试论初中数学数形结合思想和例题的研究
初中数学数形结合思想教学研究与案例分析

初中数学数形结合思想教学研究与案例分析摘要:随着教育改革的深入,大量的实践证明,数形结合思维不仅是一种教学理念,同时也是一种有效的学习手段,数形结合思想的出现为我国初中数学教学打开了一条崭新的思路,它能够有效地将抽象的数学知识进行转换,从而帮助学生更好地理解,不断提高学生的数学学习质量。
在初中数学阶段,是一个关键的转折点,在此期间,学生的学习方式与能力都得到了提高,运用数形结合思想进行教学,可以有效地提高学生的数学学习水平。
关键词:初中数学;数形结合思想;教学研究;案例分析最近几年,以数形结合思维为一种高效的数学学习手段,在初中数学中被普遍采用,它可以使抽象的数学知识更为具体,方便学生的学习,使其获得更好的学习效果。
所以,在初中数学教学中,要正确引导学生运用数形结合思维进行学习,既可以解决问题,又可以激发学生的学习热情,有利于提高教学质量。
一、初中数学教学的现状分析1.无法掌握、理解好题意在初中数学教学中,由于受应试教育的影响,学校和老师过分强调学生的学业成绩和升学率,使老师们的教学方式过于注重提高学生的成绩,从而导致教师过分强调提高学生的学习成绩,认为提高学生的学习效率,提高他们的解题能力,在这种情况下,不但不能提高他们的数学能力,反而会阻碍他们的思维培养。
2.抽象与实际背离在当前的初中数学教学中,遇到抽象的数学问题时,往往不能将问题和现实联系起来,从而导致数学知识与现实脱节,从而导致学生在数学上的气馁,从而影响到他们的学习热情。
二、数形结合思想的重要性分析数形结合,是一种将数学问题变成学生们熟悉的数学问题的一种方式,它可以让学生对数学的概念进行更直观的了解,数形结合是一种解决问题的有效途径,利用数形结合,同学们可以用图形来找到不同的数学条件,并找到有效的解决办法,这样一来,学生通过对数学知识的好奇心和对数学问题的探索,使他们能积极地进行学习和探索[1]。
三、初中数学数形结合思想教学研究应用案例分析1.利用数形结合帮助学生理解和掌握数学概念以及公式在初中数学中,学生要掌握大量的数学概念和公式,对于提高学生的解题能力和逻辑思考能力具有很大的作用,因此,对数学概念和公式的理解是非常重要的。
数形结合思想在初中数学教学中的应用优秀获奖科研论文-2

数形结合思想在初中数学教学中的应用优秀获奖科研论文数形结合是一种非常重要的数学思想方法,也是数学解题中要求掌握的重要思想方法之一,在数学学习中有着重要的地位.数形结合,有利于学生对数学知识的理解,落实新课标的要求,即通过“以形助数,以数解形”,能够将复杂问题简单化,抽象问题具体化.很多数学问题利用数形结合思想来解决,能够达到化难为易的目的.在初中数学教学中,教师应重视数形结合思想,从而提高学生分析问题和解决问题的能力.下面结合自己的教学实践就数形结合思想在初中数学教学中的应用谈点体会.一、数形结合思想在集合问题中的应用在教学中,教师单一地讲解集合问题,很难使学生想象出各数集之间的关联性,而利用图示法,能够解决抽象的集合问题,让学生对集合问题一目了然.在图形中,一般利用圆来表示集合,两集合有公共的元素则两圆相交,两圆相离则表示没有公共的元素.例如,在学校开展兴趣班时,初中某班共有28个学生,其中有15人参加音乐兴趣班,有8人参加舞蹈兴趣班,有14人参加书法兴趣班,同时参加音乐和舞蹈兴趣班的有3人,同时参加音乐和书法兴趣班的有3人,没有人同时参加三个兴趣班,问:同时参加舞蹈班和书法兴趣班的有多少人?只参加音乐兴趣班的有多少人?图1解析:如图1,设A={参加音乐兴趣班的学生},B={参加舞蹈兴趣班的学生},C={参加书法兴趣班的学生},同时参加舞蹈和书法兴趣班的学生有x人.由题意可知,card(A交B)=3.card(A交C)=3,card(B交C)=x,则15+8+14-3-3-x=28,得x=3.因此,同时参加舞蹈和书法班的有3人,只参加音乐兴趣班的有15-3-3=9人.这样,利用图示法,可以使复杂的数学问题变得简单化和具体化,降低做题难度,有助于激发学生的学习兴趣.二、数形结合思想在函数问题中的应用函数是整个数学的重点,关于函数类型的题也数不胜数.利用函数求极值的问题是常见的题型,以数辅形,需要将图象中的数量关系整理清楚,以函数的形式表达出来,把握函数与图形之间的关系,达到快速解决数学问题的目的,体现数形结合在解题中的重要性.初中生对一次函数和二次函数的图象有着很深的了解,因此在面对这类函数问题时,往往可以根据函数图象来解答.这样,不但可以加深学生对基本概念的理解,还可以加强学生对这些基本知识的灵活运用.例如,当0 解析:方程中含有两个未知数,无法直接求解,可以转化成两个函数问题,图2求解的个数就是求函数图象的交点个数.由|1-x2|=kx+k,可构造y=|1-x2|和y=kx+k,如图2.所以原方程解的个数为3个.这样,复杂的函数问题,利用图形进行展示,能够直接得出问题的答案,强化了学生的认知,深化了学生的思维训练,提升了教学效率.三、数形结合思想在概率问题中的应用概率作为初中数学教学中的重点内容,一直是教学的难点.许多概率问题在思考中都存在着抽象,如果借助于坐标平面或数学模型的问题,以形助数,运用数形结合思想,就能够帮助学生迅速找到问题的切入点,优化解题过程,提高解题速度.总之,在初中数学教学中,数形结合思想既是一种教学手段,又是一种解题方法.运用数形结合思想,能够拓宽学生的思维;运用数形之间的关联性,以图形助数学解题,能够强化学生对数学本质的认知和了解,提高学生数学思维的灵活性、根基性等.教师应适当运用数形结合思想开展教学活动,从学生的角度出发,培养学生的综合技能和素质,提升初中数学教学质量,确保学生全面发展.。
数形结合思想在初中数学解题中的应用

数形结合思想在初中数学解题中的应用数形结合思想是指在解决数学问题时,通过将数学概念与几何图形相互结合,相互转化和应用的思考方法。
在初中数学的教学中,数形结合思想被广泛地应用。
本文将从初中数学的各个章节对其应用进行探讨。
1. 直线与圆在初中数学的直线与圆章节中,学生需要掌握直线与圆之间的基本关系,如切线、割线等,并学习如何运用这些关系解决问题。
数形结合思想在这一章节的应用体现在,通过将直线与圆相互结合,将抽象的数学概念转化为具体的几何图形,从而帮助学生更好地理解题意和解决问题。
例如,解决“过圆O外一点P作切线,过点P作另一条直线割圆于A、B两点,连接OP 并延长交圆于C点,求证:∠OAC=∠OBC”的问题时,我们可以通过画图,在圆上标出切线和割线,将几何图形与数学概念相互联系来解决问题。
2. 三角函数在初中数学的三角函数章节中,学生需要学习正弦、余弦、正切等三角函数的基本概念和运用。
例如,在解决“证明:sin2A+cos2A=1”的问题时,我们可以画出一个以A为顶点的直角三角形,将正弦、余弦与三角形的边相互对应,从而帮助学生理解三角函数的定义和性质。
3. 平面向量例如,在解决“ABCD为平行四边形,设向量AB=a,向量AD=b,求向量AC的坐标表示”的问题时,我们可以画出平行四边形ABCD的几何图形,并通过图形将向量的定义和运算法则转化为数学表示式。
4. 二次函数例如,在解决“已知二次函数y=x²+px+q的图像过点(1,3),且在x轴上的零点为-2和3,求p、q”的问题时,我们可以通过画出二次函数的图像,并通过图像求出零点和顶点,进而求出p、q的值。
结语数形结合思想在初中数学的教学中具有重要的应用价值,可以帮助学生更好地理解数学知识,提高解题能力和思维能力。
教师在教学中应该注重将数学概念与几何图形相互联系,设计具体、形象的教学案例,引导学生积极思考、用图解题,从而达到提高教学质量和学生学习水平的目的。
初中数学数形结合解题思想方法探究

初中数学数形结合解题思想方法探究数学是一门精确的科学,其中涉及到的数形结合问题是数学中的一个重要内容。
解决数形结合问题的方法有很多,下面将介绍三种常用的解题思想和方法。
一、几何思想几何思想是解决数形结合问题的一种重要思想。
它通过几何图形的性质和关系来解决问题。
解题时,可以先根据题目中给出的条件画出几何图形,并找出几何图形之间的性质和关系。
然后利用这些性质和关系进行推理和计算,最终得到问题的解答。
有一个矩形,它的周长是30cm,面积是100cm²,求矩形的长和宽。
解:设矩形的长为x,宽为y。
根据题目中的条件,可以得到以下两个方程:2(x+y) = 30xy = 100利用几何思想,可以发现矩形的周长等于长和宽的两倍之和,即2(x+y),所以可以得到第一个方程。
通过这两个方程,可以解得x=10,y=10。
所以矩形的长和宽分别是10cm。
二、代数思想代数思想是解决数形结合问题的另一种重要思想。
它通过建立代数模型来解决问题。
解题时,可以将问题中的未知量用代数符号表示出来,并建立相应的方程或不等式。
然后利用代数的方法进行运算和计算,得到问题的解答。
有一个数字,它是一个两位数,相反的两个数字之差是36,这个数字是多少?利用代数思想,可以将相反的两个数字表示成10x+y和10y+x。
它们之差是36,所以可以得到上述方程。
三、逻辑思想有5个小方块,它们的边长分别为1cm、2cm、3cm、4cm、5cm,将这些小方块拼成一个正方形,这个正方形的边长是多少?解:根据题目中给出的条件,可以知道这个正方形一共有5个小方块,而且边长依次增加1cm。
通过观察和推理,可以得到以下结论:1. 正方形的边长一定大于等于最长的小方块的边长,即大于等于5cm。
2. 正方形的边长一定小于等于所有小方块的边长之和,即小于等于1+2+3+4+5=15cm。
根据以上两个结论,可以得到正方形的边长的范围是5cm到15cm之间。
再观察题目中给出的条件,可以发现正方形的边长的值一定在这个范围中。
探讨关于初中数学中数形结合思想的教学研究及案例分析

探讨关于初中数学中数形结合思想的教学研究及案例分析1. 引言1.1 研究背景初中数学作为学生学习的基础学科之一,对于培养学生的数学思维能力、逻辑思维能力以及解决实际问题的能力具有重要的意义。
在传统的数学教学中,往往存在着理论与实际应用之间的脱节,导致学生对于数学知识的掌握程度和应用能力有所欠缺。
为了更好地提高学生的数学学习效果和能力,探讨如何将数学知识与实际问题相结合,成为当前数学教学领域的热点研究方向。
1.2 研究意义研究数形结合在初中数学教学中的重要性,可以帮助教师更好地了解如何将数学与几何图形结合起来,提高学生的学习效果。
通过具体应用案例分析,可以为教师提供实际操作的参考,帮助他们更好地运用数形结合思想进行教学。
深入挖掘数形结合思想在培养学生数学思维能力和拓展学生数学应用能力方面的作用,有助于指导教师更好地引导学生,培养他们的数学能力和解决问题的能力。
通过深入研究初中数学中数形结合思想的教学方法,对于提高教学质量,促进学生数学学习兴趣和能力的提升具有重要的意义。
希望本研究可以为初中数学教育的改革和提升提供参考,推动数学教学的深入发展。
2. 正文2.1 数形结合思想在初中数学教学中的重要性数形结合思想在初中数学教学中的重要性体现在多个方面。
数形结合能够帮助学生更好地理解抽象概念。
数学中的很多概念都是抽象的,通过将数学问题与几何图形相结合,可以使学生对概念有直观的理解,从而加深记忆和理解。
数形结合能够激发学生的兴趣和动手能力。
通过画图解题,学生可以更具体地感受到数学问题的实际意义,增强学习的趣味性,培养学生的耐心和动手实践能力。
数形结合还有助于培养学生的逻辑思维能力和创造性思维能力。
在解决问题时,学生需要运用逻辑推理和创造性思维,不断寻找规律和方法,这对于提升学生的数学思维能力是非常有益的。
数形结合思想在初中数学教学中的重要性不可忽视,它既能够帮助学生更好地理解数学概念,又能够激发学生的兴趣和培养他们的思维能力。
数形结合思想方法在初中数学教学中实施的研究的开题报告

数形结合思想方法在初中数学教学中实施的研究的开题报
告
一、选题背景
随着教育教学的改革不断深入,数学教育的方法也在不断创新。
数形结合思想方法是一种将数学与几何图形相结合的教学方法,能够帮助学生深入理解数学概念和规律,提高数学解题能力。
然而,目前数形结合思想方法在初中数学教学中的应用还存在一定的局限性,如何优化数形结合思想方法的教学效果成为教育教学界需要解决的问题。
二、研究问题
1.数形结合思想方法在初中数学教学中的实施现状如何?
2.数形结合思想方法在初中数学教学中的教学效果如何?
3.如何优化数形结合思想方法在初中数学教学中的实施?
三、研究目的
1.了解数形结合思想方法在初中数学教学中的实施现状。
2.分析数形结合思想方法在初中数学教学中的教学效果。
3.提出优化数形结合思想方法在初中数学教学中实施的策略。
四、研究方法
1.文献调研法。
通过查阅文献,了解数形结合思想方法的发展历程和现状,分析数形结合思想方法在初中数学教学中的优缺点。
2.场景观察法。
通过对数学课堂实际情况的观察和分析,了解数形结合思想方法在初中数学教学中的实施情况、教学效果、问题和原因。
3.实验研究法。
设计实验课程,实施数形结合思想方法,比较实验组和对照组的学生在数学学习方面的差异,分析教学效果和原因。
五、预期成果
1.了解数形结合思想方法在初中数学教学中实施现状。
2.分析数形结合思想方法在初中数学教学中的教学效果。
3.提出优化数形结合思想方法在初中数学教学中实施的策略,为数学教育的改革和优化提供参考和借鉴。
初中数学在实际生活中的应用案例 数形结合思想的应用

初中数学在实际生活中的应用案例数形结合思想的应用数学是一门应用广泛的学科,它不仅仅存在于课本和考试中,更贯穿于我们日常生活的方方面面。
在初中数学中,数形结合思想是一个重要的概念,它将数学与几何图形相结合,让我们能够更好地理解和应用数学知识。
本文将介绍一些初中数学在实际生活中的应用案例,重点聚焦于数形结合思想的应用。
案例一:棋盘覆盖问题在数学中,棋盘覆盖问题是一个经典的问题。
假设有一个8x8的棋盘,用2x1的骨牌完全覆盖该棋盘,共有多少种覆盖方法?我们可以利用数形结合思想解决这个问题。
首先,我们将2x1的骨牌看作一种特殊的图形单元,将这种单元覆盖在棋盘上。
由于每个2x1的骨牌占据两个单元,因此整个棋盘共有64/2=32个单元。
而每个骨牌可以垂直或水平放置,因此每个单元有两种可能的覆盖方式。
接下来,我们尝试利用数形结合思想进行推理。
考虑到棋盘的边界问题,我们可以发现,棋盘的右下角必须覆盖一块。
那么,我们可以把右下角单元放上一块骨牌。
这样,右下角单元被覆盖后,原棋盘被分成了两个部分:一个是7x8的矩形,另一个是1x8的窄矩形。
对于7x8的矩形,在数形结合思想的指导下,我们可以将问题转化为一个更小规模的棋盘覆盖问题。
同样地,我们可以继续将其右下角单元覆盖,然后将其分成两个部分。
如此反复,最终我们可以找到问题的解。
通过以上的推理过程,我们可以得出结论:棋盘覆盖问题的解法共有2的32次方种可能。
案例二:测量高楼高度在实际生活中,我们有时候需要测量一座高楼的高度,但是往往无法直接测量。
这时,我们可以利用数形结合思想进行近似测量。
假设我们站在离高楼一定距离的地方,并且竖直放置一个测距仪。
我们可以利用三角形的形状和几何定理,使用测距仪与我们所看到的高楼顶部的夹角,以及我们与测距仪之间的距离,来计算出高楼的高度。
首先,我们假设测距仪的底部位置为A,顶部位置为B,高楼的底部位置为C,顶部位置为D。
通过观察可以发现,三角形ABC和三角形ABD相似。
探讨关于初中数学中数形结合思想的教学研究及案例分析

探讨关于初中数学中数形结合思想的教学研究及案例分析【摘要】本文探讨了在初中数学教学中数形结合思想的教学研究及案例分析。
首先介绍了数形结合思想的理论基础,然后讨论了其在初中数学教学中的应用,并通过教学案例分析了数形结合思想对学生数学学习的影响。
结果显示,数形结合思想不仅有助于提升学生的数学素养,还能培养学生的数学思维和创新能力。
最后结论指出,数形结合思想的教学研究为初中数学教学提供了新的思路和方法,有助于培养学生的综合能力和创造力。
通过本文的研究,可以为教师在教学中更好地运用数形结合思想提供参考和指导。
【关键词】数形结合思想、初中数学、教学研究、案例分析、教学方法、数学学习、数学素养、数学思维、创新能力1. 引言1.1 研究背景研究表明,数形结合思想能够帮助学生在数学学习中形成更加全面和深入的认识,促进数学知识的综合应用和实际运用能力的培养。
在当前的初中数学教学中,数形结合思想的应用还存在一些问题和挑战,如教师教学理念的传统观念束缚、教学资源的匮乏等。
针对数形结合思想在初中数学教学中的应用情况进行深入研究,并结合具体的教学案例进行分析,有助于发现其中存在的问题和改进的空间,为进一步推广和应用数形结合思想提供参考和借鉴。
完。
1.2 研究意义数形结合思想是数学教学中的重要理念之一,其在初中数学教学中的应用可以帮助学生更好地理解数学知识、提高解题能力、培养创新思维。
通过本研究,可以探讨数形结合思想在初中数学教学中的实际运用,为教师提供新的教学方法和策略。
进一步探讨数形结合思想对学生数学学习的影响,可以揭示其在学生数学素养提升中的作用,为教育部门和学校领导提供更多的参考依据。
通过教学案例分析,可以深入了解数形结合思想在不同情境下的实际效果,为教师们提供具体的教学参考和借鉴。
对数形结合思想的教学研究具有重要的理论和实践意义,有助于推动我国初中数学教学的发展,培养学生的数学思维和创新能力,提高数学教学的质量和效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
试论初中数学数形结合思想和例题的研究
摘要:将“数形结合”的思维方式运用到初中数学教学中,既符合新课改教学要求,同时也有利于帮助学生建立起以数学语言和图形相互结合的解题方式。
关键词:初中数学思想和例题的研究
数学思想方法是连接学生数学知识和数学能力的数形结合思想方法是重要的数学思想方法之一,它是利用数与形之间的对应关系,通过数与形之间的转化,使复杂问题简单化,抽象问题具体化,最终解决问题的一种数学思想方法。
数学基本思想在中学数学教学中运用非常广泛,数形结合思想作为数学基本思想中的最重要的数学思想之一,贯穿于整个初中教材内容的始终。
一、数形结合思想
初中数学教材中有多处内容涉及到了数形结合思想方法。
比如说,数轴、绝对值、有理数大小的比較、平面内点的位置与坐标、用图解二元一次方程组、不等式的解集、反比例函数的图象和性质、一次函数的图象和性质、二次函数的图象和性质、勾股定理及其应用。
“数”与“形”可以理解为知识的表征方式:把“数”意为数学文字表征,即文字、数、式、概念、性质、定理、结构等;相应地,“形”意为图形表征,即图象、图形、符号、实际物体等等。
数形结合的实质是把抽象的代数与形象的图形结合起来,代数问题与图形问题彼此转化,代数问题几何化,几何问题代数化。
数形结合,它是一种解题工具,也是一种思想、一种策略,甚至可以说数形结合是一种意识,它无时无刻不活跃在数学的各种活动中,乃至生活的方方面面中。
譬如,有理数一章中,数轴是数形结合的产物,教材通过生活中常见的温度计表示温度这一事实,引出数轴的概念,然后通过画出具体的数轴去解释相反数和绝对值的意义,再借助数轴来讨论有理数的加法运算,当学生们经历过有理数加法运算后,已经可以摆脱实体数轴的束缚,在脑海里中就可进行简单运算。
整个阶段可以说是层层深入,从生活中的“形”(温度计),到数学中抽象的“形”(数轴),最后再到观念上的“形”(脑海中的数轴),教材如此呈现恰好符合刚刚迈进初中校门的七年级学生的年龄特征和认知规律。
这个阶段学生的思维处于从具体形象思维向抽象逻辑思维的过渡时期,所以教材的呈现,先具体形象,而后抽象概括。
二、例题,引入新知识、巩固知识、运用知识
例题是数学教科书的重要组成部分,例题教学是数学课堂教学的主要形式。
概念、命题是抽象的,如果仅对这些抽象的内容作字面上的解释,不一定能奏效。
而引入恰当的例子,则能使学生更易理解。
如“函数”这一抽象概念,在学生学习数学的不同阶段是有不同的学习要求的。
有经验的数学老师,会在学生不同的阶段,给出相应的具体例子,在初中阶段给出次函数、二次函数的例子,在高中阶段,则增添对数函数、指数函数。
这些具体的例子能促进学生更好地理解函数概念。
数学教科书中的知识性内容一般由这样一些部分组成:概念、定义、命题、定理、法则、公式,贯穿这些数学知识的重要环节就是数学题。
解数学题是学生在学习数学的过程中不能回避的事件。
数学教科书中的例题,是数学知识尘库中比较典型的、具有一定代表性的问题,是学生学习数学入门阶段的问题。
教科书中的例题对学生掌握基本的数学知识、形成基本的数学技能、获得基本的数学经验、理解基本的数学思想,具有示范性的奠基作用。
例题在学生的数学学习历程中扮演着重要的角色。
我国义务教育阶段的数学课程的总目标为:使学生能获得“四基”,即在以前强调的数学的基础知识、基本技能之外,新增了基本思想、基本活动经验;增强发现和提出问题的能力、分析和解决问题的能力;认识到数学的价值,提高学习兴趣,养成良好的学习习惯、具有初步的创新意识和科学态度。
例题对于学生掌握数学知识的意义也就在于:引入新知识、巩固知识、运用知识。
三、数形结合思维与初中数学教学相互结合的案例分析
首先,以华东师大版本七年级下册的“一元一次方程”为例,尝试展开分析.
假设问题为:“在右图中,L1与L2代表了B与A两条小船与岸边的距离s和相互追赶的时间t间的关系.那么当追赶时间为多少时,能够使小船B追上A?”
再如,对八年级上册《数学》课本中第14章“勾股定理”中有关“平方差公式”内容展开讲解时,教师们也可以将数形结合的思维方式运用到教学中,按照下列步骤完成教学任务.
教师展示给学生们一些简单的多项式,譬如,(2x+1)(2x-1);(m+2)(m-2)等.再引导学生们按照多项式的乘法规则进行运算.学生们通过亲身的运算,加深了对多项式的运算能力,并从多次的运算中建立起有关多项式的运算规律模型.接着教师再让学生们比较多次计算的结果,并从正常解题过程上过渡到对这一类型的多项式解答上,将以上所有多项式表达为(a+b)(a-b)等模式.然后教师再从旁给予指导,将此类多项式从左到右依次相乘,再按照顺序符号相加减的方法概括为:
a2-b2=a2-b2+(ab-ab)=(a2-ab)+(ab-b2)=a(a-b)+b(a-b)=(a+b)(a-b).
并且,在经过大量的运算试验后,教师可以接着提出完全平方公式(a+b)2=a2+b2+2ab,以供学生们检验求证.此时,教师适时通过绘制一些几何图形的方式,对平方差公式所包含的几何意义进行讲解.在整个教学过程中,教师通过数形结合的思维方法,让学生们在脑海中建立起关于多项式的模型,再由同类型等式的运算特点总结出平方差等式的运算规律,最终达成教学目标。
总之,在初中数学教学过程中,通过对数形结合思想的合理运用,能实现“数”、“形”的优势互补,从而使一些错综复杂的问题变得清晰、直观,从而促进学生数学综合素养的全面提升。
参考文献:
[1]高艳萍.试论初中数学教学过程的兴趣培养[J].中国科教创新导刊,2009(30):195.
[2]张艳有.初中数学教学研究与思考[J].中国科教创新导刊,2007(36):22.。