电厂发电机及励磁系统

合集下载

发电机励磁系统原理

发电机励磁系统原理

发电机励磁系统原理发电机励磁系统是指为了使发电机在运行中能够产生稳定的电压和电流,采取的一系列控制和调整励磁电流的措施。

励磁系统的原理是通过调节励磁电流来改变磁场强度,进而控制发电机的输出电压和频率。

一、电磁感应原理根据法拉第电磁感应定律,当导体在磁场中运动或磁场变化时,会在导体中产生感应电动势。

由此,发电机中的转子在转动时,通过导线产生的感应电动势可以用来驱动电流,从而实现电能的转换。

二、励磁机构发电机励磁系统的核心是励磁机构,它由励磁电源和励磁回路组成。

励磁电源提供直流电源,用于激励发电机的磁场。

而励磁回路则通过一组电阻、电感和励磁开关等元件,将励磁电流导入到发电机的励磁线圈中。

三、调整励磁电流励磁电流的大小决定了发电机的磁场强度,从而影响了输出电压和频率。

一般情况下,发电机励磁系统会根据负荷的需求,通过调节励磁电流的大小来实现稳定的电压输出。

4、励磁系统的调整机制发电机励磁系统通常采用自动调压和手动调压两种方式来保持输出电压的稳定。

在自动调压模式下,根据电压传感器的反馈信号,控制励磁电流的大小。

一旦输出电压下降,励磁系统会自动增加励磁电流,以提高输出电压。

手动调压模式下,操作人员可以根据需要手动调整励磁电流,以实现电压的稳定输出。

五、励磁系统的稳定性好的励磁系统应具有良好的稳定性,能够在负荷变化时迅速调整励磁电流,并且使输出电压变化最小。

稳定性的提高可以通过增加励磁回路中的电感和电容元件,以及制定合理的励磁调节策略来实现。

六、励磁系统的应用发电机励磁系统广泛应用于各种发电场景中,包括电力站、风力发电、水力发电、汽车发电机等。

它不仅能够保证电力供应的稳定性和可靠性,还能够提高发电效率和节能减排。

总结:发电机励磁系统是使发电机能够稳定输出电压和频率的重要控制系统。

通过调节励磁电流来改变发电机的磁场强度,励磁系统能够实现电能的转换和稳定输出。

良好的励磁系统应具有稳定性和高效性,能够适应负荷变化并实现可靠的电力供应。

各种励磁系统介绍

各种励磁系统介绍

各种励磁系统介绍励磁系统是指用来产生磁场的一种系统。

它在许多领域都有应用,包括发电机、电动机和变压器等电力设备,以及医学成像设备、磁选机和磁共振成像仪等。

1.直流励磁系统直流励磁系统是最简单的励磁系统之一,它使用直流电源来供应磁场。

在直流发电机和直流电动机中,一个直流电源通过励磁线圈提供电流,产生一个稳定的磁场。

直流励磁系统具有响应速度快、控制简单、稳定性高等优点,但需要较大的电源容量。

2.交流励磁系统交流励磁系统是利用交流电源来供应磁场的一种励磁系统。

它适用于交流发电机、交流电动机和变压器等设备。

在交流励磁系统中,通常使用电力变压器将输入电压从高电压变成合适的低电压,然后通过整流电路将交流电转换为直流电。

此外,交流励磁系统可以通过改变输入电压的频率和幅度来调节输出磁场的强度。

3.永磁励磁系统永磁励磁系统是利用永磁体产生磁场的一种励磁系统。

永磁励磁系统适用于小型发电机和电动机,具有体积小、质量轻、效率高等优点。

永磁材料可以分为强磁性永磁材料和软磁性永磁材料两类,前者适用于高速运动的设备,后者适用于低速设备。

永磁励磁系统的磁场强度可通过改变永磁体的形状和材料来调节。

4.感应励磁系统感应励磁系统利用电磁感应原理产生磁场。

在感应励磁系统中,通过交变磁场的作用,在导体中感应出涡流,从而产生磁场。

感应励磁系统广泛应用于感应加热设备和感应炉等领域。

感应励磁系统的磁场强度可通过改变交变磁场的频率、幅度和导体材料来调节。

5.分段励磁系统分段励磁系统是指将励磁线圈分成多个段落,每个段落通过控制电流来产生不同强度的磁场。

分段励磁系统可以根据需要调节每个段落的电流,从而改变整个励磁系统的磁场强度。

这种系统适用于电力变压器和磁选机等设备中,可以减少能量消耗和提高效率。

总结起来,励磁系统有直流励磁系统、交流励磁系统、永磁励磁系统、感应励磁系统和分段励磁系统等多种形式。

每种励磁系统都有各自的特点和应用领域,可以根据实际需求选择适合的励磁系统。

2024版图解发电机励磁原理

2024版图解发电机励磁原理

高可靠性设计
提高发电机励磁系统的可靠性是未 来的重要发展方向,通过采用冗余 设计、故障预测与健康管理等技术
手段降低系统故障率。
绿色环保
随着环保意识的提高,未来发电机 励磁系统将更加注重绿色环保,采 用低能耗、低污染的材料和技术,
降低系统对环境的影响。
对未来学习和工作的建议
深入学习专业知识
继续深入学习电力电子、控制理 论等相关专业知识,为从事发电 机励磁相关领域的工作打下坚实
案例分析:某大型水电站励磁调节器设计
• 设计背景:某大型水电站采用水轮发电机组,装机容量大、运行工况复杂,对励磁调节器性能要求高。 • 设计目标:设计一款高性能、高可靠性的励磁调节器,满足水电站运行要求。 • 设计方案:采用基于DSP的数字式励磁调节器设计方案,实现快速、精确的电压调节和功率分配功能;同时采
基础。
关注前沿技术动态
关注发电机励磁技术的最新发展 动态,了解新技术、新方法的应 用情况,不断提升自己的专业素 养。
加强实践动手能力
通过参与实验、项目等方式加强 实践动手能力,培养解决实际问 题的能力。
拓展跨学科知识
学习与发电机励磁相关的跨学科 知识,如电力系统分析、电机学 等,提升综合分析和解决问题的
如失磁、励磁不稳、励磁过流等故障,通过 案例分析学习相应的处理方法和预防措施。
发电机励磁技术发展趋势预测
数字化与智能化
随着电力电子技术和控制理论的发 展,未来发电机励磁系统将更加数 字化和智能化,实现更精确的控制 和优化。
多功能集成化
为满足不同应用场景的需求,发电 机励磁系统将向多功能集成化方向 发展,如集成无功补偿、谐波治理 等功能。
提高发电机并列运行的稳定性。
功能

发电机励磁系统工作原理

发电机励磁系统工作原理

发电机励磁系统工作原理
发电机励磁系统的工作原理如下:
1. 励磁电源:发电机励磁系统通常由励磁电源提供直流电能。

励磁电源可以是直流电源、电池或者其他的电源装置。

2. 励磁线圈:发电机中有一个称为励磁线圈的线圈,它通常由铜导线绕成,固定在发电机的定子上。

励磁线圈连接到励磁电源。

3. 励磁电流:当励磁电源接通时,电流将开始流经励磁线圈。

这会在发电机中产生一个磁场。

4. 磁场:励磁线圈产生的磁场通过铁芯传导到转子和定子之间的空间。

转子是发电机中旋转的部分,定子是固定的部分。

5. 感应电压:当发电机的转子旋转时,磁场也随之旋转。

由于电磁感应的原理,转子中的导线将产生感应电压。

这个感应电压会驱动绕在定子上的线圈产生电流。

6. 电流输出:通过定子上的线圈产生的电流输出到外部负载上,为外部负载提供电能供应。

总结起来,发电机励磁系统的工作原理就是通过励磁电源提供直流电能,产生磁场,使得转子中的线圈通过电磁感应产生电流,从而输出电能供应外部负载。

发电机励磁系统

发电机励磁系统

发电机励磁系统一、简介:励磁系统是同步发电机的重要组成部分,它是供给同步发电机励磁电源的一套系统,励磁系统是一种直流电源装置。

励磁系统一般由两部分组成:(如图一所示)一部分用于向发电机的磁场绕组提供直流电流,以建立直流磁场,通常称作励磁功率输出部分(或称励磁功率单元)。

另一部分用于在正常运行或发生故障时调节励磁电流,以满足安全运行的需要,通常称作励磁控制部分(或称励磁控制单元或励磁调节器)。

励磁功率单元向同步发电机转子提供直流电流,即励磁电流,以建立直流磁场。

励磁功率单元有足够的可靠性并具有一定的调节容量。

在电力系统运行中,发电机依靠电流的变化进行系统电压和本身无功功率的控制因此,励磁功率单元应具备足够的调节容量以适应电力系统中各种运行工况的要求。

而且它有足够的励磁顶值电压和电压上升速度具有较大的强励能力和快速的响应能力。

励磁调节器根据输入信号和给定的调节准则控制励磁功率单元的输出,是整个励磁系统中较为重要的组成部分。

励磁调节器的主要任务是检测和综合系统运行状态的信息,以产生相应的控制信号,经放大后控制励磁功率单元以得到所要求的发电机励磁电流。

系统正常运行时,励磁调节器就能反映发电机电压高低以维持发电机电压在给定水平。

应能迅速反应系统故障,具备强行励磁等控制功能以提高暂态稳定和改善系统运行条件。

在电力系统的运行中,同步发电机的励磁控制系统起着重要的作用,它不仅控制发电机的端电压,而且还控制发电机无功功率、功率因数和电流等参数。

图一二、励磁系统必须满足以下要求:1、正常运行时,能按负荷电流和电压的变化调节(自动或手动)励磁电流,以维持电压在稳定值水平,并能稳定地分配机组间的无功负荷。

2、整流装置提供的励磁容量应有一定的裕度,应有足够的功率输出,在电力系统发生故障,电压降低时,能迅速地将发电机地励磁电流加大至最大值(即顶值),以实现发动机安全、稳定运行。

3、调节器应设有相互独立的手动和自动调节通道;4、励磁系统应装设过电压和过电流保护及转子回路过电压保护装置。

发电机励磁系统的作用及工作原理

发电机励磁系统的作用及工作原理

一、概述作为发电机的重要组成部分,励磁系统在发电过程中起着至关重要的作用。

它可以保证发电机的正常运行,并且对于电力系统的稳定性和可靠性也有着重要的影响。

本文将介绍励磁系统的作用以及其工作原理,希望能够对读者有所帮助。

二、励磁系统的作用1. 维持发电机的励磁电流励磁系统通过控制励磁电流的大小和方向,可以确保发电机在运行过程中产生稳定的电压。

这对于电力系统的正常运行至关重要,因为电压的稳定性直接影响着电力设备的运行效果和寿命。

2. 调节发电机的输出电压通过调节励磁电流的大小,励磁系统可以实现对发电机输出电压的调节,从而满足电网对于不同电压等级的需求。

这种灵活性保证了电力系统的运行效率和稳定性。

3. 提供短路电流在发电机连接到电网时,励磁系统可以提供短路电流,保证电网在故障发生时的稳定性和安全性。

这对电网的运行和保护有着重要的作用。

三、励磁系统的工作原理1. 励磁电路励磁系统的核心部分是励磁电路,它由励磁电源、励磁变压器、励磁开关和励磁调节装置等组成。

在励磁电路中,励磁电源提供所需的励磁电流,励磁变压器将其升压或降压,励磁开关用于控制电路的接通和断开,励磁调节装置用于调节励磁电流的大小。

2. 励磁调节励磁调节是励磁系统的关键部分,它通过控制励磁电源的输出电流来调节发电机的励磁电流,进而实现对发电机输出电压的调节。

在励磁调节装置中,通常采用自动调节和手动调节相结合的方式,以保证发电机在不同负载条件下都能够保持稳定的输出电压。

3. 励磁稳定励磁稳定是励磁系统的一个重要特性,它用于在发电机负载变化或电网故障时维持发电机的电压稳定。

励磁稳定通常通过控制励磁系统的PID调节器来实现,该调节器可以根据发电机运行状态和电网负载情况实时调整励磁电流,使发电机的输出电压保持在合适的范围内。

四、总结励磁系统作为发电机的重要组成部分,通过维持励磁电流、调节发电机的输出电压和提供短路电流等功能,保证了发电机的正常运行和电力系统的稳定性。

发电机自并励静止励磁系统和三机励磁系统的比较

发电机自并励静止励磁系统和三机励磁系统的比较

发电机自并励静止励磁系统和三机励磁系统的比较一.概述大型常规火电厂发电机的励磁方式主要有自并励静止励磁和三机励磁两大类,静止励磁中发电机的励磁电源取自于发电机机端,通过励磁变压器降压后供给可控硅整流装置,可控硅整流变成直流后,再通过灭磁开关引入至发电机的磁场绕组,整个励磁装置没有转动部件,属于全静态励磁系统;而三机励磁的原理是:主励磁机、副励磁机、发电机三机同轴,主励磁机的交流输出,经硅二极管整流器整流后,供给汽轮发电机励磁。

主励磁机的励磁,由永磁副励磁机之中频输出经可控硅整流器整流后供给。

自动电压调节器根据汽轮发电机之端电压互感器、电流互感器取得的调节信号,控制可控硅整流器输出的大小,实现机组励磁的自动调节。

在励磁方式的选择上,俄罗斯、东欧多采用带有主副交流励磁机的三机他励励磁系统,法国Alstom、德国Siemens、美国西屋等公司多采用无刷励磁系统,而ABB、美国GE、日立、东芝公司更多地采用了静止励磁系统,特别是在常规火电中静止励磁更是占绝大部分份额。

二、发电机自并励静止励磁系统和三机励磁系统的比较1.1励磁系统的组成自并激静止励磁系统由励磁变压器、可控硅功率整流装置、自动励磁调节装置、发电机灭磁及过电压保护装置、起励设备及励磁操作设备等部分组成。

三机励磁系统由主励磁机、副励磁机、2套励磁调节装置、3台功率柜、1台灭磁开关柜及1台过电压保护装置等组成。

1.2 相对于三机励磁系统,静态励磁系统的优点归纳为以下几点: (1)静止励磁用静止的励磁变压器取代了旋转的励磁机,用大功率静止可控硅整流系统取代了旋转二极管整流盘,由于励磁系统没有旋转部分,设备接线比较简单,大大提高了整个励磁系统的可靠性,机组的检修维护工作量大大减少。

(2)机组采用静止励磁方式,取消了励磁机和旋转二极管整流盘,其轴系长度缩短,机组轴系的支点减少使得轴系的震动模式简单,利于轴系的稳定;电厂厂房的长度可以适当缩短4-5米,减少基建投资。

发电机励磁系统的作用

发电机励磁系统的作用

发电机励磁系统的作用
发电机励磁系统是发电机中一个至关重要的部分。

它的主要作用是通过提供磁场来激活发电机转子上的励磁绕组,从而产生磁场以使发电机实现自励磁。

在发电机运行时,励磁系统起到了以下几个关键作用:
1. 产生磁场
励磁系统的主要作用是产生一个稳定的磁场,使得发电机能够产生正常的电压和电流。

当励磁系统施加电流到发电机转子上的励磁绕组时,会在转子上产生一个磁场,该磁场与定子上的绕组感应出电压。

2. 调节电压
励磁系统可以通过控制励磁电流的大小和方向来调节发电机的输出电压。

在实际运行中,通过调节励磁系统的参数,可以使发电机输出稳定的电压,满足不同负载需求。

3. 维持系统稳定
发电机励磁系统还可以帮助维持电力系统的稳定运行。

通过及时响应系统负荷变化,励磁系统可以保持发电机的输出稳定,防止系统出现过载或欠载情况。

4. 提高发电机效率
励磁系统的优化设计可以提高发电机的效率。

通过合理设计励磁系统的控制策略和参数设置,可以减少发电机的损耗,提高整个电力系统的运行效率。

结语
综上所述,发电机励磁系统在电力系统中扮演着至关重要的角色。

它不仅能够产生必要的磁场,调节电压,维持系统稳定,还能提高发电机的效率。

因此,对发电机励磁系统进行科学合理的设计和运行管理,对于确保电力系统的安全稳定运行具有重要意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
近年来,我国电力系统中发电机单机容量不断增长, 300MW 、 600MW的单机已成为系统中的主力机组,容量1000MW的超超临界机组也 逐步进入一些大的电力系统。
• 水轮发电机的转速较低,转子都制成凸极式。转子上 有明显凸出的磁极和励磁线圈,当励磁线圈中通过直 流励磁电流后,每个磁极就出现一定的极性,相邻磁 极交替为 N 极和 S 极。磁极的极靴上还装有阻尼绕 组,两端用铜环焊在一起,自己形成一个短接回路。
d轴 q轴
d轴
按照冷却介质的不同,同步发电机可分为空气冷却、氢气冷却,水 冷却等。其中还可分为外冷式(冷却介质不直接与导线接触)和内冷式(冷却 介质直接与导线接触)。
将导线连成闭合回路,就有电流通过,同步发电机就是利用电磁感 应原理将机械能转变为电能的。
定子三相绕组在空间位置上互差120°电角度。因此,三相感应电动 势在时间上也互差120°电角度,发电机发出的就是对称三相交流电,即
当同步发电机的三相绕组与负载接通时,三相绕组中流过对称三相 电流,并产生一个旋转磁场,这个旋转磁场的转速n=60f/p,即定子旋转磁 场的转速与发电机转子转速相同,亦就是同步,故称为同步发电机。
在同步发电机的转子上装有励磁绕组,直 流电通过时会产生主磁场,其磁通如图中虚 线所示。磁极的形状决定了气隙磁密在空间 基本上按正弦规律分布。所以,当原动机带 动转子旋转时,就得到一个在空间按正弦规 律分布的旋转磁场。定子导线固定不动,旋 转磁场磁力线切割定子导线时,导线内感应 产生了电动势e,如右→
按照原动机的不同,通常同步发电机分为水轮发电机、汽轮发电机、 燃气轮发电机及柴油发电机等。水轮发电机和柴油发电机的转速较低,极数 较多,多采用凸极式转子.汽轮发电机和燃气轮发电机的转速很高,则采用 隐极式转子。
• 隐极式发电机,隐极式转子:外表呈圆柱形,在圆柱表面开 槽以安放直流励磁绕组,并用金属槽楔固紧,使电机具有均 匀的气隙。由于高速旋转时巨大的离心力,要求转子有很高 的机械强度。隐极式转子一般由高强度合金钢整块锻成,槽 形一般为开口形,以便安装励磁绕组。在每一个极距内约有 1/3部分不开槽,形成大齿;其余部分的齿较窄,称做小齿。大 齿中心即为转子磁极的中心。有时大齿也开一些较小的通风 槽,但不嵌放绕组;有时还在嵌线槽底部铣出窄而浅的小槽 作为通风槽。隐极式转子在转子本体轴向两端还装有金属的 护环和中心环。护环是由高强度合金制成的厚壁圆筒,用以 保护励磁绕组端部不至被巨大的离心力甩出;中心环用以防 止绕组端部的轴向移动,并支撑护环。此外,为了把励磁电 流通入励磁绕组,在电机轴上还装有集电环和电刷。 凸 极式,先将磁极加工好后,在装到转子的磁轭上。 在实 际生产中,当极数少,转速高时,采用隐极式结构; 当 极数较多时(p大于等于3)时,通常采用凸极式结构
发电机及励磁系统讲课
பைடு நூலகம்
• 电机分类 • 按工作电源种类划分:可分为直流电机和交
流电机
• 其中交流工作原理划分:可分为异步电机、 同步电机
• 交流电机还可分:单相电机和三相电机
同步发电机的基本理论
图示,在同步发电机的定子铁芯内, 对称地安放着A--X、B--Y、C--Z三相绕组。 每相绕组匝数相等,三相绕组的轴线在空间 互差120°电角度。
相关文档
最新文档