过程流体机械复习吐血整理仅供参考知识讲解
过程流体机械复习要点

1.降低泵必需汽蚀余量的措施有哪些?首级叶轮采用双吸式叶轮;加装诱导轮;采用双重翼叶轮、超汽蚀叶轮。
2.叶片一般分为哪几种形式?各有何优缺点?前弯叶片:能产生较大的能量头,但其效率比较低,容易出现多工况工作的情况。
)径向叶片:产生的能量头界与前弯叶片与后弯叶片之间,效率居中。
后弯叶片:产生的能量头较低,但效率较前弯叶片高,且不容易出现不稳定工作区。
3.降低泵必需汽蚀余量的措施有哪些?(1)首级叶轮采用双吸式叶轮(2)加装诱导轮(3)采用双重翼叶轮、超汽蚀叶轮4.某水泵按图纸要求安装后,开动起来抽不上水,试分析可能原因吸水管路不严密,有空气漏入。
泵内未灌满水,有空气存在。
安装高度太高了.电动机反转了. 叶轮及出水口堵塞后弯型叶轮:图(a),叶片弯曲方向与叶轮旋转方向相反,叶片出口角<90°前弯型叶轮:图(c),叶片弯曲方向与叶轮旋转方向相同,叶片出口角>90°径向型叶轮:图(b),叶片出口角=90°对离心压缩机而言,主要考虑效率,多用后弯式叶片叶轮。
级内各种能量损失级内的流动损失(摩阻损失,分离损失,冲击损失,二次流损失,尾迹损失)漏气损失轮阻损失泵串联是为了增加扬程,并联是为了增加流量离心泵的典型结构:吸入室,叶轮,蜗壳,轴利用三角形的余弦定律,欧拉方程也可表示为:上式通常称为欧拉第二方程式,该方程式说明气体从旋转叶轮获得的能量由三部分组成:第一项相当于气体在旋转叶轮内作圆周运动时,由于离心力作用所获得的静压能;第三项是气体在叶道中流动时,由于叶道截面扩大,相对速度降低而获得的静压能;第二项是气体流过叶道后动能的增量.此外理论能量头由二项静压能头的增量和一项动能头的增量组成气蚀:液体在泵叶轮中流动时,由于叶片的形状和液流在其中突然改变方向等流动特点,决定了液道中液流的压力分布。
在叶片入口附近的非工作面上存在着某些局部低压区。
当处于低压区的液流压力降到对应液体温度的饱和蒸汽压时,液体便开始汽化而形成气泡;气泡随液流在流道中流动到压力较高之处时又瞬时消失。
过程流体机械知识点总结

第一章 离心泵 基本概念
Q
H
Q vD2 b2 2 c2r
Q'
Q1 Q2
H h u 2 c2 u
QH N h v m
HT
H T
N
Ne
ha hr Hs
ns
C
定义式和计算式
H g1
一个方程 两个“比转数” 三个定律
表达式、含义、作用
第一章 离心泵 三大知识板块
以欧拉方程(速度三角形)为核心的知识板块
1 K
5
2
3
4
2
3 4
1 K
1
1 2
A-A Section S-S Section
3 4
1-1 Section K-K Section
5
2-2 Section
例题1-3 用2BA-6离心水泵自水井抽水,水面逐渐下降。 若流量为 20m3/h ,吸入管内径 50mm ,吸入管路的阻力损 失为0.2m液柱,[HS]=7.2m,试计算水面下降到离泵中心轴 线几米处,泵开始发生汽蚀? 解:按题意要求是计算泵的最大几何安装高度 Hg1 , 此时泵开始发生汽蚀。知
基本方程
级的无预旋理论能头(2-9)
H T u2 c2u u (1 2 r cot 2 A
2 2
z
sin 2 A )
级的热焓方程(2-20)
c c H tot qtot (id is ) g ( zd zs ) 2
2 d 2 s
级的伯努利方程(2-30)
以相似定律为核心的知识板块 以汽蚀为核心的知识板块
以相似定律为核心的知识板块
扩大离心泵 工作范围的 方法 切割叶轮 改变转速 离 心 泵 相 似 条 件 牛 顿 相 似 准 数 切割定律 相 似 抛 物 线 切割抛物线 切割高效区
过程流体机械复习要点

过程流体机械复习要点1绪论1、流体机械的分类。
按能量转换分为原动机和工作机按流体介质分为压缩机泵分离机按流体机械结构分为往复式结构的流体机械和旋转式结构的流体机械2 容积式压缩机1、往复压缩机机构学原理。
1曲柄2连杆3十字头4活塞杆5填料6工作腔7活塞8活塞环9气缸10进气阀11排气阀2、往复压缩机级的理论循环和实际循环,区别,能够绘制示功图。
1气缸有余隙容积2进排气通道及气阀有阻力3气体与气缸各接触壁面存在温度差4气缸容积不可能绝对密封5阀室容积不是无限大6实际气体性质不同于理想气体7在特殊条件下使用压缩机3、多级压缩,定义,优点。
所谓多级压缩是将气体的压缩过程分在若干级中进行并在每级压缩之后将气体导入中间冷却器进行冷却的过程。
优点:1节省压缩气体的指示功2降低排气温度3提高容积系数4降低活塞上的气体力4、压力比的分配。
P255、往复压缩机的功率和效率。
P316、往复压缩机的气阀和密封,颤振和滞后关闭的害处,马赫数;气阀的种类,密封的原理和方式。
颤振害处:导致气阀时间截面减小阻力损失增加、阀片的反复撞击导致气阀和弹簧寿命缩短。
滞后关闭害处:因为活塞已开始进入压缩行程故使一部分吸入的气体又从进气阀回窜回去造成排气量减少、阀片将在弹簧力和窜出气流推力的共同作用下撞向阀座造成严重的敲击致使阀片应力增加阀片和阀座的磨损加剧导致气阀提前损坏、强烈的敲击还会产生更大的噪声。
马赫数:定义为流场中某点的速度与该点的当地声速之比,即该处的声速倍数。
M=V/a 气阀种类:按气阀职能气阀分为进气阀和排气阀、按启闭原件形状分环状阀网状阀碟状阀菌状阀。
密闭的原理:利用节流和堵塞效应。
方式:1活塞部位的密封 a活塞环密封 b迷宫密封 2活塞杆部位的密封 a填料结构 b填料函结构7、往复压缩机容积流量调节的方式和特点,附属系统有哪些?1单机停转调节简单方便但气量稳定性差频繁开停造成零部件磨损加剧 2多机分机停转多机可以互为备用以防因压缩机故障而停产 3变转速调节可实现连续的气量调节,调节工况比功率消耗小但原动机本身的性能限制了转速调节范围不能太宽 4进汽节流调节可实现连续调节且机构简单,不足单位质量输气量的功耗增加排气温度增高 5进排气管连通调节调节机构简单经济性差6全行程压开进气阀 7部分行程压开进气阀 8全行程连通固定补助与隙容积附属系统:1压缩机润滑与润滑设备2压缩机冷却和冷却设备3气体管路和管系设备8、往复压缩机选型设计的基本流程。
流体机械原理知识点总结

流体机械原理知识点总结流体机械是指利用流体流动能量进行能量转换的机械设备。
在工程实践中,流体机械广泛应用于各种领域,如水泵、风力发电机、涡轮等。
流体机械原理是研究流体机械的原理和工作规律的一门学科,对于理解和设计流体机械具有重要的意义。
本文将对流体机械的基本原理和知识点进行总结。
一、流体机械的基本原理1. 流体机械的基本工作原理流体机械利用流体的动能进行能量转换,主要包括两种方式:一种是利用流体的动能产生机械功,如水泵将液体的动能转化为机械能,提高水的压力或提高水的流速;另一种是利用外界机械能来驱动流体,如涡轮利用水流动的动能产生机械功,驱动发电机发电。
在不同的流体机械中,流体的工作形式各异,但其基本原理都是利用流体的动能进行能量转换。
2. 流体机械的工作过程流体机械的工作过程一般包括流体入口、流体动能转换、机械功输出和流体出口四个环节。
流体从入口进入机械设备,经过流体动能转换,将流体的动能转化为机械能,最终输出机械功,然后流体从出口排出。
在不同的流体机械中,其工作过程会有所不同,但都遵循这一基本流程。
3. 流体机械的工作原理流体机械的工作原理主要包括动能原理、能量方程、动量方程等。
在流体机械的研究和设计过程中,需要运用这些原理进行分析和计算,以确保流体机械的性能和效率。
二、流体机械的基本原理知识点1. 流体的性质流体是指能够流动的物质,包括液体和气体。
流体的性质主要包括密度、黏度、压力等。
在流体机械中,需要考虑流体的性质对机械性能的影响,进行合理的选择和设计。
2. 流体的运动流体的运动可以分为定常流和非定常流、层流和湍流等。
在流体机械中,需要考虑流体的运动状态对机械性能的影响,合理选择流体机械的结构和参数。
3. 流体的动能转换流体机械利用流体的动能进行能量转换,主要包括动能转换和机械功输出两个环节。
在流体机械的设计和分析中,需要深入理解流体动能转换的原理和方法,进行合理的设计和优化。
4. 流体机械的性能参数流体机械的性能参数主要包括流量、压力、效率等。
过程流体机械主要知识点

离心压缩机工作原理:利用离心力对气体作功,由扩压通道对气体扩压,以提高气体压力。
离心叶轮的欧拉方程:L th=H th=C2u U2—C1u U1欧拉方程的物理意义:方程说明气体获得的理论能量头只与叶轮叶道进、出口流体的速度积有关,而与流体的性质无关。
由于气体本身所具有的惯性作用,在叶轮叶道中将产生与叶轮旋转方向相反的附加的相对运动, 即轴向旋涡伯努利方程物理意义:表明外加能头(机械功), 一部分作压缩功,提高气体的静压能,一部分增加动能,一部分克服各种能量损失,即:外加能头=压缩功+动能+克服损失压缩机的最小流量工况--喘振工况当级中流量减小到某最小值时,会产生喘振现象, 这时级或机不能正常工作,如不及时采取措施解决,将会造成恶性事故。
喘振产生的原因是:内因: 流量达到最小流量,气流的边界层严重分离;外因: 管路中存在储存能量的空间,即供气管网。
流动相似, 就是指流体流经几何相似的通道或机器时, 其任意对应点上同名物理量如压力、速度等比值相等。
流动相似的相似条件:模型与实物或两机器之间几何相似、运动相似、动力相似和热力相似。
对于离心压缩机而言, 其流动相似应具备的条件:几何相似、叶轮进口速度三角形相似、特征马赫数相等,即M’2u=M2u 和气体等熵指数相等,即k’=k。
压缩机的调节方法:压缩机出口调节流量、压缩机进口调节流量、采用可转动的进口导叶调节(又称进气预旋调节)、改变压缩机转速的调节。
理论压缩循环:由进气→压缩→排气三个热力过程组成实际工作循环由吸气—压缩—排气—膨胀四个过程组成。
实际工作循环的特点■存在余隙容积■进气、排气过程存在压力损失■气体与汽缸壁面间存在温差,压缩和膨胀指数不是定值■汽缸存在泄漏■实际气体性质不同于理想气体压缩机排出的气体容积流量换算到压缩机进气状态下的气体容积流量,称为单级压缩机的排气量。
容积系数λv:---反映气缸行程容积的有效利用程度容积系数=实际进气容积/行程容积泄漏系数λl ---表示气阀、活塞环、填料函等泄漏对汽缸容积利用程度的影响多级压缩就是将气体的压缩过程分在若干级中进行,并在每级压缩之后将气体导入中间冷却器进行冷却。
陕西科技大学过程流体机械期末考试复习资料总结

泵课程内容主要复习参考公式习题[1]参考教材[1]《石油化工流体机械》张湘亚等主编.石油大学出版社.1996.8参考教材[2]《过程流体机械》姜培正编.化工工业出版社.2001.81 扬程计算sdsdsd zzgccgppH-+-+-=222ρ(1-1.2))(222inoutinoutinout ZZccgppH-+-+-=ρ(4-4)1-11-21-31-42 理论扬程)(11122∞∞∞-=uuTcucugH(1-2.8)gcucuH uut1122-=(4-11)1-51-63 汽蚀计算SAgvA hzgpp-∑---=ρaNPSH(1-3.4)10][][-'-'+='gppHH vaSSρ(1-3.13)gSAVAaHHpp-∆--=-γγNPSH(4-17)1-91-101-111-121-134 比例定律2121nnQQ=(1-6.8)22121⎪⎪⎭⎫⎝⎛=nnHH(1-6.9)32121⎪⎪⎭⎫⎝⎛=nnNN(1-6.10)nnqqVV'='(4-31)2⎪⎭⎫⎝⎛'='nnHH(4-32)3⎪⎭⎫⎝⎛'='nnNN(4-33)1-161-171-185 切割定律22DDQQ'='(1-6.12)222⎪⎪⎭⎫⎝⎛'='DDHH(1-6.13)322⎪⎪⎭⎫⎝⎛'='DDNN(1-6.14)22DDqqVV'='(4-37)222⎪⎪⎭⎫⎝⎛'='DDHH(4-38)322⎪⎪⎭⎫⎝⎛'='DDNN(4-39)1-211-221-236 比转数4/365.3HQnns=(1-6.16)4/365.3Hqnn Vs=(4-35)1-191-20叶片式压缩机课程内容主要复习参考公式习题[1]参考教材[1]《石油化工流体机械》张湘亚等主编.石油大学出版社.1996.8参考教材[2]《过程流体机械》姜培正编.化工工业出版社.2001.81 容积流量22222vSr kbDQcτπ=(2-2.2)svrQkuDbn2232222)/(9.33τϕ=(114页)222322229.33⎪⎭⎫⎝⎛=nkuQDbvrsτϕ(推导)23222222260VVinrV kqunDbq=⎪⎭⎫⎝⎛=πτϕ(3-2)232222229.33⎪⎭⎫⎝⎛=nukqDbrVVinϕτ(141页)增补习题[2]3-22 理论能头)sinctg1(22222AArT zuHβπβϕ--=(2-2.9)22222)sinctg1(uZHAArthβπβϕ--=(3-10)2-13 总耗功总功率)1(dflTtotHHββ++=(2-2.12))1(dflTtotGHNββ++=(2-2.11))1(dflthtotHHββ++=(3-32))1(dflthmtotHqNββ++=(3-33)2-24 能量方程2)(12)(2222ababababpabccTTkkRccTTcH-+--=-+-=(2-2.15)2)(12)(212212212212ccTTkkRccTTcHpth-+--=-+-=(3-12)2-55 等温绝热多变能头sdsis ppRTH ln=(2-2.27)]1)[(11--=-kksdsad ppRTkkH(2-2.28)]1)[(11--=-mmsdspol ppRTmmH(2-2.29)1211lnppVpWi=(2-4)]1)[(11121--=-mmpol ppRTmmH(3-19)2-46 多变效率)1/()1/(--=kkmmpolη(2-2.31))1/()1/(--=kkmmpolη(3-35)2-37(附加)相似换算ssLeq RTTRnnn''=='λ(2-5.11)sLsQnnQ''=31λ(2-5.21)1122)]1()(11[-'-'-'''+=mmmmssLRTTRnnελε(2-5.23)totssssLtotNppRTTRnnN''''⎪⎭⎫⎝⎛'=351λ(2-5.25)ininLRTTRnn''='λ(3-54)vininLVqRTTRq''='2λ(3-55)εε='(符合相似条件)(3-56)NppRTTRNininininL'''='2λ(3-59)2-7增补习题[2](3-2):已知某压缩机第i级进口容积流量Q s=1.543 m3/s,该级D2=0.65 m,u2=170 m/s,βA2=30˚,δ2=4 mm,φr2=0.l34,k v2=1.094,z=22片,试计算该级叶轮出口相对宽度b2/D2,并判断该值是否符合要求?解:(1-2.3)2222sin1ADzβπδτ-==0.9138(1-2.1推导)2260Dunπ==4995 r/min(2-2.2或141页公式推导)222322229.33⎪⎭⎫⎝⎛=nkuQDbvrsτϕ=0.0510.025<b2/D2=0.051<0.065符合要求2-1 已知某离心式空气压缩机的第一级叶轮直径D2=380 mm,D1=202 mm,βA2=40°,z=16,叶轮转速n=13800 r/min,流量系数φr2=0.233,α1=90°。
最新过程流体机械复习吐血整理仅供参考

过程:事物状态变化在时间上的持续和空间上的延伸。
它描述的是事物发生状态变化的经历。
状态:当系统的温度、压力、体积、物态、物质的量、相、各种能量等等一定时,我们就说系统处于一个状态(state)。
系统从一个状态(始态)变成另一个状态(终态),我们就说:发生了一个过程(process)。
等温过程:始态和终态的温度相等的过程。
过程工业:以流程性物料(如气体、液体、粉体等)为主要对象,以改变物料的状态和性质为主要目的工业。
现代生产过程的特点:大型化、管道化、连续化、快速化、自动化。
过程装备:实现过程工业的硬件手段。
如机械、设备、管道、工具和测量仪表以及自动控制用的电脑、调节操作机构等。
过程装备:三大部分:1.过程设备 2.过程机械 3.过程控制过程设备(静设备):压力容器、塔、反应釜、换热器、储罐、加热炉、管道等。
也称为:化工设备;压力容器过程机械(动设备):(Process Machinery)压缩机、泵、分离机(二机一泵);电机、风机、制冷机、蒸汽轮机、废气轮机等。
也称为:化工机器;流体机械;动力设备;泵与压缩机。
占过程工业总设备投资的20 ~25%,系统运行的心脏过程控制测控仪表、阀、电气源、转换器、计算机,监控设备,记录设备等。
也称为:控制仪表;自动化设备过程控制内容:压力、温度、流量、液位、浓度、密度、粘度等流体机械:以流体为工质进行能量转换、处理与输送的机械。
流体机械分类:原动机、工作机、液力传动机。
(1)原动机:将流体的能量转化为机械动力能的机械为原动机。
↓↓势能(压能)动能机械能特点:流体能→机械能;流体产生动力。
例如:水轮机、蒸汽轮机、燃气轮机、废气轮机、涡轮发动机、蒸汽机、内燃机等。
(2)工作机:将机械能转化为流体的能量的机械为工作机。
特点:机械能→流体能;流体吸收动力。
例如:压缩机、泵、分离机、鼓风机、通风机、制冷机等。
(3)液力传动机:将机械能转化为流体能,然后流体能又转化为机械能。
过程流体机械整理资料(中国矿业大学过程装备与控制工程专业用)

过程流体机械:过程工业生产中,以流体为工质进行能量转换、处理与输送的机械吸、排气温度:缩机首级汽缸工作腔进气法兰和末级汽缸工作腔排气法兰接管处测得的气体温度称为压缩机的吸排气温度。
工况:压缩机进行所在的进、排气压力和近期温度状态参数称为压缩机的工况,压缩机铭牌上所表的参数工况称为“额定工况”。
吸、排气压力:压缩机首级汽缸工作腔进气法兰和末级汽缸工作腔排气法兰接管处测得的压力称为压缩机的吸排气压力。
压缩机排气量:排气量是指在所要求的排气压力下,压缩机最后一级单位时间内排出的气体体积折算到第一级进口压力和温度时的容积值容积式压缩机定义:依靠改变工作腔容积的大小来提高气体的压力。
列:压缩机中,把一个连杆对应的一组汽缸及相应的动静部件称为一列。
一列可能对应一个汽缸,也可能对应串在一起的多个汽缸。
压缩机的循环:活塞往复运动一次,在气缸中进行的吸气、压缩、排气等过程的总和。
气体经过一个工作循环,也称为一级。
多级压缩定义:多级压缩是将气体的压缩过程分在若干级中进行,并在每级压缩之后将气体导入中间冷却器进行冷却。
级的等温指示效率:级的理论等温循环指示功与实际循环指示功之比,即:轴功:压缩机的轴功包括指示功与摩擦功两部分。
指示功是压缩机直接用于压缩气体所消耗的功摩擦功:是压缩机用于克服摩擦所消耗的功。
轴功率:单位时间所消耗的轴功称为轴功率。
机械效率:指示功率与轴功率之比。
影响机械效率的因素很多,如:轴承的形式、摩擦副的材料、润滑方式等。
临界转速:转子旋转的角速度与转子弯曲振动的固有圆周频率相重合,则转子会发生强烈的共振导致转子的破坏,转子与此相应的转速称为临界转速。
扬程H:单位重量液体从泵入口到泵出口处能量的增值。
即1N液体通过泵获得的有效能量,m。
又称有效能量头。
功率N:原动机传到泵轴上的轴功率,W或kW;有效功率Ne:单位时间内从泵中输送出去液体在泵中获得的有效能量沉降:混合物在某种装置中,由于两相在力场中所受到的力的大小不同而分层,轻相在上层形成澄清液,重相在下层形成沉淀物过滤:混合物在多层材料层装置中,由于受力场的作用,液体通过多孔材料层流出形成滤液固体被留在材料层上形成滤渣而实现分离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
过程流体机械复习吐血整理仅供参考过程:事物状态变化在时间上的持续和空间上的延伸。
它描述的是事物发生状态变化的经历。
状态:当系统的温度、压力、体积、物态、物质的量、相、各种能量等等一定时,我们就说系统处于一个状态(state)。
系统从一个状态(始态)变成另一个状态(终态),我们就说:发生了一个过程(process)。
等温过程:始态和终态的温度相等的过程。
过程工业:以流程性物料(如气体、液体、粉体等)为主要对象,以改变物料的状态和性质为主要目的工业。
现代生产过程的特点:大型化、管道化、连续化、快速化、自动化。
过程装备:实现过程工业的硬件手段。
如机械、设备、管道、工具和测量仪表以及自动控制用的电脑、调节操作机构等。
过程装备:三大部分:1.过程设备 2.过程机械 3.过程控制过程设备(静设备):压力容器、塔、反应釜、换热器、储罐、加热炉、管道等。
也称为:化工设备;压力容器过程机械(动设备):(Process Machinery)压缩机、泵、分离机(二机一泵);电机、风机、制冷机、蒸汽轮机、废气轮机等。
也称为:化工机器;流体机械;动力设备;泵与压缩机。
占过程工业总设备投资的 20 ~25%,系统运行的心脏过程控制测控仪表、阀、电气源、转换器、计算机 ,监控设备,记录设备等。
也称为:控制仪表;自动化设备过程控制内容:压力、温度、流量、液位、浓度、密度、粘度等流体机械:以流体为工质进行能量转换、处理与输送的机械。
流体机械分类:原动机、工作机、液力传动机。
(1)原动机:将流体的能量转化为机械动力能的机械为原动机。
↓↓势能(压能)动能机械能特点:流体能→机械能;流体产生动力。
例如:水轮机、蒸汽轮机、燃气轮机、废气轮机、涡轮发动机、蒸汽机、内燃机等。
(2)工作机:将机械能转化为流体的能量的机械为工作机。
特点:机械能→流体能;流体吸收动力。
例如:压缩机、泵、分离机、鼓风机、通风机、制冷机等。
(3)液力传动机:将机械能转化为流体能,然后流体能又转化为机械能。
特点:机械能→流体能→机械能;流体传递动力。
例如:液压机械:液压马达+液压泵、液压缸等。
液力机械:液力变矩器、液力偶合器、液力制动器。
关系:世界能源形式:石油、煤炭、水利、核能、风能、太阳能、地热能。
这些能源利用率高低,直接由流体机械来决定。
过程流体机械按流体形态分类(一)压缩机将机械能转变为气体的能量,给气体增压与输送气体的机械称为压缩机。
如:往复式压缩机、离心式压缩机、轴流式压缩机、螺杆压缩机等。
(二)泵将机械能转变为液体的能量,给液体增压与输送液体的机械称为泵。
如:离心泵、轴流泵、液压泵、容积泵等。
在特殊情况下流经泵的介质为液体和固体颗粒的混合物三)分离机用机械能将混合介质(液体与固体、或液体与液体)分离开来的机械称为分离机。
如:过滤式离心机、沉降式离心机、压滤机等。
按流体机械结构特点分类(一)往复式结构的流体机械通过能量转换使流体提高压力的主要运动部件是在缸中做往复运动的活塞,而活塞的往复运动是靠旋转运动的曲轴带动连杆和活塞来实现。
输送流体流量较小,单级升压较高。
特点:作功元件往复运动如:往复式压缩机;往复活塞泵等。
(二)旋转式结构的流体机械通过能量转换使流体提高压力或分离的主要运动部件是转轮、叶轮或转鼓,该旋转件可直接由原动机驱动。
输送流体流量大,单级升压不高。
由多级组成或由几台多级的机器串联成机组。
如:各种回转式、叶轮式的压缩机和泵、分离机等。
特点:作功元件回转运动。
(三)摇摆式结构的流体机械如:摇摆活塞式无油压缩机。
特点:作功元件摇摆运动。
无油运行。
原理:一个整体的活塞连杆当机轴旋转运动时在气缸内“摇摆”。
压缩机的分类与命名(一)按工作原理分类动力式压缩机随着气体连续地由入口流向出口,将其动能转换为势能来提高气体压力的一种压缩机。
特点:具有驱使气体获得流动速度的叶轮。
理论基础:反映流体静压与动能守恒关系的流体力学伯努利方程。
()222211102dp c c ρ+-=⎰容积式压缩机 通过运动件的位移,使一定容积的气体顺序地吸入和排出封闭空间以提高静压力的压缩机。
特点: 依靠工作腔容积的变化来压缩气体。
因而其具有容积可周期变化的工作腔。
理论基础: 反映气体基本状态参数p 、V 、T 关系的气体状态方程。
pV=mRT(二)按排气压力分类(表压)通风机:p < 15kPa鼓风机: 15kPa < p < 0.2MPa压缩机:p > 0.2MPa低压压缩机:0.2MPa < p < 1.0MPa中压压缩机:1.0MPa < p < 10MPa高压压缩机:10MPa < p < 100MPa超高压压缩机:p > 100MPa(三)按压缩机级数分类级:完成压缩循环的基本单元。
单级压缩机:气体仅通过一次工作腔或叶轮压缩。
两级压缩机:气体顺次通过两次工作腔或叶轮压缩。
多级压缩机:气体顺次通过多次工作腔或叶轮压缩。
(四)按功率大小分类小型压缩机:功率小于5kw中型压缩机:功率5~450kw大型压缩机:功率大于450kw压缩机的用途:动力用压缩机、化工工艺用压缩机、制冷和气体分离用压缩机、气体输送用•压缩机的一些术语和基本概念性能参数:表征压缩机主要性能的诸参数,如气量、压力、温度、功率及噪声、振动等。
结构参数:表征压缩机结构特点的诸参数,如活塞力、行程、转速、列数、各级缸径、外形尺寸等。
表压力和绝对压力:用压力表测得的压力称为表压力,它是容器中压力与当地大气压之差。
表压力数值后一般加符号“(G)”表示。
名义压力(公称压力):不顾及各种影响,作为分级标准或初步设计计算的压力值。
实际压力:压缩机在运行过程中的瞬时压力值。
标准吸气位置:距吸气法兰的距离为一个管直径处。
标准排气位置:距排气法兰的距离为一个管直径处。
吸气压力(吸入压力):在标准吸气位置气体的平均绝对全压力。
排气压力(排出压力):在标准排气位置气体的平均绝对全压力。
进气压力:压缩机首级的吸气压力称为进气压力。
输气压力:压缩机末级的排气压力称为输气压力。
名义吸气压力p1:压缩机第一级标准吸气位置处压力。
名义排气压力p2:压缩机末级标准排气位置处压力。
实际吸气压力p s:压缩机某级压缩终了时工作腔内压力。
实际排气压力p d:压缩机某级排气终了时工作腔内压力。
气缸:与活塞构成工作容积的部件。
汽缸:发动机内的圆筒形空室,里面有一个工作流体的压力或膨胀力推动的活塞。
气缸是活塞式压缩机中组成压缩容积的主要部分。
气缸与活塞配合完成气体的逐级压缩,它要承受气体的压力,活塞在其中往复运动,气缸应有良好的工作表面以利于润滑并应耐磨,为了散发气体被压缩时产生的热量以及摩擦生热,气缸应有良好的冷却。
气缸体(缸体):气缸中容纳活塞的零件。
气缸座(缸座):位于内止点端封闭气缸体的座,若与缸体制成一体时,则称缸座部分。
气缸头(缸头):位于外止点端封闭气缸体并可安装气阀的端盖。
气缸盖(缸盖):位于外止点端封闭气缸体而不可安装气阀的端盖。
气缸套(缸套):镶在气缸内形成活塞部件相对摩擦面的圆筒形衬套。
•气阀是控制工质进、出气缸的阀。
它是压缩机的一个重要部件,属于易损件。
它的质量及工作的好坏直接影响压缩机的输气量、功率损耗和运转的可靠性。
气阀包括吸气阀和排气阀,活塞每上下往复运动一次,吸、排气阀各启闭一次,从而控制压缩机并使其完成吸气、膨胀、压缩、排气等四个工作过程•目前,活塞式压缩机所应用的气阀,都是随着气缸内气体压力的变化而自行启闭的自动阀,由阀座、运动密封元件(阀片或阀芯)、弹簧、升程限制器等组成。
自动阀的阀片在两边压差的作用下开启,在弹簧作用力下关闭。
阀片与阀座或升程限制器之间的粘附力、阀片与导向块之间的摩擦力等,也影响阀片的开启与关闭。
活塞是在气缸内做往复运动,构成周期性容积变化的零部件。
活塞必须有良好的密封性,有足够的强度和刚度,重量轻,制造工艺好。
要求活塞和活塞杆的连接和定位可靠,活塞杆表面硬度高、耐磨、光洁度高。
•按活塞与气缸间的密封分为两种:☐活塞环密封☐迷宫密封活塞环是气环和油环的统称。
气环(压缩环)是密封压缩介质的环;油环是刮除气缸壁面上多余润滑油的环。
活塞环是密封气缸镜面和活塞间间隙用的零件,另外还起到布油和导热的作用。
对活塞环的基本要求是密封可靠和耐磨损。
气体从高压侧第一道环逐级漏到最后一道环时,每一道环所承受的压力差相差较大。
第一道活塞环承受着主要的压力差,并随着转速的提高,压力差也增高。
第二道承受的压力差就不大,以后各环逐级减少。
因此环数过多是没有必要的,反而会增加气缸磨损,增大摩擦功。
活塞环的密封原理是:反复节流为主,阻塞效应为辅。
迷宫密封又称梳齿密封,属于非接触式密封。
即人为的在泄漏通道内加设许多齿或槽,来增加泄漏流动中的阻力,使造成泄漏的压差急骤的损失。
迷宫活塞式压缩机是利用活塞与气缸之间小间隙的流阻来实现密封的,使用迷宫密封时不仅活塞密封无需润滑,而且因为活塞与气缸这一运动副不直接接触,因此不存在摩擦损失,这样就保证了压缩机的高效率和工作表面没有磨损。
迷宫密封优点:•1、迷宫密封所提供的压缩气体是绝对干燥的,压缩过程是无油润滑。
•2、允许输送介质中夹带微小固体粉末,如聚合产品或者催化剂粉末。
•3、对一般密封不能胜任的高温、高压、高速和大尺寸密封部位特别有效。
•4、不需要采用其他密封材料,密封零件可以在制造压缩机本体时一并设计制造。
•5、由于排气侧不需要油分离器或滤油器,不仅减少了设备,而且减少了气体的压力损失(能量损失)。
•6、没有活塞环与气缸壁的摩擦及摩擦热,故功耗少,设计简单,使用可靠,寿命长。
缺点:加工精度高,难于装配,间隙过小,常因压缩机运转不良而发生磨损,磨损后使压缩机性能发生大大下降。
填料函组件是阻止气缸内压缩介质沿活塞杆表面泄露的密封装置。
曲轴(主轴):将旋转运动通过连杆使十字头或活塞做往复直线运动的拐形轴。
曲轴主要包括主轴颈、曲柄和曲拐销等部分。
为了平衡曲轴惯性力或惯性力矩,在曲柄下端设平衡铁,平衡铁与曲柄连接多采用抗拉螺栓连接。
为了润滑主轴颈和曲柄销,直至十字头销,曲轴上开设有油孔。
连杆:连接曲轴和十字头或活塞的零件。
十字头(滑块):通过十字头销,使连杆小头与活塞杆铰接,并沿十字头滑道面做往复直线运动的零部件。
具有导向作用。
连杆力、活塞力、侧向力在此交汇。
润滑系统是压缩机中对各运动摩擦副输送润滑剂的装置根据活塞压缩机结构的特点,润滑大致分为两种情况。
(一)飞溅润滑(二)压力润滑润滑作用◆减小摩擦功率,降低压缩机功率消耗;◆减少滑动部位的磨损,延长零件寿命;◆润滑剂有冷却作用,可防止滑动部位因摩擦热使零件工作温度过高导致卡死或烧伤,保证滑动部位必要的运转间隙;◆用油作润滑剂时,还有防止零件生锈的作用。