桥梁健康监测研究及发展趋势
2024年桥梁健康监测系统市场环境分析

2024年桥梁健康监测系统市场环境分析1. 引言桥梁作为交通基础设施的重要组成部分,其健康状况对于道路交通的安全性和畅通性至关重要。
然而,长期以来桥梁的健康监测一直面临着挑战,传统的手动巡检方式耗时费力且容易忽略隐患。
随着智能化技术的快速发展,桥梁健康监测系统应运而生,为桥梁维护和管理提供了新的解决方案。
本文将从市场环境的角度对桥梁健康监测系统进行分析。
2. 市场规模根据市场研究数据,全球桥梁健康监测系统市场在过去几年内保持了稳定的增长态势。
预计到2025年,全球的桥梁健康监测系统市场规模将达到X亿美元。
其中,亚太地区是当前市场规模最大的地区,同时也是增长最快的地区,其增长率预计将超过X%。
3. 市场驱动因素3.1 基础设施投资增加随着全球经济的发展,各国对基础设施建设的投资不断增加。
桥梁作为基础设施的重要组成部分,其健康监测系统得到了越来越多的关注和需求。
3.2 安全意识提高近年来,桥梁事故频发,给人们的出行安全带来了威胁。
加强桥梁安全监测和预警成为各国政府的重要任务,桥梁健康监测系统得到了广泛应用。
3.3 技术创新随着物联网、大数据、人工智能等技术的不断进步,桥梁健康监测系统的功能和性能不断提升,为市场需求的增长提供了有力的支持。
4. 市场竞争格局目前,全球桥梁健康监测系统市场竞争激烈,主要的参与者包括ABB、Huawei、Cisco等知名企业。
这些企业凭借其技术实力和品牌影响力占据了市场的一定份额。
此外,一些创新型企业也在不断涌现,它们通过引入新技术、提供个性化解决方案等不同角度进行竞争。
5. 市场前景与挑战5.1 市场前景随着全球桥梁数量的增加和老化桥梁的更新需求,桥梁健康监测系统市场有望继续保持增长态势。
并且,随着智能化技术的不断创新,桥梁健康监测系统的功能和性能将进一步提升,市场潜力巨大。
5.2 市场挑战桥梁健康监测系统市场面临一些挑战,如技术标准的不统一、高成本的投入、数据安全与隐私保护等问题。
铁路桥梁结构健康监测技术

铁路桥梁结构健康监测技术铁路桥梁是铁路交通的骨架,是保障列车行驶安全、运输顺畅的重要设施。
然而,由于桥梁长期承受运输荷载和自然风化等因素,桥梁的安全性和稳定性随时都可能受到威胁。
因此,铁路桥梁的健康监测技术显得尤为重要。
本文将从铁路桥梁健康监测的优势、常见监测技术以及未来发展趋势三个方面进行探讨。
一、铁路桥梁健康监测的优势铁路桥梁健康监测技术以其高效、准确、及时等优点成为了现代桥梁管理的重要手段。
它能够及时、准确地发现桥梁结构存在的缺陷,保证铁路桥梁的安全运营。
下面我们来了解一下常见的监测技术。
二、常见监测技术1. 振动测试技术振动测试技术是通过采集桥梁的振动数据,分析桥梁结构受力状态和判断桥梁结构的状态,从而判断桥梁结构健康状况。
振动测试技术主要有响应谱分析和损伤诊断两种。
2. 光纤光栅传感监测技术光纤光栅传感监测技术采用光纤作为传感器,通过测量光纤的反射特性来获取桥梁的实时数据,可以从多个方向同时监测桥梁多个关键部位的变形和应力情况。
3. 微波探伤技术微波探伤技术采用微波进行探测,对桥梁结构进行非接触式无损检测,可以检测桥梁结构中的裂纹、腐蚀等缺陷,是桥梁结构检测中的重要手段。
三、未来发展趋势随着人工智能、大数据等技术的逐渐发展,这些技术已广泛应用于桥梁监测领域。
未来的发展趋势将集成多种技术手段,建立统一、完善的桥梁健康监测体系,实时获取桥梁的实时数据,提高监测的精度和准确性。
四、结论铁路桥梁健康监测技术在铁路交通的安全保障中起着重要的作用。
在未来的发展过程中,需要进一步整合、完善相关技术,从而建立起全面、准确监测桥梁健康状态的体系,通过数据分析,为桥梁维护、管理提供决策支持。
桥梁结构健康监测系统的研究与应用

桥梁结构健康监测系统的研究与应用近年来,随着城市化的进程,大型桥梁已经成为城市的一道重要的风景线,而桥梁的安全与稳定性对于城市的发展也起到关键作用。
同时,鉴于桥梁的复杂形态和外力影响易造成桥梁的结构性破坏,因此桥梁结构健康监测系统的研发与应用也成为了一个重要的研究方向。
一、桥梁结构健康监测系统的概念桥梁结构健康监测系统是指通过传感器、数据采集器、通信技术、计算机技术等手段对桥梁结构实施现场在线监测、远程数据处理和维护管理的技术体系。
该技术能够实现对桥梁结构、荷载环境、随时间变化的变形等参数进行数据采集、处理和传输,从而评估桥梁的结构健康状态,解决桥梁应力、应变、振动、变形等问题,并及时发现结构病害,提高桥梁的安全性和可靠性。
二、桥梁结构健康监测系统的研究进展目前,国内外均有不少学者在桥梁结构健康监测系统方向进行深入研究,相关技术和理论已经趋于成熟,重点包含:传感器技术、数据传输技术和结构健康监测算法等方面。
传感器技术是实现桥梁结构健康监测系统的核心部分,其主要作用是采集桥梁结构的形变、振动、应力、应变等参数。
目前常用的传感器有应力传感器、应变传感器、振动传感器、加速度传感器、温度传感器等。
这些传感器能够采集准确的实时数据,能够帮助监测人员及时发现结构异变,进而通过合理调整来维护桥梁的健康状态。
在数据传输方面,无线传输方式成为了当前先进的传输方式,它能够实现远距离传输数据,并利用云计算的技术,实现数据的可视化、分析和管理。
比如利用物联网技术采集桥梁数据,并利用云端服务对数据进行处理、分析、记录和可视化,实现了数据的实时监控和管理。
通过结构健康监测算法的研究,能够有效地实现对监测数据进行分析和处理。
例如,信号处理技术、模型识别技术、数据挖掘技术等,能够识别出存在的结构异变信号、分析失效机理和寿命预测,并提供决策支持。
三、桥梁结构健康监测系统的应用现状目前,桥梁结构健康监测系统已经应用于不少项目中,如长江大桥、港珠澳大桥、上海市轨道交通、广东高速公路等。
桥梁健康监测系统研究现状与发展趋势

桥梁健康监测系统研究现状与发展趋势摘要:大型桥梁健康监测是近年来国际上的研究热点。
回顾桥梁健康监测的发展历程。
介绍了桥梁结构健康监测系统的基本组成、检测功能及特点,结合国内外已建立健康监测系统的几座典型桥梁,阐述了健康监测系统的内容和设计准则。
回顾和总结了桥梁健康监测近年来所取得的成就,并分析了存在的问题和难点。
最后阐述了健康监测系统今后的主要研究问题和发展趋势。
关键词:桥梁;健康监测;发展趋势0 引言土木工程质量的优劣关系到国家昌盛、民族振兴、人民幸福、社会安定,关系到国民经济的健康发展,工程质量,人命关天,质量责任,重于泰山。
因此建设工程质量越来越成为人们关注的热点。
尤其是桥梁工程,更是如此。
如今,交通量的日益增加与服役年限的延长,运营中的桥梁结构不可避免的存在表面和内部缺陷,使桥梁结构的抗力不断衰减,桥梁结构的安全性、适用性和耐久性受到严峻威胁。
影响桥梁结构安全的不仅仅是交通量的增加,还有其他很多方面。
比如建桥标准偏低。
建设质量问题、超重超限车辆、自然灾害、材料与结构自然老化等等。
而今桥梁安全事故频发,给人们的生命财产安全造成了极大的损失。
众多垮桥事故表明,桥梁的安全问题已成为重大的社会问题,人们越来越重视现代桥梁的安全和寿命,研究安全、客观、可靠的桥梁安全监测技术迫在眉睫。
1桥梁健康监测系统大型桥梁健康监测系统一般应包括以下几部分内容。
1)传感系统。
由传感器、二次仪表及高可靠性的工控机等部分组成。
2)信号采集与处理系统。
实现多种信息源、不同物理信号的采集与预处理,并根据系统功能要求对数据进行分解、变换以获取所需要的参数,以一定的形式存储起来。
3)通信系统。
将处理过的数据传输到监控中心。
4)监控中心。
利用可实现诊断功能的各种软硬件对接收到的数据进行诊断,包括结构是否受到损伤以及损伤位置、损伤程度等。
桥梁健康监测系统的基本工作流程如图1所示。
图1桥梁健康监测系统的基本工作流程图由图1可以看出,大型桥梁健康监测系统不单是传统的以人工方法为主的检测手段的简单改进,而是运用现代化传感设备与光电通信技术及计算机技术,实时监测桥梁在各种环境条件下的结构响应和行为。
桥梁健康监测及发展趋势探析

器振 捣密 实 ,利 用滚 压痕 。混凝
土试 件现 场 同步养生 ,待 强度 达 到设 计 要 求 方 可 进行 下 道 工 序 。 沥青 混凝 土采 用人 工摊铺 。机 械 碾压 ,做 到平整 密 实 。
碳纤 维布 施工 时首先 用钢 刷
低 的混凝 土浮皮 、碎 渣 、使混 凝
1 桥梁 健康 监测 的概念
桥 梁在交 通运 输 中的地位 日 益重要 ,随着桥梁 设计 理论 的深 化 和施 工技术 的进 步使 得桥 梁跨
桥 梁健 康监测 的基 本 内容是
根据结 构 的主要 性能指 标 ( 可 如
靠性 、耐 久 性等 ) ,结合 无 损 检
测 ( D ) 结 构 特 性 分 析 ( 括 N T和 包 结构 响应 ) ,从 营运 状 态 的 结构 中获 取并处 理数 据 .目的是为 了
O 引 言
由于环 境 、气候 等 自然 因素 的作 用 、 1 增加 的交 通 量 及 重 车 、 3益 超 重车 过桥 数量 和人 为事故 等一 系列 因素 的共 同作 用 ,不少 桥梁 已 出现 严重 的功 能退化 情况 。建 造 和维 护大 型桥 梁需要 耗费 大量 的人力 、物 力和 财力 。 因此 ,建
Ab t a t h rd e S p st n i h r n p r t n i i c e sn l mp r n .T e a i g b i g s a e u t s r c :T e b i g o i o n t e t s o t i s n r a i g y i o t t h gn rd e e o n s i a a o a fr a lr e p o o in i h o si a d ta s o ewo k I h s v r mp r n in f a c o e t b ih t e o a g r p r o n t e d me t l n r n p r n t r . a e y i o t t sg i c n e t s l h t c t t a i a s c re p n i g ma c h rd e mo i rn n v l ai n s se S s t d p o t e fc ie o r s o d n t h t e b i g n t i g a d e au t y t m O a o a o t c s - f t ma n e a c o o e v i tn n e me h d f rt e f n t n ld g a ai n b i g s t o o h u ci a e r d t rd e . o o Ke r s b i g ; it n n e mo i r y wo d : rd e man e a c ; n t o
桥梁健康监测系统行业市场现状分析及未来三到五年发展趋势报告

桥梁健康监测系统行业市场现状分析及未来三到五年发展趋势报告Bridge Health Monitoring System Industry Market Status Analysis and Future Development Trends ReportIntroduction:Bridge health monitoring systems play a crucial role in ensuring the safety and longevity of bridges. These systems utilize various sensors and technologies to monitor the structural health of bridges in real-time, enabling early detection of potential issues and timely maintenance. In recent years, the bridge health monitoring system industry has witnessed significant growth due to the increasing demand for infrastructure maintenance and the advancement of technology. This report aims to provide an analysis of the current market status of the bridge health monitoring system industry and predict the future development trends for the next three to five years.Current Market Status Analysis:The global bridge health monitoring system market has beenexperiencing steady growth in recent years. Factors such as aging infrastructure, increasing traffic loads, and the need for cost-effective maintenance have been driving the demand for bridge health monitoring systems. Governments and private organizations are increasingly investing in these systems to ensure the safety and reliability of bridges. North America and Europe are the leading regions in terms of market share, owing to their well-established infrastructure and high adoption rates of advanced technologies.In terms of technology, the market is dominated by sensors, data acquisition systems, and structural health monitoring software. These technologies enable continuous monitoring of key parameters such as strain, temperature, vibration, and deflection, providing valuable data for assessing the structural health of bridges. Additionally, advancements in wireless communication and cloud computing have made it easier to collect, analyze, and store large amounts of data from bridge health monitoring systems.Future Development Trends:Looking ahead, the bridge health monitoring system industryis expected to witness significant growth in the next three to five years. Several key trends are likely to shape the future development of the industry:1. Adoption of IoT and AI Technologies: The integration of Internet of Things (IoT) and artificial intelligence (AI) technologies will enable more efficient data collection, analysis, and decision-making in bridge health monitoring systems. AI algorithms can help in predicting potential structural issues based on real-time data, allowing for proactive maintenance strategies.2. Emphasis on Remote Monitoring: With the increasing focus on remote operations and maintenance, bridge health monitoring systems will incorporate more remote monitoring capabilities. This will enable engineers to assess the health of bridges from a distance, reducing the need for physical inspections and maintenance activities.3. Implementation of Smart Sensors: Smart sensors with self-diagnostic capabilities and wireless connectivity will become more prevalent in bridge health monitoring systems.These sensors can detect and report issues in real-time, improving the overall efficiency and reliability of the monitoring process.4. Integration with BIM and GIS Platforms: Integration of bridge health monitoring systems with Building Information Modeling (BIM) and Geographic Information System (GIS) platforms will enhance the visualization and analysis of bridge data. This integration will enable engineers to makebetter-informed decisions regarding maintenance and repair activities.Conclusion:In conclusion, the bridge health monitoring system industry is poised for significant growth in the coming years, driven by the increasing need for infrastructure maintenance and the advancement of technology. By adopting IoT, AI, remote monitoring, smart sensors, and integration with BIM and GIS platforms, bridge health monitoring systems will become more efficient, reliable, and cost-effective. It is essential for industry players to stay abreast of these trends and innovations to remain competitive in the market.桥梁健康监测系统行业市场现状分析及未来三到五年发展趋势报告介绍:桥梁健康监测系统在确保桥梁安全和长久性方面起着至关重要的作用。
长大桥梁健康监测系统现状及未来发展趋势

长大桥梁健康监测系统现状及未来发展趋势摘要:为了促进长大桥梁健康监测系统的发展,系统总结了近年来国内外桥梁健康监测的学术研究现状、热点前沿、存在问题及发展前景。
桥梁运维方面总结了桥梁检测、监测数据挖掘、模态识别与状态评估的最新研究;探讨了当前长大桥梁健康监测系统面临的关键问题;同时对健康监测系统在未来桥梁建设中的发展趋势进行了展望。
关键词:长大桥梁;健康监测系统;数据挖掘;状态评估近年来,随着人工智能与工程领域的不断深度融合,桥梁智能化及其智能运维受到广泛关注。
国内长大桥梁健康监测系统的建设及应用越来越广泛,如何利用健康监测系统服务桥梁科学管养及安全风险防控一直是社会各界及行业人士关心的重要问题。
尽管国内外在桥梁健康监测报警及状态评估的应用与研究已有部分研究成果,但由于桥梁类型和结构形式多样、使用环境复杂性和作用荷载差异性大等原因,导致桥梁健康监测系统在传感布设方法、监测信息的可靠性、评估与预警方法等方面的研究尚存在不足。
1 研究现状桥梁健康监测系统已在国内外桥梁中得到越来越多的应用,总体而言,国内在健康监测实践及数据处理应用方面处于先进或领先位置,从科研角度看,目前在健康监测传感测试技术、结构损伤诊断理论与方法、监测数据分析与评估方面仍有值得深入研究的问题。
1.1监测系统传感测试技术传感器故障自诊断技术研究方面,罗浩恩[1]基于广义似然比检验原理,提出传感器故障自诊断方法,基于相关向量机的分类原理,建立传感器故障类型判别方法,并将这些方法应用于甄别实桥监测系统的传感器故障,从而为保证结构健康监测系统自身的正常运营提供了新的手段。
郭旭[2]提出基于卷积神经网络和深度卷积生成对抗网络的结构加速度传感器故障自诊断,以加速度时程数据为输入,建立基于CNN的传感器故障诊断模型,判断传感器故障类型和故障位置。
安星等[3]基于多元统计分析的过程控制理论,建立了基于主元分析(PCA)的传感器故障诊断方法,实现加速度传感器的故障诊断。
2023年桥梁健康监测系统行业市场调研报告

2023年桥梁健康监测系统行业市场调研报告
市场概述:
桥梁健康监测系统是指通过安装传感器、采集仪器和数据处理等设备在桥梁上进行实时监测,快速检测并分析桥梁运行期间的各种安全隐患,运行参数和变化。
桥梁健康监测系统广泛应用于公路、铁路、城市轨道交通、航空航天等领域。
随着城市化建设的高速发展,桥梁的建设与维护不断加强,桥梁健康监测系统的需求也不断增加。
市场规模:
随着市场的不断扩大,桥梁健康监测系统行业也得到了快速的发展。
根据行业分析数据显示,2019年中国桥梁健康监测系统市场规模达到了61亿元,预计到2025年市场规模将达到113亿元,年均复合增长率为9.3%。
市场分析:
在桥梁健康监测系统市场上,目前主要的市场参与者包括华为技术有限公司、日本大阪大学、美国通用电气公司等国内外知名企业。
这些企业在市场份额,技术研发,产品创新等方面具有相当的竞争优势。
市场驱动因素:
1.城市化建设的快速发展
2.桥梁建设维护需求不断增加
3.交通安全问题成为重要社会问题
市场瓶颈因素:
1.技术成熟度需提高
2.市场竞争激烈
3.行业合规性和标准需要完善
市场机遇和发展趋势:
1.智能化桥梁监测系统需求增加
2.大数据及人工智能技术应用
3.绿色创新、可持续发展需求增强
4.国家政策和标准推进
总体而言,桥梁健康监测系统行业市场前景广阔,未来有望得到快速发展。
企业需要加强自身研发能力、市场营销和服务能力等方面的提升。
在产品设计和研发方面需要注重适应市场需求的产品,满足各个行业的不同需求。
同时,需要加强市场竞争优势,积极开拓市场,夯实市场地位。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
桥梁健康监测研究及发展趋势
摘要:回顾了桥梁健康监测的由来,阐述了桥梁健康监测的概念和监测系统的组成,介绍了桥梁健康监测的现状和最新研究方法,对将来的发展亦做了展望。
引言
随着桥梁在交通运输中占据日益重要的地位,桥梁设计理论和施工技术的不断进步使得桥梁跨度不断有新的突破,结构形式也日趋复杂。
但是,目前中、老龄桥梁在国内陆路交通网络中占相当的比重,随着桥龄的增长,由于环境、气候等自然因素的作用、日益增加的交通量及重车、超重车过桥数量的不断增加和人为事故等因素,不少桥梁已出现严重的功能退化的情况。
而建造和维护大型桥梁需要耗费大量的人力、物力和财力,滞后于桥梁建设与发展的综合监测及评估手段使桥梁管理层和决策层无法对其整体使用性能做出客观准确的评估,因此也无法采用低成本、高效益的维修养护方法。
在这种形势下,建立与之相适应相匹配的桥梁综合监测与评估系统成为桥梁界研究的热点之一,具有极为重要的意义。
东营大桥健康监测系统是由一套包括数据采集(加速度传感器数据采集系统和光纤光栅传感器数据采集系统)、数据存储、远程实时显示和数据分析与安全评定的集成系统,此系统共分为四个功能模
实用性、可靠性为基础,在一定程度上兼顾其先进性,并考虑到费用一效益(cost--benefit)的关系,确定各监测项目。
2 桥梁健康监测系统的组成
2,1 采集测量部分
采集测量部分的监测项目一般包括位移、应力、动力特性、温度、表观检测等。
1)位移监测。
利用测量手段,对桥梁各控制断面的位移变形进行监测,并绘编相应的位移变形影响线和影响面以检测各控制部位位移变形状态,从而为总体评估桥梁的承载能力、营运状态和耐久能力提供依据。
常用的位移变形监测方法有导线测量(观测水平位移)、几何水准法(观测竖向位移)、GPS测定三维位移量法、自动极坐标实时差分测量法(ATR自动监测系统)和自动全站仪的方法。
2)应力监测。
运营状态中主梁的应力或应变的变化是由于主梁结构的外部条件和内部状态变化引起的。
外部条件主要有支座的变化及车辆荷载的作用等,而内部状态有混凝土的收缩徐变、温度变化及预应力损失等。
通过应力监测可以反映主梁的受力条件变化和结构内部的性能。
3)动力特性监测。
桥梁结构的动力特性与桥梁结构的刚度、质量、阻尼值及其分布有关,对桥梁结构的动力特性监测主要在桥面无任何交通荷载以及桥址附近无规则振源的情况下,测定桥跨结构由于桥址处风荷载、水流等随机荷载激振而引起的结构微小振动响应。
主要测定主梁的固有振动频率、振型等。
4)温度监测。
通过对整桥温度场的监测,可以设法消除温度变化对某些监测过程或传感器本身的测量精度的影响;可以了解桥梁结构在某种温度扬下的行为,如结构变形、内
力变化等。
5)区域表观检测。
表观检测包括混凝土裂缝检测、混凝土强度检测、混凝土碳化深度检测以及混凝土表观质量检测以及桥面铺装、支座、伸缩缝等的损坏情况。
6)其他监测项目。
2.2 数据传输部分
稳定可靠的数据采集和传输部分对于保证监测系统的长期运行有着重要意义,同时是获取有效、可靠的监测数据的前提,主要应该解决以下几项关键问题:
1)关于数据采集和传输的同步问题。
同步问题是桥梁监测系统的关键性技术问题之一。
是后期数据处理、分析和桥梁健康评估的基本前提条件。
系统可以不需要整体同步,但是挠度、振动等子系统各点采集的时间必须同步。
2)关于数据采集节点设备和传输链路的合理配置与优化问题。
影响数据采集节点设备和传输链路可靠性的因素相当复杂,必须研究设计重点考虑系统合理的配置和优化。
3)关于系统数据采集过程中单点故障问题。
系统需要具有单点故障不影响控制网络其他部分的功能。
4)关于故障自动报警的问题。
系统能够识别传感器故障包括电流回路泄漏、对不可信信号电平的捕获和子系统故障,并能在系统主机上给出相应的报警信息。
5)关于数据可靠性检验的问题。
系统具有能够对所监测数据进行自检、互检和标定的功能,是保障原始数据可靠性的重要手段。
6)关于实现远程监控的问题。
通过因特网技术可以使桥梁管理者或桥梁专家在异地对系统实现远程监控和数据分析,是桥梁健康监测系统的新需求。
2.3 数据分析处理和控制部分
数据处理是指对数据采集和传输部分获得的数据信息进行收集、整理、加工、存贮及传播等一系列活动的总和。
它的基本环节是进行数据的组织、存贮、检查和维护等工作。
这些工作是数据处理的中心问题,一般称之为数据管理。
二十世纪六、七十年代以来,数据管理技术提高到了数据库阶段,计算机中的数据及数据的管理统一的由数据库系统来完成。
数据库系统的目标是:解决数据冗余问题;实现数据独立性;实现数据共享;并解决由于
数据共享而带来的数据完整性、安全性及并发控制等一系列问题。
3 主要理论研究的现状与进展
目前,桥梁健康监测系统对桥梁结构评估的内容有三个方面,即承载能力、营运状态和耐久能力l5.6 J。
承载能力评估与结构或构件的极限强度、稳定性有关。
其评估的目的是要找出桥梁结构的实际安全储备,以避免桥梁在日常使用中发生灾难性的后果。
因其与人身安全和财产损失有关而成为桥梁结构评估的主要内容。
营运状态评估与桥梁结构或其构件在日常荷载工作下的变形、裂缝、振动等有关。
在指定结构工作条件和定期的养护维修的情况下,桥梁结构营运状态评估结果是十分重要的。
耐久能力的评估侧重于桥梁的损伤及其成因,以及其对材料的物理特性的影响。
数据采集和传输部分的一种新趋势是采用无线数字传输系统。
随着数字技术的发展,无线传输的抗干扰性也得到了稳步提高,在未来将有很大的应用空间。
目前已有的桥梁监测系统中,往往存在监测项目种类不足,而个
别项目的规模又过于庞大,尤其在对监测数据的管理方面,还没有一个较为完善的数据存储与管理系统,大量的监测数据得不到妥善的处理与利用。
并且。
现有的桥梁监测和状态评估系统大多属于单一的监测系统或者是单一的管理系统。
作为一个桥梁健康监测综合评估系统,必须建立综合评估机制以反映桥梁结构的状态,为桥梁的管理养护决策提供理论依据。
桥梁健康监测在国内尚处于起步阶段,实际情况是,由于各种原因,国内现有的几个监测系统均有不同程度的瘫痪。
随着桥梁健康监测工作的进一步深入,监测系统还需要解决远距离监测、提高系统可靠性、完善数据处理和分析理论等一系列问题。
一方面,在系统性能、数据评估方面还都没有现成的规范;另一方面。
随着人们对桥梁安全性认识的逐步提高,桥梁健康监测的市场前景越来越广阔。
在实践中探索出一套稳定可靠的监测系统、明确各项参数指标、研究监测数据的具体用途是健康监测下一步工作的目标。