麦克风阵列声音信号采集系统设计

合集下载

VISSONIC议朗数字阵列话筒会议系统方案

VISSONIC议朗数字阵列话筒会议系统方案

VISSONIC议朗数字阵列话筒会议系统方案()目录一、系统概述二、系统优点和特点三、系统连接图四、系统设备说明一、系统概述新闻中领导面前总要摆5个话筒,这不单只是为了备份,还形成了麦克风阵列,将两个或者两个以上麦克风对称放置于音源前方,起到增强指向性,消除噪音等作用,同时也增强可靠性.VISSONIC议朗基于麦克风阵列的特点和优点,开发了SONIC系列阵列话筒会议系统.麦克风阵列技术及一体化的麦克风提供了走廊式特征,该特征保证了说话者在大范围内活动都可以拥有高质量的声音。

在此范围内,说话者可以自由地移动,可以站立、坐下、转动头部、向前移动、离开麦克风装置,而不影响声音效果。

使用无声的触摸式麦克风按钮可以开启或关闭。

由于没有长长的鹅颈遮挡和更大的拾音范围, 让发言者拥有更大的自由度,没有麦杆正对的压迫感。

VISSONIC议朗阵列话筒会议系统作为新一代创新会议系统,独具优势,会议系统改造项目,未来项目规划的首选.VISSONIC议朗阵列话筒会议系统具有全向麦克风的远距离拾音优势,又有全向麦克风所不具备的本地扩音,中,大型会议系统集成能力,以及提供更高的语音清晰度. VISSONIC议阵列话筒会议系统与视频会议系统集成,具有先天的优势.VISSONIC议朗阵列话筒会议系统还提供嵌入式麦克风, 能很好的与无纸化会议系统,搭配使用.整套系统采用了议朗AUDIO-LINK全数字网络DSP会议系统技术及DANTE技术,使用全CAT5e布线,可过交换机。

二、系统优点和特点VISSONIC议朗的ARRA-TECH技术的话筒排列,其内部采用一系列特别校正的话筒振膜组成阵列,和其他阵列话筒最不同的是它独有的低音独立拾取,使传统的阵列话筒声音“薄”“尖”“弱”得问题得以有效的改善。

并配合最新的DSP处理电路,结合数字AEC,AGC,AFC的技术,具有“走廊型”拾音特性。

这相对于一般鹅颈话筒的“心型”指向特性是很大的提高。

可移动声源定位系统设计

可移动声源定位系统设计

可移动声源定位系统设计近年来,移动声源定位系统被广泛应用于语音识别、声音增强、语音通话等领域,因为它能够有效地解决人们在使用这些设备时遇到的问题。

在本文中,我们将详细介绍可移动声源定位系统的设计。

一、系统需求分析在设计可移动声源定位系统之前,首先需要对其需求进行分析。

根据用户的需求和使用场景,我们可以得出以下要求:(1)系统需要具备实时性和准确性,以满足用户对实际环境变化的要求。

(2)系统需要具备较高的定位精度,以满足用户对移动目标位置的要求。

(3)系统需要能够自适应地调整定位参数,以满足不同环境下的定位需求。

(4)系统需要能够满足不同科技应用的要求,包括虚拟现实、增强现实、游戏等。

二、系统设计方案在了解了用户需求后,我们可以考虑采用以下系统设计方案:(1)系统架构设计: 可移动声源定位系统可以分为两部分,即移动声源及其监测设备和声源定位分析器。

移动声源监测设备主要用于捕捉声源的声音信号,并将其传输到声源定位分析器。

声源定位分析器根据声音信号以及其他参数,实现对移动声源的精确定位。

(2)声音信号采集: 在移动声源监测设备中,我们采用微机电系统(MEMS)麦克风阵列。

由于MEMS麦克风阵列的体积小、灵敏度高、容易集成,可以满足我们对移动声源信号采集的要求。

(3)声音信号处理: 在声源定位分析器中,我们将使用数字信号处理技术,对采集到的声音信号进行处理。

主要包括滤波、能量计算、谱计算等操作。

其中,滤波操作用于滤除杂音和干扰信号;能量计算用于估计声源能量;谱计算用于估计频谱特征,如功率谱密度、频率、相位等。

(4)声源定位: 对于声源定位算法,我们将采用传统的波束形成算法或基于深度学习的算法进行。

波束形成算法基于麦克风阵列的均衡化和音源宽带响应特性,将目标声源的方向信息提取出来。

基于深度学习的算法利用深度卷积神经网络,提取输入特征的抽象表示,以此获得更好的分类和定位精度。

(5)优化算法: 在系统设计中,我们需要考虑优化算法以提高系统性能。

麦克风阵列模组设计方案

麦克风阵列模组设计方案

麦克风阵列模组设计方案一、麦克风阵列基本原理二、麦克风阵列的应用三、麦克风阵列模组的设计一、麦克风阵列基本原理阵列(Array):数学定义--有限个相同资料形态之元素组成之集合麦克风阵列是指按一定距离排列放置的一组麦克风,通过声波抵达阵列中每个麦克风之间的微小时差的相互作用,麦克风阵列可以得到比单个的麦克风更好地指向性。

在麦克风阵列的设计中首要的改进是引入了波束成形、阵列指向性与波束宽度的概念。

波束的形成通过对所有麦克风信号的综合处理,麦克风阵列可以组合成为所要求的强指向性麦克风,形成被称为“波束”的指向特性。

麦克风阵列的波束可以经由特殊电路或程序算法软件控制使其指向声源方向而加强音频采集效果。

阵列算法处理后的指向性波束形成技术能精确的形成一个锥状窄波束,只接受说话人的声音同时抑制环境中的噪音与干扰。

图一使用单麦克风与采用波束形成技术麦克风阵列接收讲话者声音效果的对比阵列指向性由于麦克风阵列的输出信号中包含比单只麦克风更低的噪声和回声成份,。

麦克风阵列在1000Hz的典型指所以其固有噪声抑制能力要远高于单只麦克风所以其固有噪声抑制能力要远高于单只麦克风。

向性波束图型如图二所示。

其指向性图形要远好于任一款价格昂贵的高性能超心形麦克风。

图二麦克风阵列在1000Hz的典型指向性波束图型指向性指数另一个表证波束的参数是指向性指数。

波束轴线))检测到指向性指数D表征的是麦克风阵列主响应轴(波束轴线的声源信号与需要屏蔽的各种噪声与回声信号的比值二麦克风阵列的应用正确的麦克风阵列几何排列(数量,类型及麦克风的位置)关系到最后的声学效果。

为了保证成功的设计和用户满意度,双元件麦克风阵列适用于在较安静的办公场所及室内的条件使用。

这种阵列形成的是水平方向压缩后的较窄波束,使用时应将两个麦克风连线中点指向讲话者。

其几何排布如图三、图四所示图三小型双麦克风阵列图四大型双麦克风阵列四元件麦克风阵列适用于在一般的办公场或较嘈杂的环境使用,当讲话者到麦克风的距离达到3-5M距离时,仍有很好的录音效果,见图五、图六图五4麦克风阵列图六L-形状的4麦克风阵列麦克风阵列的特征参数:阵列麦克风元件类型NG,dB NGA,dB DI,dB2单指向-12.7-6.07.4直线排列,小间距2单指向-12.9-6.77.1直线排列,大间距4单指向-13.1-7.610.1直线排列,4元件4单指向-12.9-7.010.2 L-形状排列4元件三、麦克风阵列模组的设计未来电视的面孔未来的电视是什么样的?现在没有人能给出完整的、准确的描因为这只是改变的开始。

实时高精度麦克风阵列数据采集系统

实时高精度麦克风阵列数据采集系统
第2 9卷 第 1 0期 2 0 1 3年 l 0月
信 号 处 理
J OUR NAL OF S I G NAL P R OC ES S 1 O
Oc t .2 01 3
实 时高精 度 麦 克风 阵列 数 据 采集 系统
胡德 孟 何培 宇 张 勇 潘 帆 罗胡琴
i n g mo d u l e nd a E t h e r n e t c o n t r o l mo d u l e ,wh i c h i mp l e me n t e d t h e f u n c t i o n s o f s a mp l i n g nd a t r a n s mi s s i o n w i t h h i g h q u li a t y f 0 r 1 6 一 c h a n n e l - v o i c e s i g n ls a .I n t h i s s y s t e m 。UDP d a t a g r a m p r o t o c o l w a s i mp l e me n t e d o n F P GA b y u s i n g Ve i f l o g ,w h i c h
Ab s t r a c t : D u e t o t h e r e q u i r e me n t o f d a t a a c q u i s i t i o n wi t h h i g h p r e c i s i o n a n d s t r o n g r e a l - t i me p e r f o ma r n c e f o r mi c r o p h o n e
H U De ・ - me n g HE Pe i - - y u ZHANG Yo n g P AN F a n L UO Hu ・ - qi n

一种声源定位跟踪系统实现方法

一种声源定位跟踪系统实现方法

物联网技术 2023年 / 第9期220 引 言随着信息技术和人工智能的快速发展,声音导航跟踪定位的应用越来越广泛。

声音信号是人们传递信息的重要方式,在智能车载、智能家居、可穿戴设备等领域受到关注[1]。

声源定位技术,在现代工业制造中可以通过噪声和异响进行定位[2];在国防现代化方面,可以用来辅助测量炮兵阵地、定位狙击手位置、测量弹药、测试火炮的着落点和空中炸点[3];在生活中,可以准确识别空调、冰箱、洗衣机等家电产品的噪声源,从而确定其位置、分布,并优化控制减小噪声,改善人们的工作和生活环境[4]。

声源定位技术主要可以分成三大类:第一类是基于最大输出功率的可控波束形成技术;第二类是高分辨率谱估计技术;第三类是基于声达时间差的定位技术,利用到达阵列上各传声器的声音信号间的时间差来定位声源,这类技术计算量小,比较适用于实时处理,实际运用也十分广泛。

本文基于声源近场传播模型[5-6]设计并制作了一个以STM32为主控的声源定位跟踪系统,该系统实现了对较宽频率声源进行定位与追踪[7],在视频会议、语音增强、自动语音识别领域[8-9]有重要的应用价值。

1 理论分析与计算1.1 TDOA 的基本定位原理传统的基于TDOA 技术[10-12]的无线定位系统一般涉及4个基站和1个移动平台MB(x , y , z ),其中下行发射基站为B 0(x 0, y 0, z 0),上行接收基站为B i (x i , y i , z i ), i =(1, 2, 3),移动平台MB 发送到各基站的上行信号的到达时间差为t 10、t 20、t 30,且均可测得。

设R i 为MB 到各基站的距离,已知电磁波在空气中的传播速度为c ,则可算得MB 到各个基站的距离差R 1-R 0=t 10×c =R 10,R 2-R 0=t 20×c =R 20,R 3-R 0=t 30×c =R 30。

由此可列方程组:R x x y y z z R x x y y z z R 020202021212121222=−+−+−=−+−+−=()()()()()()()()()()()()x x y y z z R x x y y z z 22222232323232−+−+−=−+−+− (1)解三元二次方程组便可求得移动平台MB 的坐标(x , y , z ),从而实现声源定位。

基于DSP语音信号采集系统的设计毕业设计(论文)

基于DSP语音信号采集系统的设计毕业设计(论文)

DSP课程论文(设计)题目基于DSP语音信号采集系统的设计院系专业学生姓名学号指导教师二O一四年五月二十八日基于DSP语音信号采集系统的设计摘要:为了研究数字信号处理,提出了一个基于DSP TMS320VC5502的语音信号采集系统的设计。

给出了该系统的总体设计方案,具体硬件电路,包括系统电源设计、复位电路设计、时钟电路设计、存储器设计、A/D接口电路设计、JTAG接口设计、DSP与A/D芯片的连接等,以及软件流程图。

通过MATLAB得到语音信号的波形和频谱图。

实验表明: 所设计的基于DSP的硬件和软件系统是一个很好的语音信号采集系统,该系统结构清晰,电路简洁,易于实现。

关键词:语音信号;数据采集;DSP;TLC320AD501.引言20世纪50年代以来,随着数字信号处理各项技术的发展,语音信号处理技术得到不断提高, 语音合成、语音识别、语音记录与语音控制等技术已开始逐步成熟并得到应用。

在语音信号处理过程中, 要实现语音信号处理技术的精确性、实时性目的,语音信号采集和无误差存储成为语音信号处理中的前提。

TMS320VC5502是德州仪器公司公司在2002年基于TMS320VC5502推出的定点数字信号处理器,它采用修正的哈佛结构,包括1个程序存储总线、3个数据存储总线和4个地址总线,这种结构允许同时执行程序指令和对数据操作,运行速度快,单周期定点指令执行时间为5ns,远高于语音信号采集和处理的要求。

在语音信号采集中, 模拟信号向数字信号转换(ADC)的精度和实时性对后续信号处理过程起到了重要作用。

设计中采用TLC320AD50完成语音信号的A/D转换。

TLC320AD50是TI公司提供的一款16 bit 同步串口A/D和D/A转换芯片,ADC之后有1个抽取滤波器以提高输入信号的信噪比, 其采样频率最高可达22.5 Kb/s,满足语音信号处理中关于采样频率的要求。

2.总体设计基于TMS320VC5502的语音信号采集系统的结构如图2–1所示,该系统的中央处理单元采用美国TI(德州仪器)公司的高性能定点数字信号处理芯片TMS320VC5502,TMS320VC5502是TI 公司推出的定点数字信号处理器,它采用修正的哈佛结构,包括12组独立总线,即1组程序读总线,1组程序地址总线,3组数据读总线,2组数据写总线,5组数据地址总线。

麦克风阵列声源处理 波束成形法matlab

麦克风阵列声源处理 波束成形法matlab

麦克风阵列声源处理和波束成形法在声学信号处理领域中扮演着重要的角色。

通过利用麦克风阵列的多个麦克风来获取声音信号,并且根据波束成形法对声音进行处理,可以实现对声源的定位、分离和增强,从而在语音识别、语音通信、音频录制等应用中发挥重要作用。

本文将对麦克风阵列声源处理和波束成形法进行全面的评估和探讨,以及共享对这一主题的个人观点和理解。

一、麦克风阵列声源处理1.1 麦克风阵列的原理和结构麦克风阵列是由多个麦克风组成的一种声学传感器系统,可以在空间上对声音进行采集和处理。

它通常由均匀排列的麦克风单元组成,每个麦克风单元之间的位置和间距都是预先设计好的,以便实现对声源的准确定位和分离。

麦克风阵列可以使用不同的拓扑结构,如线性阵列、圆形阵列等,以适应不同的应用需求。

1.2 麦克风阵列的声源定位和分离通过对麦克风阵列采集到的声音信号进行处理和分析,可以实现对声源的定位和分离。

常用的方法包括波束成形、自适应信号处理、时域盲源分离等。

这些方法可以根据麦克风阵列采集到的信号特点,对声源进行空间定位和分离,从而实现对复杂环境下多个声源的有效处理。

1.3 麦克风阵列声音增强和降噪在实际应用中,麦克风阵列可以用于对声音进行增强和降噪。

通过对采集到的声音信号进行处理,可以有效地提取和增强感兴趣的声音信号,同时抑制噪音和干扰声音,从而提高语音识别和通信的质量。

二、波束成形法在声源处理中的应用2.1 波束成形方法的基本原理波束成形法是一种基于阵列信号处理的方法,通过对阵列接收到的信号进行加权和叠加,可以实现对特定方向上声源的增强,从而形成一个波束。

波束成形法可以通过调整加权系数,实现对不同方向上声源的响应,从而实现对多个声源的定位和分离。

2.2 波束成形方法的实现与优化波束成形方法在实际应用中需要考虑到不同方向上声源的信号特点和空间分布,以及阵列的结构和性能参数。

对于不同的应用场景,波束成形方法需要进行优化设计,包括阵列几何结构的选择、加权系数的计算和调整等,以实现对声源的有效处理和增强。

麦克风阵列声音定位解决方案

麦克风阵列声音定位解决方案

传声器的数目和阵列孔径决定了一个阵列实现的复杂程度。阵列的传声器个 数越多,布线方式越复杂。阵列孔径表示的是阵列在空间占据的体积,阵列孔径 越大,结构实现越困难。传声器数目还影响阵列增益。由于阵列是在噪声背景下 检测信号的,阵列增益是用来描述阵列作为空间处理器所提供的信噪比改善程度。 一般来说,传声器数目和阵列增益成正比。
这种方法既能在时域中使用,也能在频域中使用。它在时域中的时间平移等 价于在频域中的相位延迟。在频域处理中,首先使用一个包含自谱和互谱的矩阵, 我们称之为互谱矩阵(Cross-Spectral Matrix,CSM)。在每个感兴趣频率之处, 阵列信号的处理给出了在每个给定的空间扫描网格点上或每个信号到达方向 (Direction ofArrival,DOA)的能量水平。因此,阵列表示了一种与声源分布相 关联的响应求和后的数量。
麦克风阵列声音定位解决方案 噪声源定位简介
噪声源定位意义 噪声源识别是指在同时有许多噪声源或包含许多振动发生部件的复杂声源 情况下,为了确定各个声源或振动部件的声辐射的性能,区分噪声源,并根据他 们对于生产的作用加以分等而进行的测量与分析。人们的听觉器官就是非常好的 识别噪声源的分析器,配合头部扭动运动就相当于一个搭配了运动机构的双麦克 风阵列,具有方向性辨别、频率分析等能力。 定位原理分类 从大类原理上分,噪声源定位系统可分为基于声强声功率测试的定位系统, 以及基于麦克风阵列的定位系统;两种原理 SignalPad 都能支持,此篇文档针 对后者展开说明。 定位系统的组成 噪声源定位系统的标准组成如下图,由 �大部分组成:
红点是噪声源,黑点是麦克风,噪声源到两个麦(如麦 �,麦 �)的时延是 一个常数,通过这个常数,我们可以画出绿色的双曲线,噪声源到麦 �,麦 笟的
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档