重力坝设计方案
重力坝设计

一1 课程设计(论文)题目重力坝课程设计2课程设计(论文)使用的原始资料(数据)及设计技术要求某枢纽以了发电为主, 兼顾防洪灌溉. 水库建成后. 还可以提高下游二个水电站的出力的发电量. 该工程坝型为混凝土重力坝.(一)水库特征;一水库水位. 1.正常蓄水位--349M. 2. 设计洪水位---349.9M 3校核洪水位---350.4M 二下游流量及相应下游水位..1 千年一遇洪水的下泄流量.13770 米3/秒.. 相应下流水位271.90米2 五千年一遇洪水的下泄流量.15110 米3/秒.. 相应下流水位272.63米三. 库容: 总库容为17.9亿. 考虑开挖后. 坝基面高程269M(二) 综合利用效益: 装机容量20万千瓦, 年发电量.7.4亿度.,防洪: 可将千年一遇洪峰流量以18200米3/秒削减至13770米3/秒: 可将五千年一遇洪峰流量以21200米3/秒削减至15110米3/秒: 可灌溉农田30万亩: 此外还可以改善航运条件, 库区可从事养殖.(三)自然条件.1 地形. 坝址位于峡谷出口段. 左岸地势较低.山坡较缓.右岸地势较高.山坡较陡.2 地质. 坝址出露岩层为志留系圣母山绿色含砾片岩.岩性坚硬完整.新鲜岩石饱和极限抗压强度在60—80MPA以上. 坝上游坡角为绢云母绿泥石英片岩. 饱和极限抗压强度在30—40MPA.坝基坑剪断擦系数F经野外试验及分析研究确定为 1.0—1.1: 坝基坑剪断凝聚力为为0.6—0.8MPA.3 水文地质坝址水文地质较简单.相对不透水层埋藏深度一般在35米以内.库区无渗漏问题4 气象资料最高气温为42度. 最低气温为-8度.多年平均最大风速为14米/秒. 水库吹程为1.4KM5 淤泥:百年后坝前淤沙高程为286.6米.淤积泥沙内摩擦角取0度.淤沙浮容重为8000N/M二、工程的等别和建筑物级别水利部、能源部颁布的水利水电工程的分等分级指标,将水利水电工程根据其工程规模、效益和在国民经济中的重要性分为五等。
某混凝土重力坝施工导流工程设计方案

某混凝土重力坝施工导流工程设计方案设计方案目标:混凝土重力坝导流工程提供科学合理的设计方案,确保施工过程安全可行。
设计方案概述:根据工程需要,该导流工程设计方案包括以下几个方面:水力计算、导流结构选型、施工流程安排、安全预警措施等。
一、水力计算1.根据坝址附近的水文水资源和流域特征,采用多年平均流量和设计洪水流量作为设计依据进行水力计算。
2.确定导流坡度、导流时间和导流流量以及建立水力模型进行模拟计算,为导流结构选型提供数据支持。
二、导流结构选型1.针对具体工程情况,综合考虑导流流量、流速、流向等因素,选用可靠的导流结构,如导流孔、导流堰等。
2.根据水力计算结果和结构布置要求,进行导流结构参数的具体设计。
3.对导流结构进行受力分析,确保结构稳定可靠,并满足工程需要。
三、施工流程安排1.确定导流工程的施工时间和工期,并与大坝主体施工相衔接,确保施工进度和质量。
2.制定施工流程和施工安全技术措施,保障施工过程的安全和顺利进行。
四、安全预警措施1.建立合理的监测系统,对导流工程进行实时监测,确保施工过程中的安全。
2.设立安全预警指标,对可能的安全风险进行监控和预警,及时采取相应的措施,保障工程的安全。
设计方案实施:1.相关设计方案需要经过专家组审核,并与监理单位、施工单位进行沟通和协商。
2.实施过程中,需要严格按照设计方案和相关规范进行施工,保证工程的质量和安全。
3.实施过程中,应及时记录、整理并报告工程进展和安全状况,确保相关部门了解工程情况并能够迅速采取措施。
设计方案总结:通过水力计算、导流结构选型、施工流程安排和安全预警措施的合理设计,可以保证混凝土重力坝导流工程的安全可行性。
实施该设计方案时,需要确保方案的科学性、可操作性和可维护性,不断进行监测和调整,以确保工程的顺利进行和顺利竣工。
同时,需要与相关单位和专家进行紧密合作,共同推进工程落地,确保工程质量和安全。
毕业设计 重力坝设计

毕业设计重力坝设计
1. 引言
重力坝是水利工程中常用的一种坝型,其主要特点是坝体厚重且体积大,具有重力作
用稳固坝体的特点。
在设计重力坝时,需要考虑到多种因素,如水文条件、地质条件、工
程造价等因素,以确保设计的坝体结构具有充分的安全性和经济性。
2. 水文条件
水文条件是设计重力坝时需要考虑的重要因素之一。
主要包括水文特征、水文历时和
频率以及预测值。
在设计重力坝时需要充分考虑降雨涝、暴雨及洪水等水文条件,预计出
各种水位的出现频率,并采用适当的控制水位高度的设计措施。
3. 地质条件
地质条件也是设计重力坝时需要充分考虑的一个因素。
主要包括地质构造、物理性质、地质力学性质和地质灾害等因素。
在设计重力坝时,需要对地质条件进行全面的地质勘测
及分析,并采取适当的加强坝体和基础的设计措施。
4. 坝体及基础的设计
重力坝的坝体具有良好的稳定性,是因为其坝体体积庞大且较宽厚,具有良好的抗滑性。
在设计坝体时需要注意选择坝体的材料及其强度,且坝体中的混凝土应加强措施,以
增强坝体的稳定性。
在基础设计方面,需要以地质灾害为基础,采取适当的加固措施以确
保重力坝的基础稳定性。
5. 结论
设计重力坝需要全面考虑水文条件、地质条件、坝体设计以及基础设计等多个因素。
仅仅注重单一因素,难以达到坝体的最佳安全和经济设计。
除上述因素外,设计过程中还
需要考虑成本和材料等多个因素,以确保设计出具有良好稳定性且经济性较高的坝体结
构。
[学士]重力坝毕业设计
![[学士]重力坝毕业设计](https://img.taocdn.com/s3/m/cbd9a4120622192e453610661ed9ad51f11d5452.png)
第一部分重力坝毕业设计第一章基本资料设计洪水位(P = 5 %)上游:510.15m下游:480.12m校核洪水位(P = 1 %)上游:510.64m下游:481.10m正常蓄水位上游:509m死水位:488m可利用河底高程478.5m混凝土容重:24 KN/m3坝前淤沙高程:486m泥沙浮容重 10 KN/m3,内摩擦角为20°混凝土与基岩间抗剪断参数值:f `= 0.6c `= 0.3Mpa坝基基岩承载力:[f]=1000Kpa坝基垫层混凝土:C15坝体混凝土:C15= 22m/s50年一遇最大风速为:v`= 16m/s多年平均最大风速为:v吹程 D =1000m第二章重力坝的断面选取与荷载计算第一节流量-水位关系曲线计算流量-水位关系曲线计算表注:流量-水位关系曲线河谷断面图第二节重力坝坝体断面1.坝顶高程的确定①. 正常水位时gD/v2=9.81×1000/222=20.279.81h/222=0.0076×22-1/12×(9.81×1000/222)1/3h=0.79m当gD/v2=20~250时,h为累计频率h5%的波高∴h1%=h=1.24h5%=0.98m9.81Lm/222=0.331×22-1/2.15×(9.81×1000/222)1/3.75Lm=8.65mh z =π×0.982/8.65×cth(2πH/ Lm)hz=0.35m△h=h1%+h z+h c=0.98+0.35+0.4=1.73m根据公式Q=δsεmB(2g)1/2H3/2 得H={Q/[δsεmB(2g)1/2]}2/3={66.18/[1×1×0.502×24×(2×9.81) 1/2]}2/3 =1.15m设计洪水位=509+1.15=510.15m坝顶高程=509+1.73=510.73m②校核洪水位时gD/v2=9.81×1000/162=38.329.81h/162=0.0076×16-1/12×(9.81×1000/162)1/3h=0.53m当gD/v2=20~250时,h为累计频率h5%的波高∴h1%=h=1.24h5%=0.66m9.81Lm/162=0.331×16-1/2.15×(9.81×1000/162)1/3.75Lm=6.29mh z =π×0.662/6.29×cth(2πH/ Lm)hz=0.22m△h=h1%+hz+hc=0.66+0.22+0.3=1.18m根据公式Q=δsεmB(2g)1/2H3/2 得H={Q/[δεmB(2g)1/2]}2/3={112.56/[1×1×0.502×24×(2×9.81) 1/2]}2/3s=1.64m校核洪水位=509+1.64=510.64m坝顶高程=510.64+1.18=511.82m,故取坝顶高程为512m而该坝的开挖深度为1.5m ∴坝高=512-478.5=33.5m2.坝顶宽度的确定坝顶宽度取坝高的9%,则坝顶宽度=33.5×9%=3.015m,故坝顶宽度取3.5m3.坝面坡度的确定下游面的坡度采用1:0.84.坝基防渗与排水设施的拟订距距坝踵5m处设一个帷幕灌浆断面图如下:第三节荷载计算摩檫系数f 'Γk 、粘聚力C 'ΓK 的材料性能分项系数分别为1.3、3.0, 则相应的设计值:摩檫系数f 'Γ=0.6/1.3=0.46 粘聚力C 'Γ=300/3=100 Kpa选用砼为C15,抗压强度性能分项系数为1.5,则设计值 fc=15000/1.5=10000 Kpa 扬压力系数α为0.2(查表得出) 1.设计洪水位W 1W 2W 3⑴.浪压力P 1=1/2γHL m /2=1/2×9.81×(0.98+0.35+8.65/2)×8.65/2=119.97 KNP 2=1/2γL m 2/4=1/2×9.81×8.652/4=91.75 KNP n = P 1+P 2 =119.97-91.75=28.22 KN P=1.2×P n =1.2×28.22=33.86 KNM 1n =-P 1×[1/3×(h 1%+h z +L m /2)+H 1-L m ]=-119.97×[1/3×(0.98+0.35+8.65/2)+31.65-8.65/2]=-3504.32 KN ·NM1=1.2M1n=1.2×(-3504.32)=-4205.18 KN·NM2n =P2×(1/3×Lm/2+H1-Lm/2)=91.75×(1/3×8.65/2+31.65-8.65/2)=2639.34 KNM2=1.2M2n=1.2×2639.34=3167.21 KN·N⑵.泥沙压力Psk =1/2γsbhs2tan2(45°-φs/2)=1/2×10×7.52×tan2(45°-20°/2)=137.89 KNPn =1.2Psk=1.2×137.89=165.47 KNM=-PnL=-165.47×1/3×7.5=-413.68 KN·N⑶.自重W1=γV1=24×3.5×33.5=2814 KNW2=γV2=24×23.3×29.1×1/2=8136.36 KNW3=γV3=9.81×1/2×1.62×1.62×0.8=10.30 KNW=W1+W2+W3=10960.66 KNM1=W1L1=2814×(26.8/2-3.5/2)=32783.1 KN·NM2=W2L2=8136.36×(26.8/2-3.5-23.3/2)=17357.57 KN·NM3=-W3L3=-10.30×(26.8/2-1/3×1.62×0.8)=-133.57 KN·N⑷.水压力上游:P1=1/2γH12=1/2×9.81×31.652=4913.45 KNM1=-P1L1=-4913.45×1/3×31.65=-51836.90 KN·N下游:P2=1/2γH22=1/2×9.81×1.622=12.87 KNM2=P2L2=12.87×1/3×1.62=6.95 KN·N⑸.浮托力P浮=γH2LB=9.81×1.62×26.8=425.91 KNM=0 KN·N⑹.渗透压力W1=γA1=9.81×1/2×5×[31.65-1.62-0.2×(31.65-1.62)=589.19 KNW2=γA2=9.81×5×0.2×(31.65-1.62)=294.59 KNW3=γA3=9.81×1/2×(26.8-5)×0.2×(31.65-1.62)=642.22 KNWK =W1+W2+W3=1526 KNW=1.2×1526=1831.2 KNM 1K =-W 1L 1=-589.19×(26.8/2-5/3)=-6913.17 KN ·N M 1=1.2 M 1K =8160.35 KN ·NM 2K =-W 2L 2=-1.2×294.59×(26.8/2-5/2)=-3211.03 KN ·N M 2=1.2 M 2K =-3853.24 KN ·NM 3K =-W 3L 3=-1.2×642.22×[26.8/2-5-(26.8-5)/3] =-727.85 KN M 3=1.2 M 3K =-873.42 KN ∑P=5099.91 KN ∑W=8284.51 KN∑M=-16296.96 KN ·N 2.校核洪水位W 1W 2W 3⑴.浪压力P 1=1/2γHL m /2=1/2×9.81×(0.66+0.22+6.29/2)×6.29/2=62.09 KN P 2=1/2γL m 2/4=1/2×9.81×6.292/4=48.52 KNP n = P 1+P 2 =62.09-48.52=13.57 KN P=1.2×P n =1.2×13.57=48.52 KNM1n =-P1×[1/3×(h1%+hz+Lm/2)+H1-Lm]=-62.09×[1/3×(0.66+0.22+6.29/2)+32.14-6.29/2]=-1883.60 KN·NM1=1.2M1n=1.2×(-1883.60)=-2260.32 KN·NM2n =P2×(1/3×Lm/2+H1-Lm/2)=48.52×(1/3×6.29/2+32.14-6.29/2)=1457.70KNM2=1.2M2n=1.2×1457.70=1749.24 KN·N⑵.泥沙压力Psk =1/2γsbhs2tan2(45°-φs/2)=1/2×10×7.52×tan2(45°-20°/2)=137.89 KNPn =1.2Psk=1.2×137.89=165.47 KNM=-PnL=-165.47×1/3×7.5=-413.68 KN·N⑶.自重W1=γV1=24×3.5×33.5=2814 KNW2=γV2=24×23.3×29.1×1/2=8136.36 KNW3=γV3=9.81×1/2×2.6×2.6×0.8=26.53 KNW=W1+W2+W3=10976.89 KNM1=W1L1=2814×(26.8/2-3.5/2)=32783.1 KN·NM2=W2L2=8555.4×(26.8/2-3.5-23.3/3)=17357.57 KN·NM3=-W3L3=-26.53×(26.8/2-1/3×2.6×0.8)=-337.11 KN·N⑷.水压力上游:P1=1/2γH12=1/2×9.81×32.142=5066.76 KNM1=-P1L1=-5066.76×1/3×32.14=-54281.89 KN·N下游:P2=1/2γH22=1/2×9.81×2.62=33.16 KNM2=P2L2=33.16×1/3×2.6=28.74 KN·N⑸.浮托力P浮=γH2LB=9.81×2.6×26.8=683.56 KNM=0 KN·N⑹.渗透压力W1=γA1=9.81×1/2×5×[32.14-2.6-0.2×(32.14-2.6)=579.57 KNW2=γA2=9.81×5×0.2×(32.14-2.6)=289.79 KNW3=γA3=9.81×1/2×(26.5-5)×0.2×(32.14-2.6)=631.74 KNWK =W1+W2+W3=1501.1 KNW=1.2×1501.1=1801.32 KNM1=-1.2W1L1=-1.2×579.57×(26.8/2-5/3)=-8160.35 KN·NM2=-1.2W2L2=-1.2×289.79×(26.8/2-5/2)=-3790.45 KN·NM3=-1.2W3L3=-1.2×631.74×[26.8-5-(26.8-5)/3] =-859.17 KN∑P=5215.35 KN∑W=8072.97 KN∑M=-18184.32 KN·N3. 抗滑稳定极限状态⑴基本组合时,取持久状况对应的设计状况系数ψ=1.0,结构系数γd=1.2γ0ψs(·)= γψ∑P=1.0×1.0×5099.91 =5099.91 KN1/γd R(·)= 1/γd(f'Γ∑W+ C'ΓA)=1/1.2(0.46×8284.51+100×26.8) =5409.06 KN∴γ0ψs(·)<1/γdR(·)即基本组合时满足设计要求⑵偶然组合时,取偶然状况对应的设计状况系数ψ=0.85,结构系数γd=1.2γ0ψs(·)= γψ∑P=1.0×0.85×5215.35 =4433.05 KN1/γd R(·)= 1/γd(f'Γ∑W+ C'ΓA)=1/1.2(0.46×8911.05+100×26.8) =6837.38 KN∴γ0ψs(·)<1/γdR(·)即偶然组合时满足设计要求4. 坝址抗压强度极限状态⑴基本组合时,设计状况系数ψ=1.0,结构系数γd=1.8γ0ψs(·)= γψ(∑W/T-6∑M/T2)×(1+m2)=1.0×1.0×[8284.51/26.8-6×(-16296.96)/26.82] ×(1+0.82) =730.23 Kpa≈0.73 Mpa1/γdR(·)=1/1.8×10000=5555.56 Kpa≈5.56 Mpa∴γ0ψs(·)<1/γdR(·)即基本组合时满足设计要求⑵偶然组合时,设计状况系数ψ=0.85,结构系数γd=1.8γ0ψs(·)= γψ(∑W/T-6∑M/T2)×(1+m2)=1.0×0.85×[8072.97/26.8-6×(-18184.32)/26.82] ×(1+0.82) =631.68 Kpa≈0.63 Mpa1/γdR(·)=1/1.8×10000=5555.56 Kpa≈5.56 Mpa∴γ0ψs(·)<1/γdR(·)即偶然组合时满足设计要求5.上游坝踵不出现拉应力极限状态因上游坝踵不出现拉应力极限状态属正常使用极限状态,故设计状况系数,作用分项系数和材料性能分项系数均采用1.0,扬压力系数直接用0.2代入计算,此处,结构功能的极限值C=0。
重力坝地基施工方案设计

重力坝地基施工方案设计1. 引言重力坝是一种常见的大型水利工程,用于蓄水、防洪和发电等目的。
而在重力坝的施工过程中,地基工程是至关重要的一步。
地基施工的质量对于工程的稳定性和安全性有着重要的影响。
因此,本文将重点探讨重力坝地基施工的方案设计。
2. 施工前的地质勘察在进行重力坝地基施工之前,必须进行详细的地质勘察工作。
地质勘察旨在了解地质条件,包括地质构造、岩性、岩层裂隙、地下水位等信息。
通过地质勘察,可以评估地基稳定性及可能出现的地质灾害风险,为施工方案的设计提供依据。
3. 地基处理方案设计基于地质勘察结果,我们可以制定地基处理方案。
通常来说,重力坝的地基处理可以采用以下几种方法:3.1 土石方加固土石方加固是指通过土方的加固和处理,增加地基的稳定性。
常见的土石方加固方法包括填充土、加固墙和加固梁等。
在地质良好、土质稳定的地区,土石方加固是一种经济有效的地基处理方式。
3.2 桩基础桩基础是一种通过在地基中打入桩来分散荷载的施工方法。
桩基础分为钢筋混凝土桩、摩擦桩和地下连续墙桩等。
在地质条件复杂、土质较差的地区,桩基础是一种较为常用的地基处理方式。
在具有坚硬岩石基岩的地区,岩基处理是重力坝地基施工的常用方式。
岩基处理包括冲孔爆破、岩石开挖和岩石拓展等。
通过岩基处理,可以保证地基的坚固性和稳定性。
4. 施工工艺与技术在地基处理方案设计完成之后,需要制定相应的施工工艺与技术。
一般而言,重力坝地基施工分为以下几个步骤:4.1 坝体挖掘首先需要进行坝体的挖掘工作。
挖掘深度和坝体的形状根据设计要求来确定。
在挖掘过程中,需要注意地质条件和施工安全,采取合理的措施防止塌方和土体滑坡等意外发生。
根据前面设计的地基处理方案,进行相应的地基处理工作。
这可能包括填充土、打桩、冲孔爆破等。
地基处理过程应保证施工质量,确保地基的稳定性和强度。
4.3 坝体回填地基处理完成后,进行坝体回填工作。
回填材料的选择应符合设计要求,注意回填的均匀性和密实度。
重力坝课程设计doc

重力坝课程设计doc
一.重力坝概述
重力坝是一种在河流中建设的大型水利工程,通常由一组拱形结构的混凝土或石头堆
砌而成,它的作用是把流过的河水向上压抑,以提高河流的稳定性,防止洪水,并利用流
过的水势将水压转化为电能供给公众使用。
二.重力坝的设计及施工
1.首先要进行地质勘探研究,以确定建造重力坝的最佳位置和材料。
2.重力坝的设计,要考虑重力坝的高度、深度等参数,还要确定其弯曲度、抗压强度
等技术要求,确定防洪排污设施等。
3.施工难度较大,要求施工人员具备较强的技术水平,建造时需要按照规划进行,尤
其是对混凝土施工要求严格,大坝结构要求较高。
4.建造完毕后,要经常进行检查和维护,以保证重力坝的安全运行。
三.重力坝的应用
1.重力坝的水利社会化应用在于控制洪水、改变河流水质,防止水库中的污染,提高
水生态环境等;
2.在水力发电方面,重力坝利用发电厂结构附属设备,从水势中提取能量而产生电能
供人们使用;
3.重力坝在航向规划中也得到了重要的应用,它可以改变河流的流向,从而改变其航向,有助于渡河船只的安全航行;
4.此外,重力坝建设也是一种美化环境的手段,它不仅能使人们对河流的自然环境被
更好的保护,而且还可以利用湖面动态变化来丰富景观,使河流被点缀成一种美丽的风景。
四.总结
重力坝是水利工程建设中重要的一环,在水力发电、洪水防治、航航向规划及美化景
观等方面均有着重要作用。
但是,由于重力坝设计施工难度较大,施工需求较高,在建设
及运营中均需要考虑多方面的因素,以保证重力坝的安全可靠。
混凝土重力坝设计

混凝土重力坝设计
1.坝址选择与地质条件评价:选择坝址是重力坝设计的首要任务,需
要考虑坝型适应性、地质条件、地形地貌、坝地基稳定性等因素。
地质条
件评价包括勘察地质、地下水位、地震烈度等因素的分析。
2.坝型选择:重力坝的坝型有直坝、弧坝、斜坝等多种形式。
根据坝
址地质条件、水流情况、工程需求等选择最适合的坝型。
3.坝体结构设计:重力坝的坝体是通过其自重来抵抗水压力的,设计
时需要确定材料的体积、高度、宽度等参数。
坝体的断面形状、坝顶宽度、坝底宽度等也需要根据地质条件和工程需求来确定。
4.导流设施设计:重力坝施工期间需要设计导流隧道或导流渠道来控
制水流。
导流设施的设计需要考虑水流量、水流速度、压力等因素。
5.坝基与坝体接触界面处理:坝基与坝体的接触界面处理对重力坝的
稳定性非常重要。
需要考虑界面的摩擦力、过渡带的设置等。
6.抗震设计:重力坝施工后需要能够承受地震力的作用,因此需要进
行抗震设计,包括抗震设防烈度的确定、地震力计算等。
7.渗流分析与防渗设计:重力坝在长期运行中可能会出现渗漏问题,
需要进行渗流分析,确定渗流路径和渗流量,并设计相应的防渗措施。
8.安全监测与管理:为了保证重力坝的安全运行,需要进行定期的安
全监测与管理,包括监测坝体变形、渗流情况、地震活动等。
总之,混凝土重力坝设计需要综合考虑地质条件、水流情况、工程需
求等多个因素,确保坝体的稳定性和安全性。
通过科学合理的设计,可以
建造出坚固耐用的混凝土重力坝。
重力坝教学设计方案

一、教学目标1. 知识目标:- 了解重力坝的基本概念、结构特点及设计原理。
- 掌握重力坝的受力分析、稳定性计算方法。
- 熟悉重力坝的设计流程和施工技术。
2. 能力目标:- 培养学生运用所学知识分析实际工程问题的能力。
- 提高学生进行重力坝设计的基本技能。
- 增强学生的团队协作能力和创新意识。
3. 情感目标:- 激发学生对水利工程学科的兴趣和热爱。
- 培养学生的责任感、使命感和工程伦理意识。
二、教学内容1. 重力坝的基本概念及发展历程。
2. 重力坝的结构特点及设计原理。
3. 重力坝的受力分析及稳定性计算。
4. 重力坝的设计流程及施工技术。
5. 重力坝的工程实例分析。
三、教学方法1. 讲授法:系统讲解重力坝的相关理论知识。
2. 案例分析法:通过实际工程案例,引导学生分析重力坝的设计与施工。
3. 讨论法:分组讨论重力坝设计中的关键问题,培养学生独立思考和解决问题的能力。
4. 实践操作法:通过计算机辅助设计(CAD)软件进行重力坝设计练习,提高学生的实际操作能力。
四、教学过程1. 导入新课:通过图片、视频等形式展示重力坝的实际应用,激发学生的学习兴趣。
2. 理论讲解:- 讲解重力坝的基本概念、结构特点及设计原理。
- 分析重力坝的受力情况,讲解稳定性计算方法。
3. 案例分析:- 选择具有代表性的重力坝工程案例,引导学生分析设计思路和施工技术。
- 通过案例分析,使学生了解重力坝在实际工程中的应用。
4. 小组讨论:- 将学生分组,讨论重力坝设计中的关键问题,如坝体结构、基础处理、施工技术等。
- 各小组汇报讨论成果,教师点评并总结。
5. 实践操作:- 利用CAD软件进行重力坝设计练习,使学生掌握重力坝设计的基本技能。
- 教师指导学生解决操作过程中遇到的问题。
6. 总结与评价:- 教师总结课程内容,强调重点和难点。
- 对学生的学习情况进行评价,鼓励学生继续努力。
五、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问和回答问题的情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、前言1、流域概况及枢纽任务××是罗江上的一条南北向大支流,河流全长295公里,流域面积850平方公里。
流域形状略呈菱形,上下游狭窄,中游宽大,河道坡陡流急,具有暴涨暴落的特性。
本枢纽工程以发电为主,兼顾防洪、灌溉,对航运和木材筏运也适当加以解决。
水库总库容22.6亿立方米,装机容量24.8万千瓦,灌溉上游农田130万亩,确保减免昌州市(市)及附近50万亩农田和南江县(县)的洪灾。
2、经水文、水利调洪演算确定:死水位200.15m;发电正常水位215.5m,相应下游水位163.88m;设计洪水位216.22m,相应下游水位169.02m,通过河床式溢洪道下泄流量5327.70m3/s;校核洪水位217.14m,相应下游水位169.52m,通过河床式溢洪道下泄流量6120.37 m3/s;泥沙淤积高程174.6m,淤沙干容重14.1KN/m3(浮容重=8.71 KN/m3),孔隙率n=0.45摩擦角为φ=15o;电站进水口底板高程为186.20m(坝式进水口)。
3、气象资料相应洪水季节50年重现期最大风速的多年平均值为17.3m/s,相应设计洪水位时吹程2.54km,相应校核洪水位时吹程2.66km。
4、地质勘测资料坝址处河床地面高程为146.10m,河床可利用基岩高程为140m,坝与基岩之间摩擦系数为0.7,基岩允许抗压强度为6.3Mpa ,坝基渗透系数(扬压力折减系数或剩余水头系数)α1α2可分别取0.25,0.34。
5、建筑材料有关数据5.1 龄期为90天,强度等级C15标号的混凝土允许抗压强度为4.3Mpa。
5.2 砂石料有3个主要料场:5.2.1 房村料场位于坝上游右岸22公里处,与公路边小山丘相连,附近河岸地形开阔,可供加工堆存之用,分布呈长方形,长1350m,宽234m,表土层3~4m,露出水面0~7m。
5.2.2 湖料场位于坝址下游62公里的江中靠右岸,附近有铁路干线的某一车站,全长1580m,宽390m,露出水面0~9m。
5.2.3 南浠料场位于坝址下游58公里江中靠右岸,全长1900m,宽300m,露出水面0~5m。
5.3 土料分布于坝址上下游一公里围,分布高程为170~350m,有效储量达150万m3,其平均剥土层约1.5m左右,开采运输也方便。
5.4 石料及水泥掺和料石料在坝址上下游一公里围,花岗岩储量丰富,且石质坚硬良好,但覆盖风化层厚,采料时剥土工作量大。
无效储量与有效储量之比约1:7.4;水泥掺和料在坝址区10公里围,可用者有风化后的灰质页岩及泥煤。
前者活性高,储量亦大,后者层薄,难开采,并含有少黄铁矿。
6、其他有关资料根据国家建筑委员会所颁布的地震烈度图,本地区应属6度地震区,坝区设防烈度建议为7度。
坝顶有交通要求,行车宽度不少于8m。
二、设计说明书1、工程综合说明1.1 工程分等与建筑物分级根据工程的效益,库容确定本枢纽属于Ⅱ等工程,其主要建筑物为2级,次要建筑物为3级,临时建筑物为4级。
1.2 枢纽布置本工程是以发电为主的综合利用工程,溢流坝段布置在主河槽处,冲沙孔布置在电站进水口附近。
本枢纽的主体工程由挡水坝段、溢流坝段、泄水底孔坝段、电站坝段及其建筑物组成,电站为坝后式。
该重力坝由18个坝段组成,每个坝段的长度大约为20m,从左岸到右岸依次是1~6号坝段为右挡水坝段,7~9号为溢流坝段,10号11号为底孔坝段,12~18号为右岸挡水坝段。
该坝坝基面最低高程为140m,坝顶高程为217.8m,坝体总长度为370m,枢纽工程布置图附后。
非溢流坝段:右岸全长120m左岸全长190m,除10号坝段长30m外,其余坝段均长20m。
坝顶宽度为10m,坝顶两侧各设一宽1m的人行道。
坝顶的上游侧设置高1.2m宽0.5m的钢筋混凝土结构防浪墙,下游设置栏杆。
沿坝轴线方向每隔20m设置一个照明灯。
坝上游面为折线面,起坡点高程为185m,坡度为1:0.2,下游面坡度为1:0.7,折坡点高程为202.85m。
溢流坝段:该坝段全长60m,分3个坝段,每段长20m,共分3孔。
溢流堰顶高程为201.07m。
堰顶安装工作闸门和检修闸门,闸门宽×高=15×15。
工作闸门为平面钢闸门,采用坝顶门机启闭。
工作桥面与非溢流坝顶一致。
堰顶设有两个中墩,其厚度为4.5m边墩厚3m,缝设在闸孔中间。
溢流堰面采用WES曲线,过堰水流采用连续式鼻坎挑流消能,坎顶高程为170.52m,反弧半径为30m,挑射角为25o,边墩向下游延伸成导水墙,其高度为4m,断面为梯形,顶宽为0.5m 底边为3m,需分缝,缝距为15m。
电站坝段:电站的装机容量为4×6.2万千瓦,坝段总长30m,坝顶高程为217.14m宽度为20m,坝顶人行道与挡水坝段一致,门机与溢流坝段一致,上游突出2m为拦污闸槽,引水口中心线高程为160.07m,孔径为6m,进口为三向收缩的喇叭口,进口前紧贴坝面布置拦污栅,进口处设置事故闸门和工作闸门,均为平面闸门。
在进口闸门后设置渐变段,渐变段为圆角过渡,长度为12m。
电站厂房采用坝后式,位于左岸非溢流坝后,由主厂房、副厂房等组成。
副厂房在主厂房的上游侧,厂房与坝之间用缝分开。
2、坝型、坝址选择2.1 坝型选择2.1.1 坝址地质条件该河道河谷为壮年期类型,浅滩深渊交替,河道稳定,断面冲淤极微,河谷断面形状除上游和峡谷地区多呈“V”形外,中下游一带均为浅槽形或梯形,坝址区域多为花岗岩,完整性较好,覆盖层及风化层均较薄。
2.1.2 建筑材料由前言所述“建筑材料有关数据”中知坝址附近砂石料较为丰富(3个主要料场)且运输也方便,土料次之,石料含量有限。
2.1.3 方案比较根据以上情况综合分析如下:拱坝方案:河谷面宽浅,不是“V”字形,两岸不对称,没有适宜的地形条件,故该方案不可取;土石坝方案:坝址附近没有适宜的地方修建溢洪道,若开挖溢洪道则工程量较大,且当地土料含量不丰富,故该方案也不可取;重力坝方案:混凝土重力坝和浆砌石重力坝都能充分利用当地的自然条件,泄洪问题易于解决,施工导流容易。
浆砌石重力坝虽然可以节约水泥用量,但当地石料比较缺乏,而且此坝型不能实现机械化施工,速度慢,施工质量难以控制,故不可取。
混凝土重力坝可以采用机械化施工,施工方便快捷,故本工程宜采用混凝土重力坝。
2.2 坝址选择根据坝址地质勘测工作,××水电站选坝委员会在距南江县约6公里处选定了现坝址。
坝址两岸地形较宽敞。
河水面宽达70m~140m,右岸山坡坡度30o左右,而左岸较陡,约为40o。
河床在此段纵向呈“釜形”,是两头浅中间深,河流稍偏蚀右岸,致使右岸河水比左岸深。
坝址区地层简单,表层大部分为第四纪残破积层所覆盖,由黏土、砂质黏土及花岗岩风化土所组成,厚度约8~16m。
河床部分的冲积层厚度小于5m,下伏岩基均为上白垩纪花岗岩。
综合防洪、灌溉等因素选坝委员会做了五条勘探线比较,最后选定第二坝轴线作为建坝的坝轴线。
3、非溢流坝设计3.1 剖面尺寸拟定3.1.1 坝顶高程的确定波浪要素按官厅公式计算:h l=0.0166V o D1/3m;L=10.4(h l)0.8;h z=(πh c2/L)cth(2πh/L)L—波长,m;D—风区长度,m;H—坝前水深,m;h l—波浪高度,m;h z—波浪中心线高于静水面的高度,m;V o—计算风速,设计洪水位时宜用相应洪水期多年平均最大风速的1.5~2.0倍;校核洪水位时宜用相应洪水期多年平均最大风速,m/s。
坝顶或防浪墙高程=设计洪水位+△h设坝顶或防浪墙高程=设计洪水位+△h校△h= h l + h c + h z△h—坝顶高于静水位的超高值;h c—坝顶安全超高(查非溢流坝坝顶安全超高表)。
分设计情况和校核情况分别计算,计算成果见表2-1表2-1 坝顶高程计算成果表经过比较可以得出坝顶或防浪墙顶高程为218.84m,考虑水库综合利用情况取219m,并取防浪墙高1.2m则有带防浪墙的坝顶高程位217.8-140=77.8m3.1.2 坝顶宽度考虑交通要求,坝顶宽度取m。
3.1.3 坝面坡度上游坝采用折线面,起坡点在(1/3~2/3)H处,其高程为185m,坡度为1:0.2;下游剖面采用基本三角形顶点与校核洪水位齐平的剖面形式,则有折坡处向上延伸与校核洪水位相交。
取下游边坡系数为1:0.7,那么下游起坡点高程为202.85。
3.1.4 坝底宽度由上下游起坡点高程、坡度、边坡系数等条件通过几何关系可得坝底宽度为63m,在(0.7~0.9)坝高=54.46~70.02围。
说明坝底宽度符合要求。
3.1.5 地基防渗与排水设施拟定由于防渗的需要,坝基面须设置防渗帷幕和排水孔幕,其中心线在坝基面处距离坝踵分别为12m和15m。
初步拟定非溢流坝剖面尺寸如图2-1所示:3.2 荷载组合及其计算(以下各组合情况均取单位坝长计算)3.2.1 设计情况上游设计洪水位为216.22m,相应下游洪水位为169.02m,坝基设有防渗帷幕和基础排水措施。
要求抗滑安全系数K s≧1.05。
计算成果见表2-2(附后)。
3.2.2 校核情况可分为以下两种3.2.2.1 设计洪水位情况下发生7度地震。
要求抗滑安全系数K s≧1.0。
计算成果见表2-3(附后)。
3.2.2.2 上游校核洪水位为217.14m,相应下游洪水位为169.52m。
要求要求抗滑安全系数K s≧1.0。
计算成果见表2-4(附后)。
3.2.3 抗滑稳定验算与强度验算抗滑稳定系数按公式K s=f(∑W-U)/ ∑P计算;上游边缘正应力按公式G yu=(∑W´/B)+(6∑M/B2)计算;上游边缘正应力按公式G yd=(∑W´/B)-(6∑M/B2)计算。
∑W—总铅直力;∑P—总水平力;∑W´—竖直方向合力;B—坝底宽度;∑M—对坝截面形心的总力矩。
3.2.3.1 设计情况抗滑稳定验算:K s=f(∑W-U)/ ∑P=0.7×(65.75-2.52)/28.88=1.53>1.05满足稳定要求。
强度验算:上游边缘正应力G yu=(∑W´/B)+(6∑M/B2)=63.23/63-6×261.17/632=0.61Mpa >0上游边缘正应力G yd=(∑W´/B)-(6∑M/B2)=63.23/63+6×261.17/632=1.40 Mpa <4.3Mpa满足强度要求。
3.2.3.2 校核情况3.2.3.2.1 设计洪水位时发生7度地震抗滑稳定验算:K s=f(∑W-U)/ ∑P=0.7×(65.75-2.52)/32.36=1.37>1.0满足稳定要求。