPB,即可求解,此小问较简单;(2)在(1)中得到了∠ABP=90°,判断出△ABP为直角三角形,因为结合题干可得出∠BPA 的大小,只需要知道△ABP一条边的长度即可求出AB的长,观察PB的长度可由另外一个直角三角形PHB求得,进而可以得到AB的长度,此小问较简单.【解答】解:(1)∵tan∠ABC=,∴∠ABC=30°; ...................2分∵从P点望山脚B处的俯角60°,∴∠PBH=60°, ...................4分∴∠ABP=180°﹣30°﹣60°=90° ..................5分(2)由题意得:∠PBH=60°,∵∠ABC=30°,∴∠ABP=90°,∴△PAB为直角三角形, ...................7分在直角△PHB中,PB=PH÷sin∠PBH=200(m). ...................8分在直角△PBA中,AB=PB•tan∠BPA=200(m). ...................9分∴A、B两点之间的距离为200米. ...................10分【点评】本题给出了P点关于A、B两点的俯角,考生要根据这个条件得到题图中各角的大小,进而判断出图中各边之间的长度关系,本题需要考生能够正确利用三角函数.20.(10分)甲、乙两位同学玩摸球游戏,准备了甲、乙两个口袋,其中甲口袋中放有标号为1,2,3,4,5的5个球,乙口袋中放有标号为1,2,3,4的4个球.游戏规则:甲从甲口袋摸一球,乙从乙口袋摸一球,摸出的两球所标数字之差(甲数字﹣乙数字)大于0时甲胜,小于0时乙胜,等于0时平局.你认为这个游戏规则对双方公平吗?请说明理由.若不公平,请你对本游戏设计一个对双方都公平的游戏规则.【考点】列表法与树状图法M223;概率的计算M222;概率的意义M224.【难度】容易题.【分析】本题给出了甲和乙获胜的要求,那么我们只需要求出甲和乙分别获胜的概率,然后进行比较即可知道此游戏是否公平,首先考生要列出表格表示出所有等可能的情况数,在其中就可找出数字之差大于0,等于0以及小于0时的情况数,即能够求出甲乙两获胜的概率,即可判断不公平,若要使游戏公平,则要求在列出的所有情况中,保证使得甲获胜和使得乙获胜的情况数相同.【解答】解:游戏不公平,理由为: ...................2分列表得:...................4分所有等可能的情况有20种,其中摸出的两球所标数字之差(甲数字﹣乙数字)大于0的情况有10中,等于0的情况有4种,小于0的情况有6种, ...........6分则P甲获胜==,P乙获胜==,∵>,∴游戏不公平; ...................8分若使游戏公平,修改规则为:摸出的两球所标数字之和为偶数,甲获胜;之和为奇数,乙获胜. ...................10分【点评】此题要证明游戏的公平性,实际就是要考生求解甲乙两个人获胜概率的大小,只有使得甲乙获胜概率相等的时候游戏才是公平的,考生要利用列表法保证不会遗漏任何情况.21.(10分)如图,直线L经过点A(0,﹣1),且与双曲线c:y=交于点B(2,1).(1)求双曲线c及直线L的解析式;(2)已知P(a﹣1,a)在双曲线c上,求P点的坐标.【考点】反比例函数与一次函数的交点问题M153;用待定系数法求函数关系式M133;求反比例函数的关系式M152;求一次函数的关系式M143;解二元一次方程组M12B;解一元二次方程M124;反比例函数的应用M154.【难度】容易题.【分析】(1)本题中只有B点位于双曲线上,所以要求双曲线的函数式,必须将B点坐标代入反比例解析式才能求出m的值,确定出双曲线c解析式;题干给出了A、B两点的坐标,将其分别代入所设的一次函数的解析式y=kx+b即可确定出直线L的解析式,此小问较简单;(2)既然点P位于双曲线上,则点P的坐标值满足反比例函数,考生要将P点坐标代入反比例解析式,即可求出a的值,进而确定出P坐标,此小问较简单.【解答】解:(1)将B(2,1)代入反比例解析式得:m=2, ......1分则双曲线解析式为y=, ...................2分设直线L解析式为y=kx+b,将A与B坐标代入得:, ...................3分解得:, ...................4分则直线L解析式为y=x﹣1; ...................5分(2)将P(a﹣1,a)代入反比例解析式得:a(a﹣1)=2, ......6分整理得:a2﹣a﹣2=0,即(a﹣2)(a+1)=0, ......7分解得:a=2或a=﹣1, ...................8分则P坐标为(1,2)或(﹣2,﹣1). ...................10分【点评】此题重点考察的是根据点在函数图象上,利用待定系数法求函数解析式,考生在利用两个点的坐标求一次函数解析式时,要掌握一元二次方程的解法,考生还要会求在函数图象上点的坐标值.22.(12分)某校家长委员会计划在九年级毕业生中实施“读万卷书,行万里路,了解赤峰,热爱家乡”主题活动,决定组织部分毕业生代表走遍赤峰全市12个旗、县、区考察我市创建文明城市成果,远航旅行社对学生实行九折优惠,吉祥旅行社对20人以内(含20人)学生旅行团不优惠,超过20人超出的部分每人按八折优惠.两家旅行社报价都是2000元/人.服务项目、旅行路线相同.请你帮助家长委员会策划一下怎样选择旅行社更省钱.【考点】一次函数的应用M144;求一次函数的关系式M143;函数自变量的取值范围M138;分段函数M139.【难度】容易题.【分析】本题中给出了两家旅行社各自的收费标准,考生要仔细研究这两种不同的收费标准,首先根据九折收费的方式列出远航旅行社消费钱数与人数的函数关系式,再以20人为节点列出吉祥旅行社消费的钱数与人数之间的关系,这个函数式要分两种情况列出,根据列出的两家旅行社的收费函数式求出两个旅行社消费相同的情况的人数,然后进行讨论即可.【解答】解:设消费的钱数为y元,学生人数为x人,则远航旅行社:y=0.9×2000x=1800x, ...................2分①若x≤20,则吉祥旅行社:y=2000x, ...................3分此时2000x>1800x,选择远航旅行社更优惠; ...................5分②若x>20,则吉祥旅行社:y=2000×20+2000×0.8(x﹣20),=40000+1600x﹣32000,=1600x+8000, ...................7分当1600x+8000=1800x时,即x=40时,选择两个旅行社消费相同, ..........9分当x<40时,选择远航旅行社更优惠, ...................10分x>40时,选择吉祥旅行社更优惠, ...................11分综上所述,当学生人数少于40,大于20时,选择远航旅行社更优惠,当学生人数等于40时,选择两家旅行社都一样,当学生人数大于40时,选择吉祥旅行社更优惠. ...................12分【点评】本题要进行两种情形下的分类讨论,第一个是在求吉祥旅行社消费钱数与人数的函数关系式时,第二个是得出在两家消费钱数相等所对应的人数后需要进行分类讨论,本题考查了一次函数的应用,考生要读懂题目信息,难点在于要分情况讨论,需要考生引起注意.23.(12分)如图,已知MN是⊙O的直径,直线PQ与⊙O相切于P点,NP平分∠MNQ.(1)求证:NQ⊥PQ;(2)若⊙O的半径R=3,NP=,求NQ的长.【考点】切线的性质与判定M347;圆的性质M342;三角形与圆M346;等腰三角形的性质与判定M325;角平分线的性质与判定M314;平行线的判定及性质M311;勾股定理M329;特殊角三角函数的值M32B.【难度】容易题.【分析】(1)本小问需要作出辅助线帮助解答,考生要连接OP,根据题干直线PQ与⊙O相切可得OP⊥PQ,考生只需证明OP∥NQ即可证得NQ⊥PQ,此小问较简单;(2)题干给出了NP的长度,且在(1)中证得了△PQN为直角三角形,那么只需要知道∠PNQ的大小即可,然后利用三角函数在直角三角形PQN中求解NQ的长度,考生要利用NP平分∠MNQ进行求∠PNQ的大小.我们连接MP,在构造出的直角△MNP中,利用三角函数求得∠MNP的度数,即可求得∠PNQ的值,此小问难度中等.【解答】(1)证明:连接OP.∵直线PQ与⊙O相切于P点,∴OP⊥PQ, ...................2分∵OP=ON,∴∠OPN=∠ONP, ...................3分又∵NP平分∠MNQ,∴∠OPN=∠PNQ, ...................4分∴OP∥NQ ...................5分∴NQ⊥PQ; ...................6分(2)解:连接MP. ...................7分∵MN是直径,∴∠MPN=90°, ...................8分∴cos∠MNP===, ...................9分∴∠MNP=30°, ...................10分∴∠PNQ=30°, ...................11分∴直角△PNQ中,NQ=NP•cos30°=3×=. ...................12分【点评】本题是在圆中,利用圆的性质及切线的性质进行三角形相关问题的求解,需要考生根据题中各角的大小关系,利用三角函数的相关知识点求出圆中三角形各边的长度关系.24.(12分)如图,已知△OAB的顶点A(﹣6,0),B(0,2),O是坐标原点,将△OAB绕点O按顺时针旋转90°,得到△ODC.(1)写出C,D两点的坐标;(2)求过A,D,C三点的抛物线的解析式,并求此抛物线顶点E的坐标;(3)证明AB⊥BE.【考点】点到坐标轴及原点的距离M136;图形的平移与旋转M413;用待定系数法求函数关系式M133;求二次函数的关系式M163;两点之间的距离M137;勾股定理M329.【难度】容易题.【分析】(1)本题给出了A、B两点的坐标,考生据此条件可得到OA与OB的长度,将△OAB 旋转得到△ODC,则对应边OC=OB,OD=OA,进而可得C、D两点的坐标,此小问较简单;(2)题中由(1)得到了A、D、C三点的坐标,观察A、C两点均位于x轴上,则可以设抛物线的解析式为y=a(x+6)(x﹣2)(a≠0)这种形式,因为此函数式仅有一个未知数则将D (0,6)代入,就能求出a的值,从而得出抛物线的解析式,将函数式写成顶点式的形式就能求出E的坐标,此小问难度中等;(3)在(2)中我们得出了A、B、E三点的坐标,根据两点间的距离公式依此可计算得出AB2=40,BE2=40,AE2=80,则AB2+BE2=AE2,那么△ABE就是直角三角形,其中∠ABE=90°,即证得AB⊥BE,此小问难度中等.【解答】解:(1)∵将△OAB绕点O按顺时针旋转90°,得到△ODC,∴△ODC≌△OAB, ...................2分∴OC=OB=2,OD=OA=6,∴C(2,0),D(0,6); ...................4分(2)∵抛物线过点A(﹣6,0),C(2,0),∴可设抛物线的解析式为y=a(x+6)(x﹣2)(a≠0), ................5分∵D(0,6)在抛物线上,∴6=﹣12a,解得a=﹣, ...................6分。

2013年赤峰市升学1

2013年赤峰市升学1

2013年赤峰市升学、毕业统一考试数学试卷一•选择题:[本大题共8小题,每小题3分,共24分•在每小题给出的4个选项中,只有一项是符合题目要求的]。

1. 4的算术平方根是:[]。

A. 2 B . -2 C . ± 2 D . 22. 点M( 1, -2 )关于原点对称的点的坐标是:[]。

A.( -1 , -2) B . ( 1, 2) C . (-1 , 2) D . (-2 , 1)。

3. 下列事件中,是随机事件的是:[]。

A.度量四边形的内角和为180°;B•通常加热到100C,水沸腾;C. 袋中有2个黄球,共五个球,随机摸出一个球是红球;D. 抛掷一枚硬币两次,第一次正面向上,第二次反面向上。

4. 下列图形中[如图1所示],既是轴对称图形,又是中心对称图形的是:[]。

5. 某市统计局发布2013年一季度全市完成GDP共317亿元,居全省第二位,这一数据用科学记数法表示为:[]。

9 10 11 10A. 31.7 X 10 元B . 3.17 X 10 元C . 3.17 X 10 元D . 31.7 X 10 元。

6 .如图所示,将等腰直角三角形虚线剪去顶角后,/ 1+Z 2=[]A . 225 ° ;B . 235°; C. 270°; D.与虚线的位置有关。

7.如图一把打开的雨伞可近似的看成一个圆锥,伞骨(面料下方能够把面料撑起来的支架)末端各点所在圆的直径AC长为12分米,伞骨AB长为9分米,那么制作这样的一把雨伞至少需要绸布面料为( )平方分米.B . 54二C . 27二 D. 128二(秒),/1 | —VJT图形的面积相等,则原长方形的面积为20•如图,依次连结第一个矩形各边的中点得到一个菱形,再依次连结菱形各边的中点得到 第二个8 •如图,AC BD 是O O 直径,且AC 丄BD ,动点P 从圆心0出发,沿 X D^O 路线作匀速运动,设运动时间 t 与t 之间的函数关系最恰当的是.填空题:[本大题共8小题,每小题3分,共24分]。

2013中考数学试题及答案(word完整版)(1)

2013中考数学试题及答案(word完整版)(1)

二O 一三年高中阶段教育学校统一招生考试(含初三毕业会考)数 学注意事项:1. 全套试卷分为A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟。

2. 在作答前,考生务必将自己的姓名,准考证号涂写在试卷和答题卡规定的地方。

考试结束,监考人员将试卷和答题卡一并收回。

3. 选择题部分必须使用2B 铅笔填涂;非选择题部分也必须使用0.5毫米黑色签字笔书写,字体工整,笔迹清楚。

4. 请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸,试卷上答题均无效。

5. 保持答题卡清洁,不得折叠、污染、破损等。

A 卷(共100分)第I 卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分.每小题均有四个选项.其中只有一项符合题目要求,答案涂在答题卡上) 1.2的相反数是( )(A)2 (B)-2 (C)21 (D)21-2.如图所示的几何体的俯视图可能是( )3.要使分式15-x 有意义,则x 的取值范围是( ) (A )x ≠1 (B )x>1 (C )x<1 (D )x ≠-1 4.如图,在△ABC 中,∠B=∠C,AB=5,则AC 的长为( )(A )2 (B )3 (C )4 (D )5 5.下列运算正确的是( )(A )31×(-3)=1 (B )5-8=-3(C)32-=6 (D)0)(-=020136.参加成都市今年初三毕业会考的学生约有13万人,将13万用科学计数法表示应为()(A)1.3×51010(B)13×4(C)0.13×51010(D)0.13×67.如图,将矩形ABCD沿对角线BD折叠,使点C和点'C重合,若AB=2,则'C D 的长为()(A)1(B)2(C)3(D)48.在平面直角坐标系中,下列函数的图像经过原点的是()5(A)y=-x+3 (B)y=x(C)y=x2(D)y=7x22--x+9.一元二次方程x2+x-2=0的根的情况是()(A)有两个不相等的实数根(B)有两个相等的实数根(C)只有一个实数根(D)没有实数根10.如图,点A,B,C在⊙O上,∠A=50°,则∠BOC的度数为()(A)40°(B)50°(C)80°(D)100°二.填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.不等式3x的解集为_______________.-12>12.今年4月20日在雅安市芦山县发生了7.0级的大地震,全川人民众志成城,抗震救灾,某班组织“捐零花钱,献爱心”活动,全班50名学生的捐款情况如图所示,则本次捐款金额的众数是__________元.13.如图,∠B=30°,若AB ∥CD ,CB 平分∠ACD, 则∠ACD=__________度.14.如图,某山坡的坡面AB=200米,坡角∠BAC=30°,则该山坡的高BC 的长为__________米. 三.解答题(本大题共6个小题,共54分) 15.(本小题满分12分,每题6分)(1)计算1260sin 2|3|)2(2-+-+-(2)解方程组⎩⎨⎧=-=+521y x y x16.(本小题满分6分)化简112)(22-+-÷-a a a a a17.(本小题满分8分)如图, 在边长为1的小正方形组成的方格纸上,将△ABC 绕着点A 顺时针旋转90°(1)画出旋转之后的△''C AB(2)求线段AC 旋转过程中扫过的扇形的面积18.(本小题满分8分)“中国梦”关乎每个人的幸福生活, 为进一步感知我们身边的幸福,展现成都人追梦的风采,我市某校开展了以“梦想中国,逐梦成都”为主题的摄影大赛,要求参赛学生每人交一件作品. 现将参赛的50件作品的成绩(单位:分)进行统计如下:(1)表中的x 的值为_______,y 的值为________(2)将本次参赛作品获得A 等级的学生一次用1A ,2A ,3A ,…表示,现该校决定从本次参赛作品中获得A 等级学生中,随机抽取两名学生谈谈他们的参赛体会,请用树状图或列表法求恰好抽到学生1A 和2A 的概率.19.(本小题满分10分)如图,一次函数11y x =+的图像与反比例函数2ky x=(k 为常数,且0≠k )的图像都经过点)2,(m A(1)求点A 的坐标及反比例函数的表达式; (2)结合图像直接比较:当0>x 时,1y 和2y 的大小.20.(本小题满分10分)如图,点B 在线段AC 上,点D ,E 在AC 同侧,90A C ∠=∠=o ,BD BE ⊥,AD BC =.(1)求证:CE AD AC +=;(2)若3AD =,5CE =,点P 为线段AB 上的动点,连接DP ,作DP PQ ⊥,交直线BE 与点Q ;i )当点P 与A ,B 两点不重合时,求DPPQ的值; ii )当点P 从A 点运动到AC 的中点时,求线段DQ 的中点所经过的路径(线段)长.(直接写出结果,不必写出解答过程)B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21. 已知点(3,5)在直线y ax b =+(,a b 为常数,且0a ≠)上,则5ab -的值为_____.22. 若正整数n 使得在计算(1)(2)n n n ++++的过程中,各数位均不产生进位现象,则称n 为“本位数”.例如2和30是“本位数”,而5和91不是“本位数”.现从所有大于0且小于100的“本位数”中,随机抽取一个数,抽到偶数的概率为_______.23. 若关于t 的不等式组0214t a t -≥⎧⎨+≤⎩,恰有三个整数解,则关于x 的一次函数14y x a =-的图像与反比例函数32a y x+=的图像的公共点的个数为_________. 24. 在平面直角坐标系xOy 中,直线y kx =(k 为常数)与抛物线2123y x =-交于A ,B 两点,且A 点在y 轴左侧,P 点的坐标为(0,4)-,连接,PA PB .有以下说法:○12PO PA PB =⋅;○2当0k >时,()()PA AO PB BO +-的值随k 的增大而增大;○3当k =时,2BP BO BA =⋅;○4PAB ∆面积的最小值为其中正确的是_______.(写出所有正确说法的序号)25. 如图,A B C ,,,为⊙O 上相邻的三个n 等分点,AB BC =,点E 在弧BC 上,EF 为⊙O 的直径,将⊙O 沿EF 折叠,使点A 与'A 重合,连接'EB ,EC ,'EA .设'EB b =,EC c =,'EA p =.先探究,,b c p 三者的数量关系:发现当3n =时, p b c =+.请继续探究,,b c p 三者的数量关系:当4n =时,p =_______;当12n =时,p =_______.(参考数据:sin15cos75==o o ,cos15sin 754==o o ) 二、解答题(本小题共三个小题,共30分.答案写在答题卡上)26.(本小题满分8分)某物体从P 点运动到Q 点所用时间为7秒,其运动速度v (米每秒)关于时间t (秒)的函数关系如图所示.某学习小组经过探究发现:该物体前进3秒运动的路程在数值上等于矩形AODB 的面积.由物理学知识还可知:该物体前n (37n <≤)秒运动的路程在数值上等于矩形AODB 的面积与梯形BDNM 的面积之和.根据以上信息,完成下列问题:(1)当37n <≤时,用含t 的式子表示v ; (2)分别求该物体在03t ≤≤和37n <≤时,运动的路程s (米)关于时间t (秒)的函数关系式;并求该物体从P 点运动到Q 总路程的710时所用的时间.27.(本小题满分10分)如图,⊙O 的半径25r =,四边形ABCD 内接圆⊙O ,AC BD ⊥于点H ,P 为CA 延长线上的一点,且PDA ABD ∠=∠.(1)试判断PD 与⊙O 的位置关系,并说明理由:(2)若3t a n 4A D B ∠=,PA AH =,求BD 的长; (3)在(2)的条件下,求四边形ABCD 的面积.28.(本小题满分12分)在平面直角坐标系中,已知抛物线212y x bx c =-++(,b c 为常数)的顶点为P ,等腰直角三角形ABC 的定点A 的坐标为(0,1)-,C 的坐标为(4,3),直角顶点B 在第四象限.(1)如图,若该抛物线过 A ,B 两点,求该抛物线的函数表达式;(2)平移(1)中的抛物线,使顶点P 在直线AC 上滑动,且与AC 交于另一点Q . i )若点M 在直线AC 下方,且为平移前(1)中的抛物线上的点,当以M P Q 、、 三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M 的坐标;ii)取BC的中点N,连接,NP BQ.试探究PQNP BQ是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.二O 一三年高中阶段教育学校统一招生考试数学答案 A 卷1~5:BCADB 6~10: ABCAD11、 x >2 12、10 13、60° 14、100 15.(1)4; (2)⎩⎨⎧-==12y x 16. a17.(1)略 (2)π18.(1)4, 0.7 (2)树状图(或列表)略,P=61122= 19.(1)A(1,2) ,xy 2=(2)当0<x<1时,21y y <; 当x=1时,21y y =; 当x>1时,21y y >;20.(1)证△ABD ≌△CEB →AB=CE ;(2)如图,过Q 作QH ⊥BC 于点H ,则△AD P ∽△HPQ ,△BHQ ∽△BCE , ∴QHAPPH AD =, EC QH BC BH =;设AP=x ,QH=y ,则有53yBH = ∴BH=53y ,PH=53y+5x - ∴yxx y=-+5533,即0)53)(5(=--x y x 又∵P 不与A 、B 重合,∴ ,5≠x 即05≠-x , ∴053=-x y 即x y 53=∴53==y x PQ DP(3)3342 B 卷21.31- 22.117 23.3 24.③④ 25.c b ±2, c b 21322-+或c b --226 26. (1)42-=t v ;(2)S=⎩⎨⎧≤<-≤≤)73(42)30(22t t t t t , 6秒 27.(1)如图,连接DO 并延长交圆于点E ,连接AE∵DE 是直径,∴∠DAE=90°,∴∠E +∠ADE=90°∵∠PDA =∠ADB =∠E∴∠PDA +∠ADE=90°即PD ⊥DO∴PD 与圆O 相切于点D(2) ∵tan ∠ADB=43∴可设AH=3k,则DH=4k∵PA AH =∴PA=k )334(-∴PH=k 34∴∠P=30°,∠PDH=60°∴∠BDE=30°连接BE ,则∠DBE=90°,DE=2r=50∴BD=D E ·cos30°=325(3)由(2)知,BH=325-4k ,∴HC=34(325-4k) 又∵PC PA PD ⨯=2 ∴)]4325(3434[)334()8(2k k k k -+⨯-= 解得k=334-∴AC=7324)4325(343+=-+k k ∴S=23175900)7324(3252121+=+⨯⨯=∙AC BD 28.(1)12212-+-=x x y (2)M 的坐标是(1-5,-5-2)、(1+5,5-2)、(4,-1)、(2,-3)、(-2,-7)(3)PQ NP BQ +的最大值是510。

内蒙古赤峰市2014年中考数学试题(word版,含答案)

内蒙古赤峰市2014年中考数学试题(word版,含答案)

2014年赤峰市初中毕业、升学统一考试试卷数学温馨提示:1.本试卷卷面分值150分,共8页,考试时间120分钟。

2.答题前考生务必将姓名、考生号、座位号填写在试卷和答题卡的相应位置上,并仔细阅读答题卡上的“注意事项”。

3.答题时,请将答案填涂在答题卡上,写在本试卷上视为无效。

4.考试结束后,将本试卷和答题卡一并交回。

一、选择题(每小题给出的选项中只有一个符合题意,请将正确答案序号按要求涂在答题卡指定位置,每小题3分,共24分)2. (2014内蒙古赤峰市,2,3分)下面几何体中,主视图是三角形的是【答案】C3. (2014内蒙古赤峰市,3,3分)赤峰市改革开放以来经济建设取得巨大成就,2013年全市GDP 总值为1686.15亿元,将1686.15亿元用科学记数法表示应为A. 216861510⨯元B. 416.861510⨯元C. 81.6861510⨯元D. 111.6861510⨯元 【答案】D【答案】B5. (2014内蒙古赤峰市,5,3分)如图(1),把一块含有30°角(∠A=30°)的直角三角板ABC 的直角顶点放在矩形桌面CDEF 的一个顶点C 处,桌面的另一个顶点F 与三角板斜边相交于点F ,如果∠1=40°,那么∠AFE=6. (2014内蒙古赤峰市,6,3分)如图(2),AB是⊙O的直径,C、D是⊙O上两点,CD⊥AB,若∠7. (2014内蒙古赤峰市,7,3分)化简22a b abb a--结果正确的是8. (2014内蒙古赤峰市,8,3分)如图(3),一根长为5米的竹竿AB斜立于墙AC的右侧,底端B与墙角C的距离为3米,当竹竿顶端A下滑x米时,底端B便随着向右滑行y米,反映y与x变化关系的大致图象是【答案】A【答案】1 211. (2014内蒙古赤峰市,几个?(结果保留15. (2014内蒙古赤峰市,15,3分)直线l 过点()2,0M -,该直线的解析式可以写为?(只写出一个即可)【答案】2y x =+ (不唯一,写对即可)16. (2014内蒙古赤峰市,16,3分)平移小菱形◇可以得到美丽的“中国结”图案,下面四个图案是由◇平移后得到的类似“中国结”的图案,按图中规律,第20个图案中,小菱形的个数是多少?【答案】800个三、解答题(在答题卡上解答,答在本试卷上无效,解答时要写出必要的文字说明、证明过程或演算步骤,共10题,满分102分)17.(2014内蒙古赤峰市,17,6分)计算:(118sin 454π-⎛⎫- ⎪⎝⎭【答案】原式=1842+∙- ………………(3分) =3- ……………………………………(6分) 评分阈值:1分18.(2014内蒙古赤峰市,18,6分)求不等式组()4134523x x x x ⎧++>⎪⎨--≤⎪⎩ ① ② 的正整数解.【答案】解:由(1)得443x x ++> ∴73x >-……………………(2分) 由(2)得312210x x -<- ∴2x ≤ ……………………(4分) ∴不等式组的解集为722x -<≤ ……………………(5分) 评分阈值:1分浪费”活动.为此,学校学生会对九年级八班某日午饭浪费饭菜情况进行调查,调查内容分为四种:A.饭和菜全部吃光;B.有剩饭但菜吃光;C.饭吃光但菜有剩;D.饭和菜都有剩.学生会根据统计结果,绘制如下两个统计图,根据统计图提供的信息回答下列问题:(1)九年级八班共有多少学生?(2)计算图(10)中B所在扇形的圆心角的度数,并补全条形统计图;(3)光明中学有学生2000名,请估计这顿午饭有剩饭的学生人数,按每人平均10克米饭计算,这顿午饭将浪费多少千克米饭?∠tan AFO1.28(米)………………评分阈值:1分22.(2014内蒙古赤峰市,22,10分)某养殖专业户计划购买甲、乙两种牲畜.已知乙种牲畜的单价是甲种牲畜单价的2倍多200元,买3头甲种牲畜和1头乙种牲畜共需5700元.(1)甲、乙两种牲畜的单价各是多少元?(2)若购买以上两种牲畜50头,共需资金9.4万元,求甲、乙两种牲畜各购买多少头?(3)相关资料表明:甲、乙两种牲畜的成活率分别为95%和99%,若使这50头牲畜的成活率不低于97%且购买的总费用最低,应如何购买?【答案】解:(1)设甲种牲畜的单价是x元依题意:3x+2x+200=5700 …………(1分)解得:x=1100 2x+200=2400 ………………(2分)即甲种牲畜的单价是1100元,乙种牲畜的单价是2400元…………(3分)(2)设购买甲种牲畜y头依题意:1100y+2400(50-y)=94000 …………(4分)解得:y =20 (50-y )=30 ………………(5分) 即甲种牲畜购买20头,乙种牲畜购买30头 …………(6分)(3)设费用为u 购买甲种牲畜t 头则u =1100t +240(50-t ) ………………(7分) =-1300t +120000依题意:()9599975050100100100t t +-≥⨯ …………(8分) 解得:25t ≤∵k =-1300<0 ∴u 随t 增大而减小………………(9分)∴当t =25时费用最低,所以各购买25头时满足条件………………(10分) 评分阈值:1分证明:延长AE交DC于点F∵AB∥DC∴∠EAB=∠EFD…………………………………………(5分) 又∵∠AED是△EFD的外角∴∠AED=∠EDF+∠EFD…………………………………(7分) =∠EAB+∠EDC…………………………………(8分) (2)P点在区域①时:∠EPF=3600 -(∠PEB+∠P FC) …………………………(9② 连接EC ,证明EC 是⊙B 的切线;②在BE 上是否存在一点P ,使PB=PC=PE=PO ,若存在,求P 点坐标,并写出以P 为圆心,以PB 为半径的⊙P 的方程;若不存在,说明理由.【答案】解:(1)①方程为:()2231x y -+=……………………… (2分)②方程为:()()22123x y +++=………………(4分) (2)①证明∵OB=BC BD ⊥OC ∴∠OBD=∠CBD ∵BE=BE∴△BOE ≌△BCE……………………………………(6分) ∵AO ⊥OE∴∠BCE=∠BOE=900∴EC 是⊙B 的切线…………………………………(7分)评分阈值:1分26.(2014内蒙古赤峰市,26,14分)如图(17),抛物线()20y ax bx c a =++≠与x 轴交于点()1,0A -,()3,0B 两点,与y 轴交于点()0,3C -.(1)求该抛物线的解析式及顶点M 的坐标; (2)求△BCM 面积与△ABC 面积的比;(3)若P 是x 轴上一个动点,过P 作射线PQ ∥AC 交抛物线于点Q ,随着P 点的运动,在抛物线上是否存在这样的点Q ,使以A 、P 、Q 、C 为顶点的四边形为平行四边形?若存在请求出Q 点的坐标;若不存在,请说明理由.ABC :S 3:61:2BCM S ∆∆== ………………(9分)(3)存在………………(10分)①当Q 点在x 轴下方时,作QE ⊥x 轴于E ∵AC ∥PQ 且AC=PQ ∴OC=EQ=32323x x -=-- 解得:10x =(舍) 22x = ∴()2,3Q - …………(11分)②当Q 点在x 轴上方时,作QF ⊥x 轴于F∵AC ∥PQ 且AC=PQ ∴Rt △OAC ≌Rt △FPQ ∴OC=FQ=32323x x =-- 解得:11x = 21x =∴()1Q 或()1Q +…………(13分)综上,满足条件的Q 点为()2,3-或()1或()1+…………(14分) 评分阈值:2分2014年赤峰市初中毕业、升学统一考试试卷数学参考答案及评分标准三、解答题(如有不同于本答案的正确答案,请参照本答案赋分标准给分)17.解:原式=1842+∙- ………………(3分) =3- ……………………………………(6分) 评分阈值:1分18.解:由(1)得443x x ++> ∴73x >-……………………(2分) 由(2)得312210x x -<- ∴2x ≤ ……………………(4分) ∴不等式组的解集为722x -<≤ ……………………(5分) 评分阈值:1分∴∠E=∠ACF ………………(10分)评分阈值:1分21.在Rt △CBE 中,∠CEB=30°,BC=11 ∴EC=22 ………………(2分)由勾股定理19EB =≈ …………(4分) 在Rt △AOF 中,∠AFO=52°,OF=18+19+26=63 且0tan 52 1.28= …………(6分)∴OA=tan OF AFO ∠ …………(8分) =63×1.28≈81(米)………………(10分) 评分阈值:1分22.解:(1)设甲种牲畜的单价是x 元依题意:3x +2x +200=5700 …………(1分)解得:x =1100 2x +200=2400 ………………(2分)即甲种牲畜的单价是1100元,乙种牲畜的单价是2400元 …………(3分) (2)设购买甲种牲畜y 头依题意:1100y +2400(50-y )=94000 …………(4分) 解得:y =20 (50-y )=30 ………………(5分) 即甲种牲畜购买20头,乙种牲畜购买30头 …………(6分)(3)设费用为u 购买甲种牲畜t 头则u =1100t +240(50-t ) ………………(7分) =-1300t +120000依题意:()9599975050100100100t t +-≥⨯ …………(8分) 解得:25t ≤∵k =-1300<0 ∴u 随t 增大而减小………………(9分)∴当t =25时费用最低,所以各购买25头时满足条件………………(10分) 评分阈值:1分25.解:(1)①方程为:()2231x y -+=……………………… (2分)②方程为:()()22123x y +++=………………(4分) (2)①证明∵OB=BC BD ⊥OC ∴∠OBD=∠CBD ∵BE=BE∴△BOE ≌△BCE……………………………………(6分) ∵AO ⊥OE∴∠BCE=∠BOE=900∴EC 是⊙B 的切线…………………………………(7分)评分阈值:1分ABC :S 3:61:2BCM S ∆∆== ………………(9分)(3)存在………………(10分)①当Q 点在x 轴下方时,作QE ⊥x 轴于E ∵AC ∥PQ 且AC=PQ ∴OC=EQ=32323x x -=-- 解得:10x =(舍) 22x = ∴()2,3Q - …………(11分)②当Q 点在x 轴上方时,作QF ⊥x 轴于F∵AC ∥PQ 且AC=PQ ∴Rt △OAC ≌Rt △FPQ ∴OC=FQ=32323x x =-- 解得:11x = 21x =∴()1Q 或()1Q +…………(13分)综上,满足条件的Q 点为()2,3-或()1或()1+…………(14分) 评分阈值:2分。

2013-2018年内蒙古赤峰市中考数学试题汇编(含参考答案与解析)

2013-2018年内蒙古赤峰市中考数学试题汇编(含参考答案与解析)

【中考数学试题汇编】2013—2018年内蒙古赤峰市中考数学试题汇编(含参考答案与解析)1、2013年内蒙古赤峰市中考数学试题及参考答案与解析 (2)2、2014年内蒙古赤峰市中考数学试题及参考答案与解析 (21)3、2015年内蒙古赤峰市中考数学试题及参考答案与解析 (45)4、2016年内蒙古赤峰市中考数学试题及参考答案与解析 (69)5、2017年内蒙古赤峰市中考数学试题及参考答案与解析 (89)6、2018年内蒙古赤峰市中考数学试题及参考答案与解析 (112)2013年内蒙古赤峰市中考数学试题及参考答案与解析一.选择题:(每小题给出的四个选项中,只有一个正确选项。

每小题3分,共24分)1.0是( )A B .1 C D .﹣1 2.下列等式成立的是( )A .1||1a a ÷=B a =C .22a a a b b b÷= D .a ﹣2a=﹣a 3.如图,4×4的方格中每个小正方形的边长都是1,则S 四边形ABCD 与S 四边形ECDF 的大小关系是( )A .S 四边形ABCD =S 四边形ECDFB .S 四边形ABCD <S 四边形ECDFC .S 四边形ABCD =S 四边形ECDF +1 D .S 四边形ABCD =S 四边形ECDF +24.如图所示,几何体的俯视图是( )A .B .C .D .5.学校教学楼从每层楼到它上一层楼都要经过20级台阶,小明从一楼到五楼要经过的台阶数是( )A .100B .80C .50D .1206.目前,我国大约有1.3亿高血压病患者,占15岁以上总人口数的10%﹣15%,预防高血压不容忽视.“千帕kpa”和“毫米汞柱mmHg”都是表示血压的单位,前者是法定的国际计量单位,而后者则是过去一直广泛使用的惯用单位.请你根据下表所提供的信息,判断下列各组换算正确的是( )A .13kpa=100mmHgB .21kpa=150mmHgC .8kpa=60mmHgD .22kpa=160mmHg7.从某校九年级中随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分,4分,5分.将测量的结果制成如图所示的扇形统计图和条形统计图,根据图中提供的信息,这些学生分数的中位数是( )A .1B .2C .3D .48.如图,ABCD 是平行四边形,AB 是⊙O 的直径,点D 在⊙O 上AD=OA=1,则图中阴影部分的面积为(A .4B .46π+C .26π-D 二、填空题(每小题3分,共计24分)9.一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即1.496×108千米,以亿千米为单位表示这个数是 亿千米.10.请你写出一个大于0而小于1的无理数 .11.一艘轮船顺水航行的速度是20海里/小时,逆水航行的速度是16海里/小时,则水流的速度是 海里/小时.12.样本数据3,2,5,a ,4的平均数是3,则a= .13.已知圆锥底面半径为5cm ,高为12cm ,则它的侧面展开图的面积是 cm 2.14.如图,矩形ABCD 中,E 是BC 的中点,矩形ABCD 的周长是20cm ,AE=5cm ,则AB 的长 cm .15.如图,在平面直角坐标系中,⊙O 的半径为1,∠BOA=45°,则过A 点的双曲线解析式是 .16.在等腰三角形中,马彪同学做了如下研究:已知一个角是60°,则另两个角是唯一确定的(60°,60°),已知一个角是90°,则另两个角也是唯一确定的(45°,45°),已知一个角是120°,则另两个角也是唯一确定的(30°,30°).由此马彪同学得出结论:在等腰三角形中,已知一个角的度数,则另两个角的度数也是唯一确定的.马彪同学的结论是的.(填“正确”或“错误”)三、解答题(解答时要写出必要的文字说明、证明过程或演算步骤,共9个题,满分102分)17.(12分)(1)计算:11sin60|12-⎛⎫︒-+ ⎪⎝⎭;(2)化简:(a+3)2﹣(a﹣3)2.18.(10分)如图,在平面直角坐标系中,已知点A(0,3),B(2,4),C(4,0),D(2,﹣3),E(0,﹣4).写出D,C,B关于y轴对称点F,G,H的坐标,并画出F,G,H点.顺次而平滑地连接A,B,C,D,E,F,G,H,A各点.观察你画出的图形说明它具有怎样的性质,它象我们熟知的什么图形?19.(10分)如图,数学实习小组在高300米的山腰(即PH=300米)P处进行测量,测得对面山坡上A处的俯角为30°,对面山脚B处的俯角60°.已知tan∠P,H,B,C,A在同一个平面上,点H,B,C在同一条直线上,且PH⊥HC.(1)求∠ABP的度数;(2)求A,B两点间的距离.20.(10分)甲、乙两位同学玩摸球游戏,准备了甲、乙两个口袋,其中甲口袋中放有标号为1,2,3,4,5的5个球,乙口袋中放有标号为1,2,3,4的4个球.游戏规则:甲从甲口袋摸一球,乙从乙口袋摸一球,摸出的两球所标数字之差(甲数字﹣乙数字)大于0时甲胜,小于0时乙胜,等于0时平局.你认为这个游戏规则对双方公平吗?请说明理由.若不公平,请你对本游戏设计一个对双方都公平的游戏规则.21.(10分)如图,直线L经过点A(0,﹣1),且与双曲线c:myx交于点B(2,1).(1)求双曲线c及直线L的解析式;(2)已知P(a﹣1,a)在双曲线c上,求P点的坐标.22.(12分)某校家长委员会计划在九年级毕业生中实施“读万卷书,行万里路,了解赤峰,热爱家乡”主题活动,决定组织部分毕业生代表走遍赤峰全市12个旗、县、区考察我市创建文明城市成果,远航旅行社对学生实行九折优惠,吉祥旅行社对20人以内(含20人)学生旅行团不优惠,超过20人超出的部分每人按八折优惠.两家旅行社报价都是2000元/人.服务项目、旅行路线相同.请你帮助家长委员会策划一下怎样选择旅行社更省钱.23.(12分)如图,已知MN是⊙O的直径,直线PQ与⊙O相切于P点,NP平分∠MNQ.(1)求证:NQ⊥PQ;(2)若⊙O的半径R=3,NP=NQ的长.24.(12分)如图,已知△OAB的顶点A(﹣6,0),B(0,2),O是坐标原点,将△OAB绕点O 按顺时针旋转90°,得到△ODC.(1)写出C,D两点的坐标;(2)求过A,D,C三点的抛物线的解析式,并求此抛物线顶点E的坐标;(3)证明AB⊥BE.25.(14分)如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.参考答案与解析一.选择题:(每小题给出的四个选项中,只有一个正确选项。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

内蒙古赤峰市2013年中考数学试卷
一.选择题:(每小题给出的四个选项中,只有一个正确选项,请将正确选项的标号填入题后的括号内.每小题3分,共24分)

=1 .
=a
÷=
3.(3分)(2013•赤峰)如图,4×4的方格中每个小正方形的边长都是1,则S四边形ABCD与S四边形ECDF 的大小关系是()
4.(3分)(2013•赤峰)如图所示,几何体的俯视图是( )


5.(3分)(2013•赤峰)学校教学楼从每层楼到它上一层楼都要经过20级台阶,小明从一楼到五楼
6.(3
分)(2013•赤峰)目前,我国大约有1.3亿高血压病患者,占15岁以上总人口数的10%﹣15%,预防高血压不容忽视.“千帕kpa ”和“毫米汞柱mmHg ”都是表示血压的单位,前者是法定的国际计量单位,而后者则是过去一直广泛使用的惯用单位.请你根据下表所提供的信息,判断下列各组换算

7.(3分)(2013•赤峰)从某校九年级中随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分,4分,5分.将测量的结果制成如图所示的扇形统计图和条形统计图,根据图中提供的信息,这些学生分数的中位数是()
8.(3分)(2013•赤峰)如图,ABCD是平行四边形,AB是⊙O的直径,点D在⊙O上AD=OA=1,则图中阴影部分的面积为(
..
=
××.
二、填空题(请把答案填在题中横线上,每小题3分,共计24分)
9.(3分)(2013•赤峰)一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即1.496×108千米,以亿千米为单位表示这个数是 1.496亿千米.
10.(3分)(2013•赤峰)请你写出一个大于0而小于1的无理数﹣1.
的无理数有﹣,
故答案为:
11.(3分)(2013•赤峰)一艘轮船顺水航行的速度是20海里/小时,逆水航行的速度是16海里/小时,则水流的速度是2海里/小时.
=2
12.(3分)(2013•赤峰)样本数据3,2,5,a,4的平均数是3,则a=1.
13.(3分)(2013•赤峰)已知圆锥底面半径为5cm,高为12cm,则它的侧面展开图的面积是65πcm2.
∴圆锥的母线长为:=13cm
14.(3分)(2013•赤峰)如图,矩形ABCD中,E是BC的中点,矩形ABCD的周长是20cm,AE=5cm,则AB的长为4cm.
BE=BC=
BE=BC=

15.(3分)(2013•赤峰)如图,在平面直角坐标系中,⊙O的半径为1,∠BOA=45°,则过A点的
双曲线解析式是y=.
y=(

()

×,


16.(3分)(2013•赤峰)在等腰三角形中,马彪同学做了如下研究:已知一个角是60°,则另两个角是唯一确定的(60°,60°),已知一个角是90°,则另两个角也是唯一确定的(45°,45°),已知一个角是120°,则另两个角也是唯一确定的(30°,30°).由此马彪同学得出结论:在等腰三角形中,已知一个角的度数,则另两个角的度数也是唯一确定的.马彪同学的结论是错误的.(填“正确”或“错误”)
三、解答题(解答时要写出必要的文字说明、证明过程或演算步骤,共9个题,满分102分)
17.(12分)(2013•赤峰)(1)计算:sin60°﹣|1﹣|+﹣1
(2)化简:(a+3)2﹣(a﹣3)2.
﹣(﹣
+1+2
18.(10分)(2013•赤峰)如图,在平面直角坐标系中,已知点A(0,3),B(2,4),C(4,0),D(2,﹣3),E(0,﹣4).写出D,C,B关于y轴对称点F,G,H的坐标,并画出F,G,H点.顺次而平滑地连接A,B,C,D,E,F,G,H,A各点.观察你画出的图形说明它具有怎样的性质,它象我们熟知的什么图形?
19.(10分)(2013•赤峰)如图,数学实习小组在高300米的山腰(即PH=300米)P处进行测量,测得对面山坡上A处的俯角为30°,对面山脚B处的俯角60°.已知tan∠ABC=,点P,H,B,
C,A在同一个平面上,点H,B,C在同一条直线上,且PH⊥HC.
(1)求∠ABP的度数;
(2)求A,B两点间的距离.
ABC=
PBH=300m
20.(10分)(2013•赤峰)甲、乙两位同学玩摸球游戏,准备了甲、乙两个口袋,其中甲口袋中放有标号为1,2,3,4,5的5个球,乙口袋中放有标号为1,2,3,4的4个球.游戏规则:甲从甲口袋摸一球,乙从乙口袋摸一球,摸出的两球所标数字之差(甲数字﹣乙数字)大于0时甲胜,小于0时乙胜,等于0时平局.你认为这个游戏规则对双方公平吗?请说明理由.若不公平,请你对本游戏设计一个对双方都公平的游戏规则.
=,=,

21.(10分)(2013•赤峰)如图,直线L经过点A(0,﹣1),且与双曲线c:y=交于点B(2,1).
(1)求双曲线c及直线L的解析式;
(2)已知P(a﹣1,a)在双曲线c上,求P点的坐标.
y=
坐标代入得:

22.(12分)(2013•赤峰)某校家长委员会计划在九年级毕业生中实施“读万卷书,行万里路,了解赤峰,热爱家乡”主题活动,决定组织部分毕业生代表走遍赤峰全市12个旗、县、区考察我市创建文明城市成果,远航旅行社对学生实行九折优惠,吉祥旅行社对20人以内(含20人)学生旅行团不优惠,超过20人超出的部分每人按八折优惠.两家旅行社报价都是2000元/人.服务项目、旅行路线相同.请你帮助家长委员会策划一下怎样选择旅行社更省钱.
23.(12分)(2013•赤峰)如图,已知MN是⊙O的直径,直线PQ与⊙O相切于P点,NP平分∠MNQ.(1)求证:NQ⊥PQ;
(2)若⊙O的半径R=3,NP=,求NQ的长.
MNP==,
×.
24.(12分)(2013•赤峰)如图,已知△OAB的顶点A(﹣6,0),B(0,2),O是坐标原点,将△OAB绕点O按顺时针旋转90°,得到△ODC.
(1)写出C,D两点的坐标;
(2)求过A,D,C三点的抛物线的解析式,并求此抛物线顶点E的坐标;
(3)证明AB⊥BE.

(﹣
x(
25.(14分)(2013•赤峰)如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.
(1)求证:AE=DF;
(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;
(3)当t为何值时,△DEF为直角三角形?请说明理由.
AC=×t=.。

相关文档
最新文档