数值分析练习题加答案(二)
数值分析试题与答案

一、单项选择题(每小题3分,共15分)1. 和分别作为π(de)近似数具有( )和( )位有效数字. A .4和3 B .3和2 C .3和4 D .4和42. 已知求积公式()()211211()(2)636f x dx f Af f ≈++⎰,则A =( )A . 16B .13C .12D .233. 通过点()()0011,,,x y x y (de)拉格朗日插值基函数()()01,l x l x 满足( )A .()00l x =0,()110l x =B .()00l x =0,()111l x =C .()00l x =1,()111l x = D .()00l x =1,()111l x =4. 设求方程()0f x =(de)根(de)牛顿法收敛,则它具有( )敛速.A .超线性B .平方C .线性D .三次5. 用列主元消元法解线性方程组1231231220223332x x x x x x x x ++=⎧⎪++=⎨⎪--=⎩ 作第一次消元后得到(de)第3个方程( ).A .232x x -+=B .232 1.5 3.5x x -+=C .2323x x -+=D .230.5 1.5x x -=-二、填空题(每小题3分,共15分)1. 设TX )4,3,2(-=, 则=1||||X ,2||||X = .2. 一阶均差()01,f x x =3. 已知3n =时,科茨系数()()()33301213,88C C C ===,那么()33C = 4. 因为方程()420x f x x =-+=在区间[]1,2上满足 ,所以()0f x =在区间内有根.5. 取步长0.1h =,用欧拉法解初值问题()211y y yx y ⎧'=+⎪⎨⎪=⎩(de)计算公式 .0,1,2分 人三、计算题(每题15分,共60分)1. 已知函数211y x =+(de)一组数据:求分段线性插值函数,并计算()1.5f (de)近似值.1. 解 []0,1x ∈,()1010.510.50110x x L x x --=⨯+⨯=---[]1,2x ∈,()210.50.20.30.81221x x L x x --=⨯+⨯=-+--所以分段线性插值函数为()[][]10.50,10.80.31,2x x L x x x ⎧-∈⎪=⎨-∈⎪⎩ ()1.50.80.3 1.50.35L =-⨯=2. 已知线性方程组1231231231027.21028.35 4.2x x x x x x x x x --=⎧⎪-+-=⎨⎪--+=⎩(1) 写出雅可比迭代公式、高斯-塞德尔迭代公式;(2) 对于初始值()()00,0,0X =,应用雅可比迭代公式、高斯-塞德尔迭代公式分别计算()1X (保留小数点后五位数字).1.解 原方程组同解变形为1232133120.10.20.720.10.20.830.20.20.84x x x x x x x x x =++⎧⎪=-+⎨⎪=++⎩雅可比迭代公式为()()()()()()()()()1123121313120.10.20.720.10.20.830.20.20.84m m m m m m m m m x x x x x x x x x +++⎧=++⎪⎪=-+⎨⎪=++⎪⎩(0,1...)m =高斯-塞德尔迭代法公式()()()()()()()()()1123112131113120.10.20.720.10.20.830.20.20.84m m m m m m m m m x x x x x x x x x ++++++⎧=++⎪⎪=-+⎨⎪=++⎪⎩ (0,1...)m =用雅可比迭代公式得()()10.72000,0.83000,0.84000X =用高斯-塞德尔迭代公式得()()10.72000,0.90200,1.16440X =3. 用牛顿法求方程3310x x --=在[]1,2之间(de)近似根(1)请指出为什么初值应取2 (2)请用牛顿法求出近似根,精确到. 3. 解()331f x x x =--,()130f =-<,()210f =>()233f x x '=-,()12f x x ''=,()2240f =>,故取2x =作初始值4. 写出梯形公式和辛卜生公式,并用来分别计算积分111dxx+⎰.四、证明题(本题10分)确定下列求积公式中(de)待定系数,并证明确定后(de)求积公式具有3次代数精确度()()()()1010hhf x dx A f h A f A f h --=-++⎰证明:求积公式中含有三个待定系数,即101,,A A A -,将()21,,f x x x =分别代入求一、 填空(共20分,每题2分)1. 设2.3149541...x *=,取5位有效数字,则所得(de)近似值x= .2.设一阶差商()()()21122114,321f x f x f x x x x --===---,()()()322332615,422f x f x f x x x x --===--则二阶差商 ()123,,______f x x x =3. 设(2,3,1)TX =--, 则2||||X = ,=∞||||X .4.求方程 21.250x x --= (de)近似根,用迭代公式 1.25x x =+,取初始值 01x =, 那么 1______x =。
数值分析期末考试和答案

数值分析期末考试和答案一、单项选择题(每题2分,共20分)1. 在数值分析中,下列哪个方法用于求解线性方程组?A. 插值法B. 迭代法C. 直接法D. 拟合法答案:C2. 以下哪个数值方法是用于求解非线性方程的?A. 高斯消元法B. 牛顿迭代法C. 线性插值法D. 拉格朗日插值法答案:B3. 在数值积分中,梯形法则的误差与下列哪个因素无关?A. 被积函数的二阶导数B. 积分区间的长度C. 积分区间的划分数量D. 被积函数的一阶导数答案:D4. 以下哪个数值方法是用于求解常微分方程的?A. 欧拉方法B. 牛顿迭代法C. 拉格朗日插值法D. 高斯消元法答案:A5. 在数值分析中,下列哪个方法用于求解特征值问题?A. 高斯消元法B. 幂迭代法C. 牛顿迭代法D. 梯形法则答案:B6. 以下哪个数值方法是用于求解线性最小二乘问题的?A. 高斯消元法B. 梯形法则C. 正交分解法D. 牛顿迭代法答案:C7. 在数值分析中,下列哪个方法用于求解非线性方程组?A. 高斯消元法B. 牛顿迭代法C. 线性插值法D. 欧拉方法答案:B8. 在数值分析中,下列哪个方法用于求解偏微分方程?A. 有限差分法B. 牛顿迭代法C. 线性插值法D. 梯形法则答案:A9. 在数值分析中,下列哪个方法用于求解优化问题?A. 高斯消元法B. 梯形法则C. 牛顿迭代法D. 单纯形法答案:D10. 在数值分析中,下列哪个方法用于求解插值问题?A. 高斯消元法B. 梯形法则C. 牛顿迭代法D. 拉格朗日插值法答案:D二、填空题(每题2分,共20分)1. 在数值分析中,求解线性方程组的直接法包括______消元法和______消元法。
答案:高斯;LU2. 牛顿迭代法的收敛速度是______阶的。
答案:二3. 梯形法则的误差与被积函数的______阶导数有关。
答案:二4. 欧拉方法是一种求解______阶常微分方程的数值方法。
答案:一5. 幂迭代法是求解______特征值问题的数值方法。
数值分析课后习题答案

0 1
0 10 1 1 0 0 0 1
0 0 12 1 1 2 0 0 0
1 2
0 0 0 1 1 0
1 2
1 2
1 2
1
0 0 0 1 0
1 2
1 2
0
1 2
1 2
0
0
0
341 1 1
2-5.对矩阵A进行LDLT分解和GGT分解,并求解方程组
Ax=b,其中
16 4 8
1
A 4 5 4 , b 2
8 4 22
3
解
16 A 4
4 5
84
44 11
2-3(1).对矩阵A进行LU分解,并求解方程组Ax=b,其中
2 1 1 A1 3 2
4 ,b6
1 2 2
5
解
2 A 1
1 3
1 2
2 11
22
1
5 2
1
3 21来自,所以 A12
1
2 1 1
5 3
2-2(1).用列主元Gauss消元法解方程组
3 2 6x1 4 10 7 0x2 7 5 1 5x3 6
解
3 2 6 4 10 7 0 7 10 7 0 7
r1r2
消元
10 7 0 7 3 2 6 4 0 0.1 6 6.1
r=0.5101-n/3.162…<0.5101-n/3<0.01% 因此只需n=5.即取101/2=3.1623
数值分析习题含答案

x1 )
f (x0)
(x
x 0 )( x x0 x1
x1 )
f ' ( x0 )
(x ( x1
x0)
2 2
x0 )
f ( x1 )
R ( x)
其中 R(x) 由以下计算得到: 构造辅助函数:
(t ) f (t ) N 2 (t ) (t (x x0 ) (t x0 ) ( x
2 2
x1 ) x1 )
f [ 2 ,2 ] =-2089 ,
0 1 2 7
0 1 7
f (x)
M ,
x
[ a , b ] ,证明:在任意相邻两节点间
R1 ( x )
1 8
Mh
2
。
x xi x xi M
1
f ( ) R1 i ( x ) 2 M 8 h 2,
h ,
2
x
8 ,n
[ xi , xi
1
]
R1 ( x )
max R1 i ( x )
1 2
s
2
[( x
xi
1
))( x
x
i
1 2
)( x
x i )]
e
4
h
3
[ s( s
1)( s
1)] 24
3 9
e h
4
3
10
6
3!
8
h
1 . 317
则用二次插值的步长应:
h
0 .6585
10
2
2-6 对区间 [a,b] 作步长为 h 的剖分,且 做线性插值,其误差限为 证明:区间上的误差限: 误差限: 2-7 设 f ( x ) 解: 自变量 1 2
数值分析第二章答案

1.当1,1,2x =-时,()0,3,4f x =-,求()f x 的二次插值多项式。
解:0120121200102021101201220211,1,2,()0,()3,()4;()()1()(1)(2)()()2()()1()(1)(2)()()6()()1()(1)(1)()()3x x x f x f x f x x x x x l x x x x x x x x x x x l x x x x x x x x x x x l x x x x x x x ==-===-=--==-+-----==------==-+-- 则二次拉格朗日插值多项式为220()()k k k L x y l x ==∑0223()4()14(1)(2)(1)(1)23537623l x l x x x x x x x =-+=---+-+=+- 5设[]2(),f x Ca b ∈且()()0,f a f b ==求证: 21m ax ()()m ax ().8a x b a x bf x b a f x ≤≤≤≤''≤- 解:令01,x a x b ==,以此为插值节点,则线性插值多项式为10101010()()()x x x x L x f x f x x x x x --=+-- =()()x bx af a f b a b x a --=+--1()()0()0f a f b L x ==∴= 又 插值余项为1011()()()()()()2R x f x L x f x x x x x ''=-=--011()()()()2f x f x x x x x ''∴=--[]012012102()()1()()21()41()4x x x x x x x x x x b a --⎧⎫≤-+-⎨⎬⎩⎭=-=- 又 ∴21m ax ()()m ax ().8a x b a x bf x b a f x ≤≤≤≤''≤- 16.求一个次数不高于4次的多项式P (x ),使它满足(0)(0)0,(1)(1)0,(2)0P P P P P ''=====解:利用埃米尔特插值可得到次数不高于4的多项式0101010,10,10,1x x y y m m ======11300201001012()()()()(12)()(12)(1)j j j j j j H x y x m x x x x xx x x x x x x αβα===+--=---=+-∑∑210110102()(12)()(32)x x x x x x x x x x x α--=---=-2021()(1)()(1)x x x x x xββ=-=-22323()(32)(1)2H x x x x x x x ∴=-+-=-+设22301()()()()P x H x A x x x x =+--其中,A 为待定常数3222(2)1()2(1)P P x x x Ax x =∴=-++-14A ∴= 从而221()(3)4P x x x =-19.求4()f x x =在[,]a b 上分段埃尔米特插值,并估计误差。
数值分析复习题参考答案

x1 )
h
2
x 0 x x1 6
4
所以, R x
h 10
2
8
解得, h 0 . 000383
4. 习题(第二章) 7
5. 习题(第二章) 9
6. 习题(第二章) 11
7. 习题(第二章) 13
8. 习题(第二章) 14
9. 习题(第二章) 20
10. 习题(第四章) 1
2
, k 0 ,1, 2 2 3 2a 3x
3
此时, ( x )
2x a 3x
, '( x) 2a
所以, ' ( 3 a )
2 3
3(
3
a)
3
0 1, 所以该迭代公式收敛。
21. 习题(第七章) 13
本题没有给出精度要求, 但x3与x2之间的差为 已经很小了,足以满足 精度。
[ f ( x n , y n ) f ( x n 1 , y n 1 )]
( 3 ) 基于 Taylor 展开法:
y ( x n 1 ) y ( x n h ) y ( x n ) y ' ( x n ) h
h
2
2
y ''( xn )
取 y ( x n 1 ) y ( x n ) y ' ( x n ) h ,即 y n 1 y n hf ( x n , y n )
k 个点的值
求解隐式:先用欧拉公 求解多步法:单步法开
式求得一个初步的近似 表头,然后预报
修正 校正 修正。
( 其实只要给出公式会用
就行!! )
数值分析第二章答案

∑
n
i=1
ln x i = 0
θ
∧
= −
n
∑ ∑
n
n
i=1
ln x i n
θ
= =
解之得:
i=1
ln x i
(2)母体 X 的期望
E (x) =
∫
+∞ −∞
xf ( x ) d x =
∫
1 0
θ xθ dx =
θ θ +1
而样本均值为:
1 n X = ∑ xi n i =1 令E ( x) = X 得 θ =
x e 2σ 1 n
d x = 2 x ) =
∫
+ ∞ 0
x 2σ
e
−
x σ
d x = − x e ) = 1 ⋅ nσ n
−
x σ
+ ∞
+
0
∫
+ ∞ 0
e
−
x σ
d x =
E (σ ) = E (
∑
n
i=1
i
1 n
∑
n
E ( x
i=1
i
= σ
所以
σ=
∧
1 n ∑ xi σ n i=1 为 的无偏估计量。
∧
X 1− X
5.。解:其似然函数为:
L (σ ) = ∏
i =1
n
1 ⋅e 2σ
−
xi σ
=
1 ⋅e (2σ ) n 1 σ
n i =1
−
1 σ
∑ xi
i =1
n
ln L (σ ) = − n ln(2σ ) − 得: σ =
∧
数值分析第二次作业答案

练习1 已知410=x,211=x,432=x。
(1)推导以这3点作求积节点在[0,1]上的插值求积公式;(2)指明该求积公式所具有的代数精度; (3)用所求的公式计算dxx ⎰12解:按题设原式是插值型的,故有32434121414321100=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=⎰dx x x A同样,容易计算出3202==A A ,于是有求积公式⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛≈⎰433221314132)(1f f f dx x f由于原式含有3个节点,按定理1它至少有2阶精度。
考虑到其对称性,可以猜到它可能有3阶精度。
事实上,对于3)(x x f =原式左右两端相等。
此外,容易验证原式对4)(x x f =不准确,故所构造的求积公式确实有3阶精度。
(3)31]43221412[31222102=⎪⎭⎫⎝⎛⨯+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛⨯⨯≈⎰dx x31432141214341101-=⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=⎰dx x x A2. 取7个等距节点(包括区间端点)分别用复化梯形公式和复化辛甫生公式求积分2lnxdx的近似值(取6位小数)解:(1)复化梯形公式])(2)()([2)(11∑⎰-=++=≈n k k ban x f b f a f h T dx x f385139.0])(2)2()1([1211616=++=∴∑-=k k x f f f T(2)复化辛甫生公式])(2)(4)()([6)(11021∑∑⎰-=-=++++=≈n k k n k k n bax f xf b f a f h S dx x f ∴ ])(2)(4)2()1([3161212213∑∑==++++⨯=k k k k x f xf f f S≈0.386 287而 38629436.0ln21=⎰xdx3. 用梯形格式求解初值问题⎩⎨⎧=≤<++-='2)1(6.,y x x y y )1(1 1 ,(取步长h =0.2,小数点后至少保留6位) 解:梯形格式为)],(),([2111+++++=n n n n n n y x f y x f h y y ,于是⇒++-+++-+=+++ 1 1 ,)]()[(2111n n n n n n x y x y h y y),(222112 +++++-=++n n n n x x hh y hh y,2,1,0=n取步长h =0.2,由初值20=y 计算得147709.2)6.1(069422.2)4.1(018182.2)2.1(321=≈=≈=≈y y y y y y4. 对初值问题⎩⎨⎧=>=+'1)0(00y x y y , 试证明用欧拉预-校格式所求得的近似解为,2,1,022, )-(1=+=n hh y nn (其中h 为步长)证明: ,2,1,0)],(),([2),(1111 =⎪⎩⎪⎨⎧++=+=++++n y x f y x f hy y y x hf y y n n n n n n n n n n 将y y x f -=) ( ,代入,于是有⎪⎩⎪⎨⎧--+=-=+++)(2)1(111n n n n n n y y hy y y h y 整理后,有)-(1n n y hh y 221+=+反复递推得 )-(101212y hh y n n +++=由1)0(0==y y ,故得,2,1,022, )-(1=+=n hh y nn。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13、若 ,求 和
解:由均差与导数关系
于是
8、用欧拉方法求
在点 处的近似值。(8分)
解: 等价于
( )(2分)
记 ,取 , .
则由欧拉公式
, 2分
可得 ,
4分
9、已知A= ,求 , , 10分
解: , (4分)
,
得 ,所以 。(6分)
10、、n=3,用复合梯形公式求 的近似值(取四位小数),并求误差估计。(5分)
回代得 。(2分)
5、对线性代数方程组 (10)
设法导出使雅可比(Jacobi)迭代法和高斯-赛德尔(G-S)迭代法均收敛的迭代格式,要求分别写出迭代格式,并说明收敛的理由。
解:
因其变换后为等价方程组,且严格对角占优,故雅可比和高斯-赛德尔迭代法均收敛。(5分)
雅可比迭代格式为:
(2分)
高斯-赛德尔代格式为:
解:
, 时, 3分
至少有两位有效数字。 2分
11、下列方程组Ax=b,
考查用Jacobi法和GS法解此方程组的收敛性.(8分)
解:Jacobi法的迭代矩阵是
即 ,故 ,Jacobi法法收敛、(4分)
GS法的迭代矩阵为
故 ,解此方程组的GS法不收敛。(4分)
12、写出用四阶经典的龙格—库塔方法求解下列初值问题的计算公式:(无需计算)
14、确定下列求积公式中的待定参数,使其代数精确度尽量高,并指明求积公式所具有的代数精确度.
解: 代入公式两端并使其相等,得
解此方程组得 ,于是有
再令 ,得
故求积公式具Leabharlann 3次代数精确度。15、、计算积分 ,若用复合Simpson公式要使误差不超过 ,问区间 要分为多少等分?
解:由Simpson公式余项及 得
(1,0.332353)
2
(99.997059,33.2991174)
99.997059
(1,0.3330009675)
3
(99.9990029,33.29970087)
99.9990029
(1,0.333000329)
4
(99.99900098,33.29970029)
99.99900098
(1,0.333000330)
即 ,取n=6,即区间 分为12等分可使误差不超过
2设方程 的迭代法为
证明对 ,均有 ,其中 为方程的根.(5分)
证明:迭代函数 ,对 有
,
(3分)
6、、取节点 ,求函数 在区间[0,1]上的二次插值多项式 ,并估计误差。(8分)
解:
又 5分
故截断误差 。 3分
7、用幂法求矩阵 按模最大的特征值及相应的特征向量,取 ,精确至7位有效数字。(10)
解:幂法公式为 ,
取x0=(1,1)T,列表如下:
k
yT
mk
xT
1
(102,33.9)
102
1.为了使 的近似值的相对误差限小于0.1%,要取几位有效数字?(5分)
解、解:设 有n位有效数字,由 ,知
令 ,
取 ,
故
3设 ,分别在 上求一元素,使其为 的最佳平方逼近,并比较其结果。(10分)
5分
(4分)
由结果知(1)比(2)好。(比较1分)
4、用列主元素消元法求解方程组 .(10)
解:解:
(8分)