2021年九年级数学章节专题测试及答案《视图与投影》

合集下载

2021年九年级数学下册第二十九章《投影与视图》经典测试卷(提高培优)(1)

2021年九年级数学下册第二十九章《投影与视图》经典测试卷(提高培优)(1)

一、选择题1.如图所示的几何体的俯视图是()A.B.C.D.2.如图,是一个由若干个小正方体组成的几何体的主视图和左视图,则该几何体最多可由多少个小正方体组合而成?()A.12个B.13个C.14个D.15个3.一个几何体是由若干个相同的正方体组成的,其主视图和左视图如图所示,则这个几何体最多可由多少个这样的正方体组成()A.12B.13C.14D.154.如图是由一些相同的小正方体构成的立体图形的三视图.构成这个立体图形的小正方体的个数是()A.6 B.7 C.4 D.55.如图,是一个由若干个小正方体组成的几何体的三视图.则该几何体最多可由多少个小正方体组合而成?( )A.11个B.14个C.13个D.12个6.下列几何体中,三视图有两个相同而另一个不同的是()A.(1)(2)B.(2)(3)C.(2)(4)D.(3)(4)7.如图是小明一天看到的一根电线杆的影子的俯视图,按时间先后顺序排列正确的是( )A.(1)(2)(3)(4) B.(4)(3)(2)(1) C.(4)(3)(1)(2) D.(2)(3)(4)(1) 8.如图是一个由5个完全相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.9.有6个相同的立方体搭成的几何体如图所示,则它的主视图是( )A.B.C.D.10.下列几何体各自的三视图中,有且仅有....两个视图相同的是()A .①②B .②③C .①④D .②④11.下面的三视图对应的物体是( )A .B .C .D .12.如图,阳光从教室的窗户射入室内,窗户框AB 在地面上的影子长DE =1.8m ,窗户下沿到地面的距离BC =1m ,EC =1.2m ,那么窗户的高AB 为( )A .1.5mB .1.6mC .1.86mD .2.16m13.如图所示是某几何体从三个方向看到的图形,则这个几何体是( )A .三棱锥B .圆柱C .球D .圆锥14.图2是图1中长方体的三视图,若用S 表示面积,222S x x S x x ++主左=,=,则S 俯=( )A .232x x ++B .22x +C .221x x ++D .223x x +15.如图,路灯距地面 8m ,身高 1.6m 的小明从点 A 处沿 AO 所在的直线行走 14m 到点 B 时,人影长度 ()A.变长3.5m B.变长2.5m C.变短3.5m D.变短2.5m二、填空题16.广场上一个大型艺术字板块在地上的投影如图所示,则该投影属于_____.(填写“平行投影”或“中心投影”)17.如图,身高1.6米的小丽在阳光下的影长为2米,在同一时刻,一棵大树的影长为8米,则这棵树的高度为_____米.18.如图,用棱长为1cm的小立方块组成一个几何体,从正面看和从上面看得到的图形如图所示,则这样的几何体的表面积的最小值是__cm2.19.由几个相同小正方体搭成的几何体的主视图与左视图如图所示,则该几何体最少由________个小正方体搭成.20.一个几何体由若干大小相同的小立方块搭成,如图所示的分别是从它的正面、左面看到的图形,则搭成该几何体最多需要__个小立方块.21.一个几何体是由一些大小相同的小正方块摆成的,其俯视图与主视图如图所示,则组成这个几何体的小正方块最多有________.22.如图,是由一些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要________个小立方块.23.如图,小军、小珠之间的距离为2.8m,他们在同一盏路灯下的影长分别为1.7m,1.5m,已知小军、小珠的身高分别为1.7m,1.5m,则路灯的高为________m.24.用小立方块搭成的几何体从正面和上面看的视图如图,这个几何体中小立方块的个数最多有_________个.25.几个相同的正方体叠合在一起,该组合体的主视图和俯视图如右图所示,那么组合体中正方体的个数至多有________个.26.如图,墙角处有6个棱长为1分米的正方体纸盒,露在外面的面积之和是_____平方分米.三、解答题27.(1)如右图,已知A、B、C是由边长为1的小正方形组成网格纸上的三个格点,根据要求在网格中画图.①画线段BC;②过点A画BC的平行线AD;③在②的条件下,过点C画直线AD的垂线,垂足为点E.(2)下图是由10个相同的小立方块搭成的几何体,请在下面方格纸中画出它的主视图.28.如图是一个几何体从三个方向看所得到的形状图.(1)写出这个几何体的名称;(2)若从正面看的长为10cm,从上面看到的圆的直径为4cm,求这个几何体的表面积(结果保留π).29.(1)如图①是一个组合几何体,右边是它的两种视图,在右边横线上填写出两种视图名称;(2)根据两种视图中尺寸(单位:cm),计算这个组合几何体的表面积.(π取3.14)A B,且木棒AB的长为8cm. 30.已知木棒AB垂直投射于投影面a上的投影为11A B长;(1)如图(1),若AB平行于投影面a,求11A B长.(2)如图(2),若木棒AB与投影面a的倾斜角为30,求这时11。

人教版数学九年级下学期第29章《投影与视图》测试题含答案

人教版数学九年级下学期第29章《投影与视图》测试题含答案

人教版数学九年级下学期第29章《投影与视图》测试题(测试时间:90分钟满分:120分)一、选择题(每小题3分,共30分)1.如图所示几何体的主视图是().A. B. C. D.2.如图所示的几何体的俯视图是()A. B. C. D.3.如图用6个同样大小的立方体摆成的几何体,将立方体①移走后,所得几何体与原来几何体的()A.主视图改变,左视图改变 B.俯视图不变,左视图不变C.俯视图改变,左视图改变 D.主视图改变,左视图不变4.下列四个几何体中,它们的主视图、左视图、俯视图都是正方形的是()A. B. C. D.5.如图,是由几个小立方体所搭成的几何体的俯视图,小正方形中的数字表示在该位置上的立方体的个数,这个几何体的正视图是()A. B. C. D.6.如图所示是由六个相同的小立方块搭成的几何体,这个几何体的俯视图是().A. B. C. D.7.下列四幅图形中,表示两棵圣诞树在同一时刻阳光下的影子的图形可能是( ) 8.如图,按照三视图确定该几何体的全面积为(图中尺寸单位:cm)()A.128πcm2 B.160πcm2 C.176πcm2 D.192πcm29.如图所示的几何体的左视图是()A. B. C. D.10.如图,在房子屋檐E处安有一台监视器,房子前有一面落地的广告牌,那么监视器的盲区是()A.△ACE B.△ADF C.△ABD D.四边形BCED二、填空题(每小题3分,共30分)11.苏轼的诗句“横看成岭侧成峰,远近高低各不同”把此诗句用在视图上,说明的现象是________.12.如图,请写出图,图,图是从哪个方向可到的:图________;图________;图________.13.图是一个几何体的主视图、左视图和俯视图,则这个几何体是________.(填序号)14.如图,②是①中图形的________视图.②15.下列投影:①阳光下遮阳伞的影子;②灯光下小明读书的影子;③阳光下大树的影子;④阳光下农民锄地的影子;⑤路灯下木杆的影子.其中属于平行投影的是_______,属于中心投影的是_____.(填序号) 16.图(1)是一个水平摆放的小正方体木块,图(2)、(3)是由这样的小正方体木块叠放而成,按照这样的规律继续叠放下去,至第七个叠放的图形中,小正方体木块总数应是_________.17.有两根大小、形状完全相同的铁丝,甲铁丝与投影面的夹角是45°,乙铁丝与投影面的夹角是30°,那么两根铁丝在投影面的正投影的长度的大小关系是:甲____乙(填“>”“<”或“=”).18.如图,Rt△ABC中,∠ACB=90°,CD⊥AB,那么线段AC在AB上的正投影是___,线段CD在AB上的正投影是___,线段BC在AB上的正投影是___.19.如图,是一个包装盒的三视图,则这个包装盒的表面积是(结果保留π)20.如图,小明同学在非洲旅游期间想自己测出金字塔的高度,首先小明在阳光下测量出了长1 m的木杆CD的影子CE长1.5m;其次测出金字塔中心O到影子的顶部A的距离为201m。

2021-2022学年度沪科版九年级数学下册第25章投影与视图专题测试试题(含答案解析)

2021-2022学年度沪科版九年级数学下册第25章投影与视图专题测试试题(含答案解析)

沪科版九年级数学下册第25章投影与视图专题测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图所示的几何体的主视图是()A.B.C.D.2、如图所示的几何体,它的左视图是()A.B.C.D.3、如图所示的领奖台是由三个长方体组合而成的几何体,则这个几何体的左视图是()A.B.C.D.4、一个由若干个相同的小正方体组成的几何体的主视图和俯视图如图所示,则小正方体的最少个数为()A.6 B.7 C.8 D.95、下列哪种光线形成的投影是平行投影()A.太阳B.探照灯C.手电筒D.路灯6、四个相同的小正方体组成的立体图形如图所示,它的主视图为()A.B.C.D.7、如图是由5个小立方块搭成的几何体,则该几何体从左面看到的形状图是()A.B.C.D.8、如图是由几个大小相同的小正方体搭成的几何体,若去掉1号小正方体,则下列说法正确的是()A.左视图和俯视图不变B.主视图和左视图不变C.主视图和俯视图不变D.都不变9、如图所示的工件中,该几何体的俯视图是()A.B.C.D.10、如图是从不同方向看某个立体图形所得到的平面图形,则这个立体图形是()A.三棱柱B.三棱锥C.圆柱D.圆锥第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图是一个几何体的三视图,根据图中所示数据计算这个几何体的表面积是________.2、由若干个小正方体组成的几何体的三视图如图所示,则组成这个几何体的小正方体的个数为______.3、下图是由若干个相同的小正方体组合而成的一个几何体的三视图,则组成这个几何体的小正方体个数是_________.4、如图,AB和DE是直立在地面上的两根立柱,AB=6(m),AB在阳光下的影长BC=3(m),在同一时刻阳光下DE的影长EF=4(m),则DE的长为________米.5、如图,用小立方块搭一几何体,从正面看和从上面看得到的图形如图所示,这样的几何体至少要_____个立方块.三、解答题(5小题,每小题10分,共计50分)1、如图是由几个相同的边长为1个单位的小立方块搭成的几何体从上面看到的形状,方格中的数字表示该位置的小立方块的个数.(1)请在方格纸中分别画出从正面和左面所观察到的几何体的形状;(2)由三个不同方向所观察到的图形可知这个组合几何体的表面积为________个平方单位(包括底面积).2、如图所示是一个用小立方体搭成的几何体的俯视图,小正方形中的数字表示在该位置的小立方体的个数,请你画出它的主视图与左视图.3、根据要求完成下列题目.(1)图中有_____块小正方体.(2)请在方格纸中分别画出它的左视图和俯视图(画出的图都用铅笔涂上阴影).(3)用小正方体搭一几何体,使得它的俯视图和左视图与你在下图方格中所画的图一致,则这样的几何体最少要____个小正方体,最多要____个小正方体.4、一个几何体由大小相同的立方块搭成,从上面看到的形状如图所示,其中小正方形中的数字表示在该位置的立方块个数.(1)在所给的方框中分别画出该儿何体从正面,从左面看到的形状图;(2)若允许从该几何体中拿掉部分立方块,使剩下的几何体从正面看到的形状图和原几何体从正面看到的形状图相同,则最多可拿掉个立方块.5、一个几何体的三种视图如图所示,(1)这个几何体的名称是______,其侧面积为______;(2)在右面方格图中画出它的一种表面展开图;(3)求出左视图中AB的长.-参考答案-一、单选题1、A【分析】根据从正面看得到的图形是主视图,可得答案.【详解】解:从正面看,如图:故选:A.【点睛】此题考查小正方体组成的几何体的三视图,正确掌握几何体三视图的画法是解题的关键.2、C【分析】根据几何体的左面是一个圆环即可得左视图.【详解】由于几何体的左面是一个圆环,故其左视图也是一个圆环,且小圆是实线.故选:C.【点睛】本题考查了三视图,根据所给几何体正确画出三视图是关键.3、C【分析】左视图是从左边看得到的视图,结合选项即可得出答案.【详解】解:A是俯视图,B、D不是该几何体的三视图,C是左视图.故选:C.【点睛】本题考查了简单组合体的三视图,属于基础题,从正面看到的图是主视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.4、B【分析】根据几何体的三视图特点解答即可.【详解】解:根据俯视图,最底层有4个小正方体,由主视图知,第二层最少有2个小正方体,第三层最少有1个小正方体,∴该几何体最少有4+2+1=7个小正方体组成,故选:B.【点睛】本题考查几何体的三视图,掌握三视图的特点是解答的关键.5、A【分析】中心投影是指把光由一点向外散射形成的投影,平行投影是在一束平行光线照射下形成的投影,根据定义逐一分析即可得到答案.【详解】解:太阳光线形成的投影是平行投影,探照灯,手电筒,路灯形成的投影是中心投影,故选A【点睛】本题考查的是平行投影与中心投影的含义及应用,根据定义熟练判断中心投影与平行投影是解题的关键.6、A【分析】根据几何体的三视图解答即可.【详解】根据立体图形得到:主视图为:,左视图为:,俯视图为:,故选:A【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.7、D【分析】左视图:从左边看立体图形,看到的平面图形是左视图,根据左视图的定义可得答案.【详解】解:该几何体从左面看到的形状图有2列,第1列看到1个正方形,第2列看到2个正方形,所以左视图是D,故选D【点睛】本题考查的是三视图,值得注意的是能看到的立体图形中的线条都要画成实线,看不到的画成虚线,掌握“左视图的含义”是解题的关键.8、A【分析】根据从正面看得到的图形是主视图,从左边看得到的图形是左视图,从上边看得到的图形是俯视图,再从看到的小正方形的个数与排列方式两个方面逐一分析可得答案.【详解】解:若去掉1号小正方体,主视图一定变化,主视图中最右边的一列由两个小正方形变为一个,从上面看过去,看到的小正方形的个数与排列方式不变,所以俯视图不变,从左边看过去,看到的小正方形的个数与排列方式不变;所以左视图不变,所以A符合题意,B,C,D不符合题意;故选:A.【点睛】本题考查的是由小正方体堆砌而成的图形的三视图,掌握“三视图的含义”是解本题的关键.9、B【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】解:从上边看是一个同心圆,外圆是实线,内圆是虚线,故选:B.【点睛】本题考查了简单组合体的三视图,解题关键是掌握从上边看得到的图形是俯视图.10、A【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【详解】解:由主视图和左视图为长方形判断出是柱体,由俯视图是三角形可判断出这个几何体应该是三棱柱.故选:A .【点睛】本题考查了由三视图判断几何体,主视图和左视图的大致轮廓为长方形的几何体为柱体,俯视图为三角形就是三棱柱.二、填空题1、18π【分析】由几何体的三视图可得出原几何体为圆锥和圆柱组合体,根据图中给定数据求出表面积即可.【详解】解:由几何体的三视图可得出原几何体为圆锥和圆柱组合体,根据主视图中给定数据可知圆锥的母线长是3,底面圆的直径是4,圆柱的高是2, 因此圆锥的侧面积为:4362S rl πππ==⨯⨯= 圆柱的侧面积为:422282S rh πππ==⨯⨯= 底面圆的面积为:22442S r πππ⎛⎫==⨯= ⎪⎝⎭ 因此这个几何体的表面积为:68418ππππ++=故答案为:18π.【点睛】本题考查了由三视图判断几何体、圆锥和圆柱的计算,由几何体的三视图可得出原几何体为圆锥和圆柱组合体是解题的关键.2、6【分析】利用主视图、左视图、俯视图是分别从物体正面、左面和上面看所得到的图形,进而判断图形的形状,即可得出小正方体的个数.【详解】从俯视图看至少有4个小正方体,从主视图看至少有6个小正方体,结合左视图,则只有6个小正方体.故答案为:6.【点睛】本题考查了学生对三视图的掌握程度和灵活运用能力,根据三视图确定物体的形状,也考查学生空间想象能力.3、5【分析】利用主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,进而判断图形形状,即可得出小正方体的个数.【详解】解:综合三视图,我们可以得出,这个几何模型的底层有3+1=4个小正方体,第二有1个小正方体,因此搭成这个几何体模型所用的小正方体的个数是4+1=5个.故答案为:5.【点睛】本题考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”是解题的关键.4、8【分析】∆∆,利用相似三连接AC,DF,根据平行投影的性质得DF AC,根据平行的性质可知ABC DEF角形对应边成比例即可求出DE的长.【详解】解:如图,连接AC,DF,根据平行投影的性质得DF∥AC,∴∠=∠,ACB DFE∠=∠=︒,90ABC DEF∴,~ABC ED FAB BC∴=,DE EF63∴=,DE4∴=.8()DE m故答案为:8.【点睛】本题主要考查相似三角形的判定和性质,掌握相似三角形的判定定理以及性质是解题的关键.5、12【分析】主视图是从正面看到的,俯视图是从上面看到的,据此求解即可.【详解】解:根据俯视图可得该几何体最下面一层有6个小立方块;从主视图可知最上面一层至少需要3个小立方块,中间一层至少需要3个小立方块,所以,这样的几何体最少需要3+3+6=12(个)小立方块;故答案为:12.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖”就更容易得到答案.三、解答题1、(1)图见解析;(2)24;【分析】(1)从正面看有2列,每列小正方形数目分别为2,3;从左面看有2列,每列小正方形数目分别为3,1;(2)上面共有3个小正方形,下面共有3个小正方形;左面共有4个小正方形,右面共有4个正方形;前面共有5个小正方形,后面共有5个正方形,继而可得出表面积.【详解】解:(1)如图所示(2)根据从三个方向看的形状图,这个几何体的表面积为2×(5+4+3)=24(平方单位),故答案为:24.【点睛】此题考查了从不同方向看几何体及几何体的表面积的计算,解答本题的关键是掌握立体图形的观察方法.2、见解析【分析】根据简单组合体的三视图的意义和画法画出相应的图形即可.【详解】这个组合体的三视图如下:【点睛】本题考查简单组合体的三视图,理解视图的定义,掌握简单组合体三视图的画法是正确解答的关键.3、(1)6;(2)见解析;(3)5,7【分析】(1)根据图形知图形的层数及各层的块数,相加即得;(2)根据三视图的画法解答;(3)最少时只能将竖列的两个的最上一个去掉,最多时在两个的最上加一个.【详解】解:由图知,图形共有3层,最下层有3块小正方体,中间一层有2块,最上一层有1块,∴图中共有1+2+3=6块小正方体,故答案为:6;(2)如图:(3)如图,用小正方体搭一几何体,使得它的俯视图和左视图与你在下图方格中所画的图一致,则这样的几何体最少要5个,最多需要7个,故答案为:5,7.【点睛】此题考查画小正方体构成的立体图形的三视图,数小正方体的个数,正确掌握立体图形的三视图的画法是解题的关键.4、(1)见详解;(2)6【分析】(1)根据从正面看得到的图形是主视图,从正面看分左中右三列,左列有3个正方形,中间列有3个正方形,右边列有2个正方形,画出主视图从左边看到的图形是左视图,分三行前中后三行,从右边数前行有3个正方形,中行由3个正方形,后行1个正方形可画出左视图即可;(2)根据立体图形的遮挡主视图、俯视图不变在俯视图中得出拿去的小正方体的个数.【详解】解:(1)从正面看得到的图形是主视图,从正面看分左中右三列,左列有3个正方形,中间列有3个正方形,右边列有2个正方形,可画出主视图从左边看到的图形是左视图,分三行前中后三行,从右边数前行有3个正方形,中行由3个正方形,后行1个正方形可画出左视图该几何体从正面,从左面看到的图形如图所示:(2)拿掉后,剩下的几何体从正面看到的形状图和原几何体从上面看到的形状图相同,则最多可拿掉6个左列前行2个正方形,中列中行2个正方形,中列后行1个小正方形,右列中行1个正方形,共6个正方形,如图故答案为:6.【点睛】本题考查简单几何体的三视图,正确想象出几何体的形状是解题关键,画三视图时注意“长对正,宽相等,高平齐”.5、(1)正三棱柱,72;(2)画图见解析;(3)【分析】(1)由三视图所表现特征可知几何体为正三棱柱,正三棱柱侧面积为三个矩形,则侧面积为72.(2)如图所示,答案不唯一.(3)EFG中过E点作FG垂线,垂足为H,可求得FH=2,再由勾股定理即可求得FH=【详解】(1)该几何体由主视图和左视图可判断为棱柱,由俯视图可判断为正三棱柱S=⨯⨯=34672侧(2)如图所示(3)如图所示,EFG中过E点作FG垂线,垂足为H∵EFG为等边三角形∴FH=2,∠EHF=∠EHG=90°∴EH=【点睛】本题考查了三视图以及勾股定理,三视图是从正面、左面、上面以平行视线观察物体所得的图形,判断三视图时应结合实物,变换角度去观察,结合空间想象能力,由三视图求几何体的侧面积或表面积时,首先要根据三视图描述几何体,再根据三视图“长对正、高平齐、宽相等”的关系和轮廓线的位置确定各个面的尺寸,然后求表面积或侧面积.。

第5章 投影与视图 北师大版九年级数学上册综合复习及答案

第5章 投影与视图 北师大版九年级数学上册综合复习及答案

第五章投影与视图 2024--2025学年北师大版九年级数学上册专题一投影【知识聚焦】投影通常考查画图与计算两个方面:画图可根据投影的定义,利用平行投影中光线平行为已知条件;中心投影常利用两条直线相交确定光;计算常利用相似知识解决.1. 投影的相关概念物体在光线的照射下,在某个平面内形成的影子叫做投影. 这时,照射光线叫做投影线,影子(投影)所在的平面叫做投影面.2. 平行投影的概念由平行光线形成的投影是平行投影. (注意:平行投影的投影线都是平行的)3. 正投影的概念投影线垂直于投影面产生的投影叫做正投影. 在实际作图中,正投影被广泛应用,主要有线段、平面图形及立体图形.4. 中心投影的概念由同一点(点光) 发出的光线形成的投影叫做中心投影.(注意:中心投影的光是点光,它的光线相交于一点)5. 视点、视线和盲区的概念由同一点(点光)发出的光线形成的投影叫做中心投影.(注意:中心投影的光是点光,它的光线相交于一点)【典例精讲】题型1 平行投影的应用【例1】如图所示,在一面与地面垂直的围墙的同侧有一根高10米的旗杆AB 和一段高度未知的电线杆 CD,它们都与地面垂直,为了测得电线杆的高度,一个小组的同学进行了如下测量;某一时刻,在太阳光照射下,旗杆落在围墙的影子 EF的长度为2米,落在地面上的影子BF的长度为10米,而电线杆落在围墙上的影子GH的长度为3米,落在地面上的影子DH的长度为5米. 依据这些数据,该小组的同学计算出了电线杆的高度.(1) 该小组的同学在这里利用的是投影的有关知识进行计算的.(2) 试计算出电线杆的高度,并写出计算过程.举一反三。

1. 如图所示,该小组发现8米高的旗杆DE 的影子 EF 落在了包含一圆弧形小桥在内的路上,于是他们开展了测算小桥所在圆的半径的活动. 小刚身高1.6米,测得其影长为2.4米,同时测得 EG的长为3米,HF 的长为1米,测得拱高(弧GH的中点到弦GH的距离,即MN的长度) 为2米,求小桥所在圆的半径.题型 2 中心投影的应用【例2】如图所示,不透明圆锥体 DEC 放在直线 BP 所在的水平面上且 BP 过圆锥底面的圆心,圆锥的高为23m,底面圆半径为2m,一点光位于点 A处,照射到圆锥体后,在水平面上留下的影长BE=4m.(1) 求∠ABC的度数;(2) 若∠ACP=2∠ABC, 求光A距水平面的高度.举一反三2. 小明现有一根2m长的竹竿,他想测出自家门口马路上一盏路灯的高度,但又不能直接测量,他采用了如下办法:①先走到路旁的一个地方,竖直放好竹竿,测量此时的影长为1m;②沿竹竿影子的方向向远处走了两根竹竿的长度4m,然后又竖直放好竹竿,测量此时竹竿的影子长正好为2m.小明说他可以计算出路灯的高度,他如何计算?题型3 盲区的实际应用问题【例3】如图所示,AB 表示一坡角为60°、高为2003米的山坡,一架距地面1000 米的飞机(点C)在山前飞行,此时从飞机看山顶A的俯角为30°.(1) 请在图中画出飞机向山后看的盲区的大小;(2) 求当飞机继续向高处飞多少米时向山后看无盲区?举一反三3. 如图所示,左边的楼高,AB=60m,右边的楼高CD=24m,且BC=30m,地面上的目标P 位于距C点 15m处.(1) 请画出从A 处能看到的地面上距离点 C 最近的点,这个点与点C之间的距离为多少?(2) 从A 处能看见目标P吗? 为什么?题型 4 几何知识型问题【例4】如图所示,已知一纸板ABCD的形状为正方形,其边长为10cm,AD,BC与投影面β平行,AB,CD与投影面β不平行,正方形在投影面β上的正投影为. A₁B₁C₁D₁,若∠ABB₁=45°,求正投影A₁B₁C₁D₁的面积.举一反三4. 如图所示,在Rt△ABC中,∠C=90°,在阳光的垂直照射下,点C 落在斜边AB上的点 D.(1) 试探究线段AC,AB和AD 之间的关系,并说明理由;(2) 线段BC,AB和BD之间也有类似的关系吗?专题二视图【知识聚焦】对同一个物体从不同方向看,可以得到不同的视图,画一个物体的三视图(主视图、俯视图、左视图)是有具体规定的.主视图、俯视图:长对正;主视图、左视图:高平齐;俯视图、左视图:宽相等.可简单记为口诀:主、俯长对正;主、左高平齐;俯、左宽相等.其次是:看得见,画实线;看不见,画虚线.有了三视图,我们既可以由几何体画出其三视图,也可以由物体的三种视图还原几何体的形状,从而求出几何体的表面积和体积.【典例精讲】题型1 物体三视图【例1】如图所示是一个螺母的示意图,它的俯视图是 ( )举一反三1. 如图所示的几何体的俯视图是 ( )题型 2 组合体识别型应用问题【例2】图中的三视图所对应的几何体是( )举一反三2. 如图所示的几何体的三视图是 ( )题型3 截面三视图识别型应用问题【例3】如图所示,一个正方体被截去四个角后得到一个几何体,它的俯视图是 ( )举一反三3. 如图所示是一个正方体截去一角后得到的几何体,它的主视图是( )题型4 三视图与几何体求解型应用问题【例4】如图是某几何体的三视图,则该几何体的体积是( )A.183B.543C.1083D.2163举一反三4. 如图所示是某几何体的三视图,根据图中数据,该几何体的体积为( )A. 60πB. 70πC. 90πD. 160π题型5 组合体计数型应用问题【例5】如图所示是由一些完全相同的小立方块搭成的几何体的三视图,那么搭成这个几何体所用的小立方块的个数是 ( )A. 9个B. 8个C. 7个D. 6个举一反三5. 如图所示是由一些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要个小立方块.题型6 规律探究思想型问题【例6】(1)如图1是用积木摆放的一组图案,观察图案并探索:第五个图案中共有块积木,第n个图案中共有块积木.(2)一样大小的小立方体,如图2所示那样,堆放在房间一角,若按此规律一共垒了十层,这十层中看不见的木块共有多少个?举一反三6. 如图1是棱长为a的小正方体,图2和图3是由这样的小正方体摆放而成的几何体. 按照这样的方法继续摆放,自上而下分别叫第1层、第2层……第n层.(1) 用含n的代数式表示第n层的小正方体的个数;(2) 求第10层小正方体的个数.。

2021年九年级数学下册第二十九章《投影与视图》经典习题(答案解析)(3)

2021年九年级数学下册第二十九章《投影与视图》经典习题(答案解析)(3)

一、选择题1.如图是由大小相同的小正方体搭成的几何体,将其中的一个小正方体①去掉,则三视图不发生改变的是( )A .主视图B .俯视图C .左视图D .俯视图和左视图 2.桌面上放着长方体和圆柱体各1个,按下图所示的方式摆放在一起,其左视图是( )A .B .C .D . 3.如图,把一个棱长为3的正方体的每个面等分成9个小正方形,然后沿每个面正中心的一个正方形向里挖空(相当于挖去7个小正方体),所得到的几何体的表面积是( )A .78B .72C .54D .484.如图是一个几何体的三视图(图中尺寸单位:cm ),根据图中所示数据求得这个几何体的侧面积是( )A .212cmB .()212πcm +C .26πcmD .28πcm 5.某几何体由若干个大小相同的小正方体搭成,其主视图与左视图如图所示,则搭成这个几何体的小正方体最少有( )A.4个B.5个C.6个D.7个6.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是()A.主视图B.左视图C.俯视图D.主视图和左视图7.小亮在上午8时、9时30分、10时、12时四次到室外的阳光下观察向日葵的头茎随太阳转动的情况,无意之中,他发现这四个时刻向日葵影子的长度各不相同,那么影子最长的时刻为()A.上午8时B.上午9时30分C.上午10时D.上午12时8.小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上;如图,此时测得地面上的影长为8米,坡面上的影长为4米.已知斜坡的坡角为300,同一时刻,一根长为l米、垂直于地面放置的标杆在地面上的影长为2米,则树的高度为()A.米B.12米C.米D.10米9.如图是一个由5个完全相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.10.如图,阳光从教室的窗户射入室内,窗户框AB在地面上的影子长DE=1.8m,窗户下沿到地面的距离BC=1m,EC=1.2m,那么窗户的高AB为()A.1.5m B.1.6m C.1.86m D.2.16m11.某展厅要用相同的正方体木块搭成一个展台,从正面、左面、上面看到的形状如图所示,请判断搭成此展台共需这样的正方体()A.3个B.4个C.5个D.6个12.某展厅要用相同的正方体木块搭成一个展台,从正面、左面、上面看到的形状如图所示,请判断搭成此展台共需这样的正方体().A.6个B.5个C.4个D.3个13.某个几何体的三视图如图所示,该几何体是( )A.B.C.D.14.如图是有一些相同的小正方体构成的立体图形的三视图.这些相同的小正方体的个数是()A.4 B.5 C.6 D.715.如图是由若干个相同的小立方体搭成的几何体的俯视图和左视图,则小立方体的个数不可能是()A.6个B.7个C.8个D.9个第II卷(非选择题)请点击修改第II卷的文字说明参考答案二、填空题16.如图所示是一种棱长分别是2cm,3cm,4cm的长方体积木,现要用若干块这样的积木来搭建大长方体,如果用6块积木来搭,那么搭成的大长方体的表面积最小是________2cm.17.已知一个圆锥体的三视图如图所示,则这个圆锥体的侧面积是__________.18.一个几何体由若干个大小相同的小正方体搭成,如图是从三个不同方向看到的形状图,则搭成这个几何体所用的小正方体的个数是个__________.19.如图是一个几何体的三视图,则这个几何体的侧面积是______.(结果保留 )20.如图是某几何体的三视图,则该几何体左视图的面积为_________.21.小新的身高是1.7m,他的影子长为5.1m,同一时刻水塔的影长是42m,则水塔的高度是_____m.22.如图,是某一个几何体的俯视图,主视图、左视图,则这个几何体是________.23.如图,由五个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体的主视图和左视图的面积之和是_____.24.如图是由棱长相等的小立方体摆成的几何体的主视图与俯视图,根据视图可以判断组成这个几何体至少要________个小立方体.25.如图,是由一些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要________个小立方块.26.图中几何体的主视图是().A B C D三、解答题27.晚上,小亮在广场乘凉,图中线段AB 表示站立在广场上的小亮,线段PO 表示直立在广场上的灯杆,点P 表示照明灯.(1)请你在图中画出小亮在照明灯P 照射下的影子BC (请保留作图痕迹,并把影子描成粗线);(2)如果小亮的身高 1.6AB m =,测得小亮影长2BC m =,小亮与灯杆的距离13BO m =,请求出灯杆的高PO .28.下图是某几何体的表面展开图:(1)这个几何体的名称是 ;(2)若该几何体的主视图是正方形,请在网格中画出该几何体的左视图、俯视图; (3)若网格中每个小正方形的边长为1,则这个几何体的体积为 .29.用5个棱长为1的正方体,组成如图所示的几何体.(1)该几何体的体积是 立方单位;(2)请在所给的方格纸中,用实线画出它的三个视图.30.把边长为1的10个相同正方体摆成如图的形式.(1)画出该几何体的主视图、左视图、俯视图;(2)试求出其表面积(包括向下的面);(3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的左视图和俯视图不变,那么最多..可以再添加个小正方体.。

2021-2022学年湘教版九年级数学下册第3章投影与视图单元测试及答案

2021-2022学年湘教版九年级数学下册第3章投影与视图单元测试及答案

第3章投影与视图一、选择题(本大题共8小题,每小题3分,共24分)1.如图1,小明在夜晚从路灯下的点A处走到点B处这一过程中,他在路上的影子()图1A.逐渐变长B.逐渐变短C.长度不变D.先变短后变长2.将如图2所示的直三棱柱展开,下列各示意图中不可能是它的表面展开图的是()图2 图33.如图4所示的圆锥,下列说法正确的是()图4A.该圆锥的主视图是轴对称图形B.该圆锥的主视图是中心对称图形C.该圆锥的主视图既是轴对称图形,又是中心对称图形D.该圆锥的主视图既不是轴对称图形,又不是中心对称图形4.将一个无盖的正方体盒子的表面沿某些棱剪开,展开后不能得到的平面图形是()图55.一个圆柱的侧面展开图是边长为a的正方形,则这个圆柱的体积为()A.a34πB.a32πC.a3πD.3a326.如图6是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是()图6A.5B.6C.7D.87.用圆心角为120°,半径为6 cm的扇形纸片卷成一个圆锥形无底纸帽(接缝忽略不计),如图7所示,则这个纸帽的高是()图7A.√2cmB.3√2cmC.4√2cmD.4 cm8.图8是某几何体的三视图,根据图中的数据,可得该几何体的体积为()图8A.800π+1200B.160π+1700C.3200π+1200D.800π+3000二、填空题(本大题共8小题,每小题4分,共32分)9.若在同一时刻的阳光下,甲的影子比乙的影子长,则在同一路灯下,(填“能”或“不能”)判断甲、乙谁的影子长.10.在长方体、圆柱、圆锥、球体中,三视图均一样的几何体是.11.如图9所示的几何体中,主视图与左视图都是长方形的是(填序号).图912.三棱柱的底面边长都是3 cm,侧棱长为5 cm,则它的侧面展开图的面积为cm2.13.如图10,由五个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体的主视图和左视图的面积之和是.图1014.若一个几何体的三视图如图11所示,则这个几何体的名称是.图1115.图12是一个几何体的三视图,若这个几何体的体积是36,则它的表面积是.图1216.在桌上摆着一个由若干个相同的小正方体组成的几何体,其主视图和左视图如图13所示,设组成这个几何体的小正方体的个数为n,则n的最小值为.图13三、解答题(共44分)17.(10分)在同一时刻、同一地点,一棵树(EF)和一旗杆(DC)的影子如图14所示.(1)该投影是平行投影还是中心投影?(2)画出小明的影子.图1418.(10分)如图15是一个几何体的三视图(单位:cm).(1)说出组成该几何体的两部分分别是什么几何体;(2)求该几何体的体积(结果保留π).图1519.(12分)如图16所示,正方体盒子的棱长为2,BC的中点为M.(1)一只蚂蚁从点M沿正方体的棱爬行到点D1,蚂蚁爬行的最短路程是多少?(2)若蚂蚁从点M沿正方体的表面爬行到点D1,请你结合正方体的展开图画出蚂蚁爬行的最短路线.图1620.(12分)如图17,阳光通过窗口照到教室内,竖直窗框在地面上留下2.1 m长的影子,已知窗框的影子DE到窗下墙脚的距离CE=3.9 m,窗口底边离地面的距离BC=1.2 m,试求窗口(即AB)的高度.图17答案1.A2.D3.A4.C5.A6.B7.C8.D9.不能10.球体11.(1)(3)(4) 12.45 13.7 14.直四棱柱15.72 16.517.解:(1)中心投影. (2)略.18.解:(1)上部分是圆柱,下部分是长方体.(2)该几何体的体积=30×40×25+π×(20÷2)2×32=(30000+3200π)cm 3.19.解:(1)一只蚂蚁从点M 沿正方体的棱爬到点D 1,蚂蚁爬行的最短路程是1+2+2=5.(2)当把正方体的面B 1BCC 1展开到和面C 1CDD 1在同一平面上时,得到的图形如图所示,图中的线段MD 1表示蚂蚁爬行的最短路线(也可将其他面展开).20.解:由于阳光是平行光线,即AE ∥BD ,∴∠AEC=∠BDC.又∵∠BCD 是公共角,∴△AEC ∽△BDC ,∴AC BC =EC DC .又∵AC=AB+BC ,DC=EC -DE ,EC=3.9 m,DE=2.1 m,BC=1.2 m, ∴AB+1.21.2=3.93.9-2.1,解得AB=1.4(m). 答:窗口的高度为1.4 m .。

人教版九年级数学上册《投影与视图》试卷(含答 案)

人教版九年级数学上册《投影与视图》试卷(含答 案)

投影与视图单元测试题一、选择题(每题3分,共30分)1.圆形的物体在太阳光的投影下是( )A . 圆形B .椭圆形C .线段D .以上都有可能 2. 下列几何体中,左视图是圆的是( )A B C D3.如图,晚上小明由甲处径直走到乙处的过程中,他在路灯M 下的影长在 地面上的变化情况是( )A .逐渐变短B .先变短后变长C .先变长后变短D .逐渐变长 4.如图,几何体的主视图是( )A B C D5、一幢4层楼房只有一个房间亮着灯,一棵小树和一根电线杆在窗口灯光下的影子如图所示,则亮着灯的房间是( )A .1号房间B .2号房间C .3号房间D .4号房间 6.同一时刻,小明在阳光下的影长为2米,与他邻近的旗杆的影长为6米, 小明的身高为1.6米,则旗杆的高为( )A .3.2米B .4.8米C .5.2米D .5.6米 7.如图是小红在某天四个时刻看到一根木棒及其影子的情况, 那么她看到的先后顺序是( )A .①②③④B .④①③②C .④③①②D .②①③④ 8.如图给出的三视图表示的几何体是( )A .圆锥B .三棱柱C .三棱锥D .圆柱 9.如图是一个几何体的三视图,根据图中数据计算这个几何体的表面积是( )A .16π B. 12π C. 10π D. 4π10.一个圆锥的主视图是边长为4cm 的正三角形,则这个圆锥的侧面积 等于( )A .16πcm 2 B. 12πcm 2 C. 8πcm 2 D. 4πcm 2二、填空题(每题4分,共24分)第3题图第4题图第5题图第8题图第9题图11. 如图,在一间黑屋子里用一盏白炽灯照一个球,球在地面上的阴影的形状是一个圆,当把球向远离灯的位置移动时,圆形阴影面积的大小的变化情况是会变 (大、小) 12. 如图,在平面直角坐标系xoy 中,位于第一象限内的点A (1,2)在x 轴上的正投影为点A ′,则cos ∠AO A ′ .13.如图,在平面直角坐标系中,一点光源位于A (0,5)处,线段CD ⊥x 轴,垂足为点D ,点C 坐标为(3,1),则CD 在x 轴上的影子长为 .14. 如图是一个由若干个小正方体组合而成的几何体的三视图,请问组成该组合体的小正方体个数是 .15、如图,是一圆锥的主视图,根据图中所标数据,圆锥侧面展开图的扇形圆心角为 度16. 如图,当太阳光与地面上的树影成45°角时,树影投射在墙上的影高CD 等于2米,若树根到墙的距离BC 等于8米,则树高AB 等于 米三、解答题一(每题解6分,共18分) 17、画出如图所示立体图形的三视图.18.如图,电灯P 在横杆AB 的正上方,AB 在灯光下的影子为CD ,AB//CD ,AB=1.5m ,CD=4.5m ,点P 到CD 的距离为2.7m ,求AB 与CD 间的距离是多少m 。

(2021年整理)人教版九年级数学下第二十九章《投影与视图》单元练习题(含答案)

(2021年整理)人教版九年级数学下第二十九章《投影与视图》单元练习题(含答案)

人教版九年级数学下第二十九章《投影与视图》单元练习题(含答案) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(人教版九年级数学下第二十九章《投影与视图》单元练习题(含答案))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为人教版九年级数学下第二十九章《投影与视图》单元练习题(含答案)的全部内容。

第二十九章《投影与视图》单元练习题一、选择题1.如图,是一组几何体,它的俯视图是()A.B.C.D.2.如图是某几何体的三视图,则与该三视图相对应的几何体是( )A.B.C.D.3.如图所示的四棱台,它的俯视图是下面所示的图形的( )A.B.C.D.4.由下列光源产生的投影,是平行投影的是()A.太阳B.路灯C.手电筒D.台灯5。

某几何体的主视图和左视图完全一样均如图所示,则该几何体的俯视图不可能是()A.B.C.D.6.如图是一个圆柱体和一个长方体组成的几何体,圆柱的下底面紧贴在长方体的上底面上,那么这个几何体的俯视图为( )A.B.C.D.7。

如图所示,平地上一棵树高为6米,两次观察地面上的影子,第一次是当阳光与地面成60°时,第二次是阳光与地面成30°时,第二次观察到的影子比第一次长()A. 6-3B. 4C. 6D. 3-28.下列图形中,表示两棵小树在同一时刻阳光下的影子的图形可能是( )A.B.C.D.分卷II二、填空题9。

若某几何体的三视图如图所示,则该几何体是_________.10。

如图,在斜坡的顶部有一铁塔AB,B是CD的中点,CD是水平的,在阳光的照射下,塔影DE留在坡面上.已知铁塔底座宽CD=12 m,塔影长DE=24 m,小明和小华的身高都是1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学九年级下册
《视图与投影》检测试题
一、选择题(每题3分,共30分)
1,球体的三种视图是( )
A.三个圆
B.两个圆和一个长方形
C.两个圆和一个半圆
D.一个圆和两个半圆,在如图2中,图1的俯视图的是( )
3,下列命题正确的是( ) 
A.三视图是中心投影
B.小华观察牡丹话,牡丹花就是视点
C.球的三视图均是半径相等的圆
D.阳光从矩形窗子里照射到地面上得到的光区仍是矩形
4,一天上午,小红先参加了校运动会女子100米比赛,过一段时间又参加了女子400米比赛.如图3A.甲图是参加100米的照片 B. 乙图不是参加100米的照片C.甲图是参加400米的照片 D. 乙图是参加400米的照片5,平行投影中的光线是( )
A.平行的
B.聚成一点的
C.不平行的
D.向四面八方发散的
6,在同一时刻,两根长度不等的柑子置于阳光之下,但它们的影长相等,那么这两根竿子的相对位置是( )
A.两根都垂直于地面
B.两根平行斜插在地上
C.两根竿子不平行
D.一根到在地上
7,人走在路灯下的影子的变化是( )
A.长→短→长
B.短→长→短
C.长→长→短
D.短→短→长
8,有一实物如图4,那么它的主视图是如图5的( )
图1图2A D B C 乙
甲图3
A B C D
图5图4
9,如果用□表示1个立方体,用表示两个立方体叠加,用■表示三个立方体叠加,那么如图6由7个立方体叠成的几何体,从正前方观察,可画出的平面图形是如图7的( )
10,在太阳光照射下,下面不可能是正方形的影子的是( )
A.三角形
B.正方形
C.长方形
D.圆
二、填空题(每题3分,共30分)
11
,在平行投影中,两人的高度和他们的影子 . 12,一个物体由几块相同的正方体叠成,它的三个视图如图8所示,则①该物体共有______层;②最高部分位于_________;③一共需要
_______个小正方体.
正视图侧
视图
俯视图
13,如图9是某个立体图形的三视图,则该立体图形的名称是
_______.
正视图左视图俯视图
14,人在地上的影子,常常是早晚较长,中午时较短,这是因为___.
15,人站在门缝往外看时,眼睛离门缝越近,看到的范围越大,这是因为___.
16,小芳晚上到人民广场去玩,她发现有两人的影子一个向南,一个向北,于是她肯定的说:“广场上的大灯泡一定位于两人 ”.
17,圆柱的左视图是 ,俯视图是 . 
18,如果一个几何体的主视图、左视图与俯视图都是一样的图形,那么这个几何体可能是__.
19,身高1.8m 的人站在高灯杆6.6m 的地方,影长2.4m,灯离地面____米.
20,如图10中的图(1)是棱长为a 的小正方体,图(2)、图(3)由这样的小正方体摆放而成的. 按照这样的方法继续摆放,自上而下分别叫第一层、第二层、…、第n 层.第n 层的小正方体的个数为_____(用含n 的代数式表示). 当层数为10 时, 小正方体的个数为A B C D
图7图6图8图9。

相关文档
最新文档