2019年山西中考考前适应性训练试题·数学

合集下载

山西省太原市2019-2020学年中考中招适应性测试卷数学试题(3)含解析

山西省太原市2019-2020学年中考中招适应性测试卷数学试题(3)含解析

山西省太原市2019-2020学年中考中招适应性测试卷数学试题(3)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若二次函数22y ax ax c =-+的图象经过点(﹣1,0),则方程220ax ax c -+=的解为( ) A .13x =-,21x =-B .11x =,23x = C .11x =-,23x = D .13x =-,21x =2.现有三张背面完全相同的卡片,正面分别标有数字﹣1,﹣2,3,把卡片背面朝上洗匀,然后从中随机抽取两张,则这两张卡片正面数字之和为正数的概率是( )A .12B .59C .49D .233.如图,半径为5的A e 中,弦BC ,ED 所对的圆心角分别是BAC ∠,EAD ∠,若6DE =,180BAC EAD ∠+∠=︒,则弦BC 的长等于( )A .8B .10C .11D .124.下列事件中必然发生的事件是( )A .一个图形平移后所得的图形与原来的图形不全等B .不等式的两边同时乘以一个数,结果仍是不等式C .200件产品中有5件次品,从中任意抽取6件,至少有一件是正品D .随意翻到一本书的某页,这页的页码一定是偶数5.cos60°的值等于( )A .1B .12C .22D .3 6.如图,数轴上有M 、N 、P 、Q 四个点,其中点P 所表示的数为a ,则数-3a 所对应的点可能是( )A .MB .NC .PD .Q7.如图,已知E ,F 分别为正方形ABCD 的边AB ,BC 的中点,AF 与DE 交于点M ,O 为BD 的中点,则下列结论:①∠AME=90°;②∠BAF=∠EDB ;③∠BMO=90°;④MD=2AM=4EM ;⑤23AM MF =.其中正确结论的是( )A .①③④B .②④⑤C .①③⑤D .①③④⑤8.如图是正方体的表面展开图,则与“前”字相对的字是( )A .认B .真C .复D .习9.如图,函数y =kx +b(k≠0)与y =m x (m≠0)的图象交于点A(2,3),B(-6,-1),则不等式kx +b >m x的解集为( )A .602x x <-<<或B .602x x -<或C .2x >D .6x <-10.某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是( )A .9分B .8分C .7分D .6分11.下列事件中为必然事件的是( )A .打开电视机,正在播放茂名新闻B .早晨的太阳从东方升起C .随机掷一枚硬币,落地后正面朝上D .下雨后,天空出现彩虹12.甲、乙、丙、丁四名射击运动员进行淘汰赛,在相同条件下,每人射击10次,甲、乙两人的成绩如图所示,丙、丁二人的成绩如表所示.欲淘汰一名运动员,从平均数和方差两个因素分析,应淘汰( )丙 丁 平均数8 8 方差 1.2 1.8A.甲B.乙C.丙D.丁二、填空题:(本大题共6个小题,每小题4分,共24分.)13.圆锥的底面半径为3,母线长为5,该圆锥的侧面积为_______.14.因式分解:212x x--=.15.如图,在矩形ABCD中,E、F分别是AD、CD的中点,沿着BE将△ABE折叠,点A刚好落在BF 上,若AB=2,则AD=________.16.如图,点A,B在反比例函数kyx=(k>0)的图象上,AC⊥x轴,BD⊥x轴,垂足C,D分别在x轴的正、负半轴上,CD=k,已知AB=2AC,E是AB的中点,且△BCE的面积是△ADE的面积的2倍,则k的值是______.17.如图,在平面直角坐标系中有一正方形AOBC,反比例函数kyx=经过正方形AOBC对角线的交点,半径为(422-的圆内切于△ABC,则k的值为________.18.已知正方形ABCD的边长为8,E为平面内任意一点,连接DE,将线段DE绕点D顺时针旋转90°得到DG,当点B,D,G在一条直线上时,若DG=22,则CE的长为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,点C、E、B、F在同一直线上,AC∥DF,AC=DF,BC=EF,求证:AB=DE20.(6分)某文教店老板到批发市场选购A、B两种品牌的绘图工具套装,每套A品牌套装进价比B品牌每套套装进价多2.5元,已知用200元购进A种套装的数量是用75元购进B种套装数量的2倍.求A、B两种品牌套装每套进价分别为多少元?若A品牌套装每套售价为13元,B品牌套装每套售价为9.5元,店老板决定,购进B品牌的数量比购进A品牌的数量的2倍还多4套,两种工具套装全部售出后,要使总的获利超过120元,则最少购进A品牌工具套装多少套?21.(6分)已知AC=DC,AC⊥DC,直线MN经过点A,作DB⊥MN,垂足为B,连接CB.(1)直接写出∠D与∠MAC之间的数量关系;(2)①如图1,猜想AB,BD与BC之间的数量关系,并说明理由;②如图2,直接写出AB,BD与BC之间的数量关系;(3)在MN绕点A旋转的过程中,当∠BCD=30°,BD2时,直接写出BC的值.22.(8分)学校决定在学生中开设:A、实心球;B、立定跳远;C、跳绳;D、跑步四种活动项目.为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图①②的统计图,请结合图中的信息解答下列问题:(1)在这项调查中,共调查了多少名学生?(2)请计算本项调查中喜欢“立定跳远”的学生人数和所占百分比,并将两个统计图补充完整.(3)若调查到喜欢“跳绳”的5名学生中有2名男生,3名女生,现从这5名学生中任意抽取2名学生,请用画树状图或列表法求出刚好抽到不同性别学生的概率.23.(8分)草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y(千克)与销售单价x(元)符合一次函数关系,如图是y与x 的函数关系图象.(1)求y与x的函数关系式;(2)直接写出自变量x的取值范围.24.(10分)小张骑自行车匀速从甲地到乙地,在途中因故停留了一段时间后,仍按原速骑行,小李骑摩托车比小张晚出发一段时间,以800米/分的速度匀速从乙地到甲地,两人距离乙地的路程y(米)与小张出发后的时间x(分)之间的函数图象如图所示.求小张骑自行车的速度;求小张停留后再出发时y与x 之间的函数表达式;求小张与小李相遇时x的值.25.(10分)某校运动会需购买A、B两种奖品,若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.(1)求A、B两种奖品的单价各是多少元?(2)学校计划购买A、B两种奖品共100件,且A种奖品的数量不大于B种奖品数量的3倍,设购买A 种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式.请您确定当购买A种奖品多少件时,费用W的值最少.26.(12分)2013年6月,某中学结合广西中小学阅读素养评估活动,以“我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题:在这次抽样调查中,一共调查了多少名学生?请把折线统计图(图1)补充完整;求出扇形统计图(图2)中,体育部分所对应的圆心角的度数;如果这所中学共有学生1800名,那么请你估计最喜爱科普类书籍的学生人数.27.(12分)如图,在△ABC中,AB=AC,以AB为直径作半圆⊙O,交BC于点D,连接AD.过点D 作DE⊥AC,垂足为点E.求证:DE是⊙O的切线;当⊙O半径为3,CE=2时,求BD长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【详解】∵二次函数22y ax ax c =-+的图象经过点(﹣1,0),∴方程220ax ax c -+=一定有一个解为:x=﹣1,∵抛物线的对称轴为:直线x=1,∴二次函数22y ax ax c =-+的图象与x 轴的另一个交点为:(3,0),∴方程220ax ax c -+=的解为:11x =-,23x =.故选C .考点:抛物线与x 轴的交点.2.D【解析】【分析】先找出全部两张卡片正面数字之和情况的总数,再先找出全部两张卡片正面数字之和为正数情况的总数,两者的比值即为所求概率.【详解】任取两张卡片,数字之和一共有﹣3、2、1三种情况,其中和为正数的有2、1两种情况,所以这两张卡片正面数字之和为正数的概率是23.故选D. 【点睛】本题主要考查概率的求法,熟练掌握概率的求法是解题的关键.3.A【解析】作AH ⊥BC 于H ,作直径CF ,连结BF ,先利用等角的补角相等得到∠DAE=∠BAF ,然后再根据同圆中,相等的圆心角所对的弦相等得到DE=BF=6,由AH⊥BC,根据垂径定理得CH=BH,易得AH为△CBF的中位线,然后根据三角形中位线性质得到AH=12BF=1,从而求解.解:作AH⊥BC于H,作直径CF,连结BF,如图,∵∠BAC+∠EAD=120°,而∠BAC+∠BAF=120°,∴∠DAE=∠BAF,∴弧DE=弧BF,∴DE=BF=6,∵AH⊥BC,∴CH=BH,∵CA=AF,∴AH为△CBF的中位线,∴AH=12BF=1.∴2222534BH AB AH-=-=,∴BC=2BH=2.故选A.“点睛”本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了垂径定理和三角形中位线性质.4.C【解析】【分析】直接利用随机事件、必然事件、不可能事件分别分析得出答案.【详解】A、一个图形平移后所得的图形与原来的图形不全等,是不可能事件,故此选项错误;B、不等式的两边同时乘以一个数,结果仍是不等式,是随机事件,故此选项错误;C、200件产品中有5件次品,从中任意抽取6件,至少有一件是正品,是必然事件,故此选项正确;D、随意翻到一本书的某页,这页的页码一定是偶数,是随机事件,故此选项错误;故选C.【点睛】此题主要考查了随机事件、必然事件、不可能事件,正确把握相关定义是解题关键.5.A【解析】【分析】根据特殊角的三角函数值直接得出结果.【详解】解:cos60°=12 故选A.【点睛】识记特殊角的三角函数值是解题的关键.6.A【解析】解:∵点P 所表示的数为a ,点P 在数轴的右边,∴-3a 一定在原点的左边,且到原点的距离是点P 到原点距离的3倍,∴数-3a 所对应的点可能是M ,故选A .点睛:本题考查了数轴,解决本题的关键是判断-3a 一定在原点的左边,且到原点的距离是点P 到原点距离的3倍.7.D【解析】【分析】根据正方形的性质可得AB=BC=AD ,∠ABC=∠BAD=90°,再根据中点定义求出AE=BF ,然后利用“边角边”证明△ABF 和△DAE 全等,根据全等三角形对应角相等可得∠BAF=∠ADE ,然后求出∠ADE+∠DAF=∠BAD=90°,从而求出∠AMD=90°,再根据邻补角的定义可得∠AME=90°,从而判断①正确;根据中线的定义判断出∠ADE≠∠EDB ,然后求出∠BAF≠∠EDB ,判断出②错误;根据直角三角形的性质判断出△AED 、△MAD 、△MEA 三个三角形相似,利用相似三角形对应边成比例可得2AM MD AD EM AM AE===,然后求出MD=2AM=4EM ,判断出④正确,设正方形ABCD 的边长为2a ,利用勾股定理列式求出AF ,再根据相似三角形对应边成比例求出AM ,然后求出MF ,消掉a 即可得到AM=23MF ,判断出⑤正确;过点M 作MN ⊥AB 于N ,求出MN 、NB ,然后利用勾股定理列式求出BM ,过点M 作GH ∥AB ,过点O 作OK ⊥GH 于K ,然后求出OK 、MK ,再利用勾股定理列式求出MO ,根据正方形的性质求出BO ,然后利用勾股定理逆定理判断出∠BMO=90°,从而判断出③正确.【详解】在正方形ABCD 中,AB=BC=AD ,∠ABC=∠BAD=90°,∵E 、F 分别为边AB ,BC 的中点,∴AE=BF=12BC , 在△ABF 和△DAE 中,AE BF ABC BAD AB AD ⎧⎪∠∠⎨⎪⎩=== ,∴△ABF ≌△DAE (SAS ), ∴∠BAF=∠ADE ,∵∠BAF+∠DAF=∠BAD=90°, ∴∠ADE+∠DAF=∠BAD=90°, ∴∠AMD=180°-(∠ADE+∠DAF )=180°-90°=90°, ∴∠AME=180°-∠AMD=180°-90°=90°,故①正确; ∵DE 是△ABD 的中线,∴∠ADE≠∠EDB ,∴∠BAF≠∠EDB ,故②错误; ∵∠BAD=90°,AM ⊥DE ,∴△AED ∽△MAD ∽△MEA , ∴2AM MD AD EM AM AE=== ∴AM=2EM ,MD=2AM ,∴MD=2AM=4EM ,故④正确;设正方形ABCD 的边长为2a ,则BF=a , 在Rt △ABF 中,== ∵∠BAF=∠MAE ,∠ABC=∠AME=90°, ∴△AME ∽△ABF ,∴AM AE AB AF= ,即2AM a =解得AM=5∴=55-,∴AM=23MF ,故⑤正确; 如图,过点M 作MN ⊥AB 于N ,则MN AN AM BF AB AF== 即25525MN AN a a a== 解得MN=a 52,AN=45a , ∴NB=AB-AN=2a-45a =65a , 根据勾股定理,22226221055NB MN a a ⎛⎫⎛⎫+=+= ⎪ ⎪⎝⎭⎝⎭ 过点M 作GH ∥AB ,过点O 作OK ⊥GH 于K ,则OK=a-a 52=a 53,MK=65a -a=15a , 在Rt △MKO 中,2222131055MK OK a a ⎛⎫⎛⎫+=+= ⎪ ⎪⎝⎭⎝⎭根据正方形的性质,BO=2a×22a =, ∵BM 2+MO 2=222210102a ⎫⎫+=⎪⎪⎝⎭⎝⎭)22222BO a a ==∴BM 2+MO 2=BO 2,∴△BMO 是直角三角形,∠BMO=90°,故③正确;综上所述,正确的结论有①③④⑤共4个.故选:D【点睛】本题考查了正方形的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理的应用,勾股定理逆定理的应用,综合性较强,难度较大,仔细分析图形并作出辅助线构造出直角三角形与相似三角形是解题的关键.8.B【解析】分析:由平面图形的折叠以及正方体的展开图解题,罪域正方体的平面展开图中相对的面一定相隔一个小正方形.详解:由图形可知,与“前”字相对的字是“真”.故选B.点睛:本题考查了正方体的平面展开图,注意正方体的空间图形,从相对面入手分析及解答问题.9.B【解析】【分析】根据函数的图象和交点坐标即可求得结果.【详解】解:不等式kx+b>mx的解集为:-6<x<0或x>2,故选B.【点睛】此题考查反比例函数与一次函数的交点问题,解题关键是注意掌握数形结合思想的应用.10.C【解析】分析: 根据中位数的定义,首先将这组数据按从小到大的顺序排列起来,由于这组数据共有7个,故处于最中间位置的数就是第四个,从而得出答案.详解: 将这组数据按从小到大排列为:6<7<7<7<8<9<9,故中位数为:7分,故答案为:C.点睛: 本题主要考查中位数,解题的关键是掌握中位数的定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.11.B【解析】分析:根据必然事件、不可能事件、随机事件的概念可区别各类事件:A、打开电视机,正在播放茂名新闻,可能发生,也可能不发生,是随机事件,故本选项错误;B、早晨的太阳从东方升起,是必然事件,故本选项正确;C、随机掷一枚硬币,落地后可能正面朝上,也可能背面朝上,故本选项错误;D、下雨后,天空出现彩虹,可能发生,也可能不发生,故本选项错误.【解析】【分析】求出甲、乙的平均数、方差,再结合方差的意义即可判断.【详解】x 甲=110(6+10+8+9+8+7+8+9+7+7)=8, 2S 甲=110 [(6-8)2+(10-8)2+(8-8)2+(9-8)2+(8-8)2+(7-8)2+(8-8)2+(9-8)2+(7-8)2+(7-8)2] =110×13 =1.3;x 乙=(7+10+7+7+9+8+7+9+9+7)=8,2S 乙=110[(7-8)2+(10-8)2+(7-8)2+(7-8)2+(9-8)2+(8-8)2+(7-8)2+(9-8)2+(9-8)2+(7-8)2] =110×12 =1.2;丙的平均数为8,方差为1.2,丁的平均数为8,方差为1.8,故4个人的平均数相同,方差丁最大.故应该淘汰丁.故选D .【点睛】本题考查方差、平均数、折线图等知识,解题的关键是记住平均数、方差的公式.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.15π【解析】试题分析:利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.圆锥的侧面积=12•2π•3•5=15π. 故答案为15π.考点:圆锥的计算.14.()()34x x +-;根据所给多项式的系数特点,可以用十字相乘法进行因式分解.【详解】x 2﹣x ﹣12=(x ﹣4)(x+3).故答案为(x ﹣4)(x+3).15.22 【解析】 如图,连接EF ,∵点E 、点F 是AD 、DC 的中点,∴AE=ED ,CF=DF=12CD=12AB=1, 由折叠的性质可得AE=A′E ,∴A′E=DE ,在Rt △EA′F 和Rt △EDF 中,EA ED EF EF ='⎧⎨=⎩, ∴Rt △EA ′F ≌Rt △EDF (HL ),∴A′F=DF=1,∴BF=BA′+A′F=AB+DF=2+1=3,在Rt △BCF 中,BC=22223122BF CF -=-=.∴AD=BC=22 .点睛:本题考查了翻折变换的知识,解答本题的关键是连接EF ,证明Rt △EA′F ≌Rt △EDF ,得出BF 的长,再利用勾股定理解答即可.16.【解析】试题解析:过点B 作直线AC 的垂线交直线AC 于点F ,如图所示.∵△BCE 的面积是△ADE 的面积的2倍,E 是AB 的中点,∴S △ABC =2S △BCE ,S △ABD =2S △ADE ,∴S △ABC =2S △ABD ,且△ABC 和△ABD 的高均为BF ,∴AC=2BD ,∴OD=2OC .∵CD=k ,∴点A 的坐标为(3k ,3),点B 的坐标为(-23k ,-32), ∴AC=3,BD=32, ∴AB=2AC=6,AF=AC+BD=92, ∴CD=k=22229376()22AB AF -=-=. 【点睛】本题考查了反比例函数图象上点的坐标特征、三角形的面积公式以及勾股定理.构造直角三角形利用勾股定理巧妙得出k 值是解题的关键.17.1【解析】试题解析:设正方形对角线交点为D ,过点D 作DM ⊥AO 于点M ,DN ⊥BO 于点N ;设圆心为Q ,切点为H 、E ,连接QH 、QE .∵在正方形AOBC 中,反比例函数y =k x经过正方形AOBC 对角线的交点, ∴AD=BD=DO=CD ,NO=DN ,HQ=QE ,HC=CE ,QH ⊥AC ,QE ⊥BC ,∠ACB=90°,∴四边形HQEC 是正方形,∵半径为(1-22)的圆内切于△ABC,∴DO=CD,∵HQ2+HC2=QC2,∴2HQ2=QC2=2×(1-22)2,∴QC2=18-322=(12-1)2,∴QC=12-1,∴CD=12-1+(1-22)=22,∴DO=22,∵NO2+DN2=DO2=(22)2=8,∴2NO2=8,∴NO2=1,∴DN×NO=1,即:xy=k=1.【点睛】此题主要考查了正方形的性质以及三角形内切圆的性质以及待定系数法求反比例函数解析式,根据已知求出CD的长度,进而得出DN×NO=1是解决问题的关键.18.210或226.【解析】【分析】本题有两种情况,一种是点G在线段BD的延长线上,一种是点G在线段BD上,解题过程一样,利用正方形和三角形的有关性质,求出MD、MG的值,再由勾股定理求出AG的值,根据SAS证明≌,可得CE AG=,即可得到CE的长.V VAGD CED【详解】解:当点G在线段BD的延长线上时,如图3所示.⊥于M,过点G作GM ADBD Q 是正方形ABCD 的对角线,45ADB GDM ∴∠=∠=︒,GM AD DG ⊥=Q , 2MD MG ∴==,在Rt AMG V 中,由勾股定理,得:AG ==在AGD V 和CED V 中,GD ED =,,AD CD =90ADC GDE ∠=∠=︒Q ,ADG CDE ∴∠=∠AGD CED ∴V V ≌CE AG ∴==当点G 在线段BD 上时,如图4所示.过G 作GM AD ⊥于M .BD Q 是正方形ABCD 的对角线,45ADG ∴∠=︒GM AD DG ⊥=Q , 2MD MG ∴==,6AM AD MD ∴==﹣在Rt AMG V 中,由勾股定理,得:AG ==在AGD V 和CED V 中,GD ED =,,AD CD =90ADC GDE ∠=∠=︒Q ,ADG CDE ∴∠=∠AGD CED ∴V V ≌CE AG ∴==故答案为【点睛】本题主要考查了勾股定理和三角形全等的证明.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.证明见解析.【解析】证明:∵AC//DF ∴在和中∴△ABC≌△DEF(SAS)20.(1)A种品牌套装每套进价为1元,B种品牌套装每套进价为7.5元;(2)最少购进A品牌工具套装2套.【解析】试题分析:(1)利用两种套装的套数作为等量关系列方程求解.(2)利用总获利大于等于120,解不等式.试题解析:(1)解:设B种品牌套装每套进价为x元,则A种品牌套装每套进价为(x+2.5)元.根据题意得:2002.5x+=2×75x,解得:x=7.5,经检验,x=7.5为分式方程的解,∴x+2.5=1.答:A种品牌套装每套进价为1元,B种品牌套装每套进价为7.5元.(2)解:设购进A品牌工具套装a套,则购进B品牌工具套装(2a+4)套,根据题意得:(13﹣1)a+(9.5﹣7.5)(2a+4)>120,解得:a>16,∵a为正整数,∴a取最小值2.答:最少购进A品牌工具套装2套.点睛:分式方程应用题:一设,一般题里有两个有关联的未知量,先设出一个未知量,并找出两个未知量的联系;二列,找等量关系,列方程,这个时候应该注意的是和差分倍关系:三解,正确解分式方程;四验,应用题要双检验;五答,应用题要写答.21.(1)相等或互补;(2)①BD+AB=2BC;②AB﹣BD2BC;(3)BC3131. 【解析】【分析】(1)分为点C,D在直线MN同侧和点C,D在直线MN两侧,两种情况讨论即可解题,(2)①作辅助线,证明△BCD≌△FCA,得BC=FC,∠BCD=∠FCA,∠FCB=90°,即△BFC是等腰直角三角形,即可解题, ②在射线AM上截取AF=BD,连接CF,证明△BCD≌△FCA,得△BFC是等腰直角三角形,即可解题,(3)分为当点C,D在直线MN同侧,当点C,D在直线MN两侧,两种情况解题即可,见详解.【详解】解:(1)相等或互补;理由:当点C,D在直线MN同侧时,如图1,∵AC⊥CD,BD⊥MN,∴∠ACD=∠BDC=90°,在四边形ABDC中,∠BAD+∠D=360°﹣∠ACD﹣∠BDC=180°,∵∠BAC+∠CAM=180°,∴∠CAM=∠D;当点C,D在直线MN两侧时,如图2,∵∠ACD=∠ABD=90°,∠AEC=∠BED,∴∠CAB=∠D,∵∠CAB+∠CAM=180°,∴∠CAM+∠D=180°,即:∠D与∠MAC之间的数量是相等或互补;(2)①猜想:BD+AB2BC如图3,在射线AM上截取AF=BD,连接CF.又∵∠D=∠FAC,CD=AC∴△BCD≌△FCA,∴BC=FC,∠BCD=∠FCA∵AC⊥CD∴∠ACD=90°即∠ACB+∠BCD=90°∴∠ACB+∠FCA=90°即∠FCB=90°∴BF2BC∵AF+AB=BF2BC∴BD+AB2BC;②如图2,在射线AM上截取AF=BD,连接CF,又∵∠D=∠FAC,CD=AC∴△BCD≌△FCA,∴BC=FC,∠BCD=∠FCA∵AC⊥CD∴∠ACD=90°即∠ACB+∠BCD=90°∴∠ACB+∠FCA=90°即∠FCB=90°∴BF=2BC∵AB﹣AF=BF=2BC∴AB﹣BD=2BC;(3)①当点C,D在直线MN同侧时,如图3﹣1,由(2)①知,△ACF≌△DCB,∴CF=BC,∠ACF=∠ACD=90°,∴∠ABC=45°,∵∠ABD=90°,∴∠CBD=45°,过点D作DG⊥BC于G,在Rt△BDG中,∠CBD=45°,BD2,∴DG=BG=1,在Rt △CGD 中,∠BCD =30°,∴CG =3,DG =3,∴BC =CG+BG =3+1,②当点C ,D 在直线MN 两侧时,如图2﹣1,过点D 作DG ⊥CB 交CB 的延长线于G ,同①的方法得,BG =1,CG =3,∴BC =CG ﹣BG =3﹣1即:BC =31+ 或31-,【点睛】本题考查了三角形中的边长关系,等腰直角三角形的性质,中等难度,分类讨论与作辅助线是解题关键. 22.(1)150;(2)详见解析;(3)35. 【解析】【分析】(1)用A 类人数除以它所占的百分比得到调查的总人数;(2)用总人数分别减去A 、C 、D 得到B 类人数,再计算出它所占的百分比,然后补全两个统计图; (3)画树状图展示所有20种等可能的结果数,再找出刚好抽到不同性别学生的结果数,然后利用概率公式求解.【详解】解:(1)15÷10%=150, 所以共调查了150名学生;(2)喜欢“立定跳远”学生的人数为150﹣15﹣60﹣30=45,喜欢“立定跳远”的学生所占百分比为1﹣20%﹣40%﹣10%=30%,两个统计图补充为:(3)画树状图为:共有20种等可能的结果数,其中刚好抽到不同性别学生的结果数为12, 所以刚好抽到不同性别学生的概率123.205== 【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.也考查了统计图.23.(1)y=-2x+31,(2)20≤x≤1【解析】试题分析:(1)根据函数图象经过点(20,300)和点(30,280),利用待定系数法即可求出y 与x 的函数关系式;(2)根据试销期间销售单价不低于成本单价,也不高于每千克1元,结合草莓的成本价即可得出x 的取值范围.试题解析:(1)设y 与x 的函数关系式为y=kx+b ,根据题意,得: 2030030280k b k b +=⎧⎨+=⎩解得:2340k b =-⎧⎨=⎩ ∴y 与x 的函数解析式为y=-2x+31,(2) ∵试销期间销售单价不低于成本单价,也不高于每千克1元,且草莓的成本为每千克20元, ∴自变量x 的取值范围是20≤x≤1.24.(1)300米/分;(2)y=﹣300x+3000;(3)7811分. 【解析】【分析】(1)由图象看出所需时间.再根据路程÷时间=速度算出小张骑自行车的速度.(2)根据由小张的速度可知:B (10,0),设出一次函数解析式,用待定系数法求解即可.(3)求出CD 的解析式,列出方程,求解即可.【详解】解:(1)由题意得:240012003004-=(米/分), 答:小张骑自行车的速度是300米/分;(2)由小张的速度可知:B (10,0),设直线AB 的解析式为:y=kx+b ,把A (6,1200)和B (10,0)代入得:10061200,k b k b +=⎧⎨+=⎩ 解得:3003000,k b =-⎧⎨=⎩∴小张停留后再出发时y 与x 之间的函数表达式;3003000y x =-+;(3)小李骑摩托车所用的时间:24003,800= ∵C (6,0),D (9,2400),同理得:CD 的解析式为:y=800x ﹣4800,则80048003003000x x -=-+, 7811x = 答:小张与小李相遇时x 的值是7811分.【点睛】考查一次函数的应用,考查学生观察图象的能力,熟练掌握待定系数法求一次函数解析式是解题的关键.25.(1)A 、B 两种奖品的单价各是10元、15元;(2)W (元)与m (件)之间的函数关系式是W=﹣5m+1,当购买A 种奖品75件时,费用W 的值最少.【解析】【分析】(1)设A 种奖品的单价是x 元、B 种奖品的单价是y 元,根据题意可以列出相应的方程组,从而可以求得A 、B 两种奖品的单价各是多少元;(2)根据题意可以得到W (元)与m (件)之间的函数关系式,然后根据A 种奖品的数量不大于B 种奖品数量的3倍,可以求得m 的取值范围,再根据一次函数的性质即可解答本题.【详解】(1)设A 种奖品的单价是x 元、B 种奖品的单价是y 元,根据题意得:32605395x y x y +=⎧⎨+=⎩解得:1015x y =⎧⎨=⎩. 答:A 种奖品的单价是10元、B 种奖品的单价是15元.(2)由题意可得:W=10m+15(100﹣m )=﹣5m+1.∵A 种奖品的数量不大于B 种奖品数量的3倍,∴m≤3(100﹣m ),解得:m≤75∴当m=75时,W 取得最小值,此时W=﹣5×75+1=2.答:W (元)与m (件)之间的函数关系式是W=﹣5m+1,当购买A 种奖品75件时,费用W 的值最少.【点睛】本题考查了一次函数的应用、二元一次方程组的应用、一元一次不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答.26.(1)一共调查了300名学生.(2)(3)体育部分所对应的圆心角的度数为48°.(4)1800名学生中估计最喜爱科普类书籍的学生人数为1.【解析】【分析】(1)用文学的人数除以所占的百分比计算即可得解.(2)根据所占的百分比求出艺术和其它的人数,然后补全折线图即可.(3)用体育所占的百分比乘以360°,计算即可得解.(4)用总人数乘以科普所占的百分比,计算即可得解.【详解】解:(1)∵90÷30%=300(名),∴一共调查了300名学生.(2)艺术的人数:300×20%=60名,其它的人数:300×10%=30名.补全折线图如下:(3)体育部分所对应的圆心角的度数为:40300×360°=48°.(4)∵1800×80300=1(名),∴1800名学生中估计最喜爱科普类书籍的学生人数为1.27.(1)证明见解析;(2)BD=3【解析】【分析】(1)连接OD,AB为⊙0的直径得∠ADB=90°,由AB=AC,根据等腰三角形性质得AD平分BC,即DB=DC,则OD为△ABC的中位线,所以OD∥AC,而DE⊥AC,则OD⊥DE,然后根据切线的判定方法即可得到结论;(2)由∠B=∠C,∠CED=∠BDA=90°,得出△DEC∽△ADB,得出CE CDBD AB,从而求得BD•CD=AB•CE,由BD=CD,即可求得BD2=AB•CE,然后代入数据即可得到结果.【详解】(1)证明:连接OD,如图,∵AB为⊙0的直径,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴AD平分BC,即DB=DC,∵OA=OB,∴OD为△ABC的中位线,∴OD∥AC,∵DE⊥AC,∴OD⊥DE,∴DE是⊙0的切线;(2)∵∠B=∠C,∠CED=∠BDA=90°,∴△DEC∽△ADB,∴CE CD BD AB=,∴BD•CD=AB•CE,∵BD=CD,∴BD2=AB•CE,∵⊙O半径为3,CE=2,∴BD62⨯=3【点睛】本题考查了切线的判定定理:过半径的外端点且与半径垂直的直线为圆的切线.也考查了等腰三角形的性质、三角形相似的判定和性质.。

2019年山西中考考前适应性训练·数学·试题及答案

2019年山西中考考前适应性训练·数学·试题及答案

(第 21 题图)
22.(本题 13 分)综合与实践: 如图 1,将一个等腰直角三角尺 ABC 的顶点 C 放置在直线 l 上,∠ABC=90°,AB=BC, 过点 A 作 AD⊥l 于点 D,过点 B 作 BE⊥l 于点 E. 观察发现: (1)如图 1,当 A,B 两点均在直线 l 的上方时, ①猜测线段 AD,CE 与 BE 的数量关系,并说明理由; ②直接写出线段 DC,AD 与 BE 的数量关系; 操作证明: (2)将等腰直角三角尺 ABC 绕着点 C 逆时针旋转至图 2 位置时,线段 DC,AD 与 BE 又有怎样的数量关系,请写出你的猜想,并写出证明过程; 拓广探索: (3)将等腰直角三角尺 ABC 绕着点 C 继续旋转至图 3 位置时,AD 与 BC 交于点 H, 若 CD=3,AD=9,请直接写出 DH 的长度.
第Ⅰ卷 选择题 (共 30 分)
一、选择题(本大题共 10 个小题,每小题 3 分,共 30 分.在每小题给出的四个选项中,只有
一项符合题目要求,请选出并在答题卡上将该项涂黑)
1. 下列各数中是无理数的是
A. 3
B. 1
3
C.
-
5 3
D. -2姨 3
C
2. 如图所示,a∥b,∠BAC=90°,∠C=30°,∠1=10°,则∠2=
347)曾提出:能否将一条线段分成不相等的两部分,使较短线段与
较长线段的比等于较长线段与原线段的比, 这个相等的比就是
姨5 2
-1
=0.618
033
988
749…,
黄金分割在我们生活中有广泛运
用,黄金分割点也可以用折纸的方式得到.
第一步:裁一张正方形的纸片 ABCD,先折出 BC 的中点 E,然后展平,再折出线段

精品解析:【市级联考】山西省2019届九年级下学期中考考前适应性训练数学试题(解析版)

精品解析:【市级联考】山西省2019届九年级下学期中考考前适应性训练数学试题(解析版)

山西省2019年中考考前适应性训练试题数学一、选择题(本大题共10个小题,每小题3分,共30分.)1.下列各数中是无理数的是()A. 3B.C.D. 【答案】D【解析】【分析】根据无理数的定义直接找出.【详解】解:四个选项中,只有D选项符合要求.故选D.【点睛】此题重点考查学生对无理数的理解,掌握无理数的定义是解题的关键.2.如图所示,,,,.则()A. B. C. D.【答案】A【解析】【分析】利用角大小先求出的大小,再根据平行线的性质求出.【详解】解:,,.故选A.【点睛】此题重点考查学生对平行线性质的理解,掌握平行线的性质是解题的关键.3.下列计算正确的是()A. B.C. D.【答案】D【解析】【分析】根据根号的计算,幂的计算,积的乘方判断四个选项的正确性.【详解】解:,不是同类项不能合并,A错误;,B错误;,C错误;,D正确.故选D.【点睛】此题重点考查学生对根式的计算,幂的计算,积的乘方的运算的理解,熟练掌握幂的运算,积的运算方法是解题的关键.4.在平面直用坐标系中,把以原点为旋转中心逆时针旋转,得,则点的对应点的坐标为()A. B. C. D.【答案】B【解析】【分析】先画出旋转后的A点,连结OA,OA逆时针旋转,再根据A点求对应点的坐标.【详解】解:画图可知,的坐标为.故选B.【点睛】此题重点考查学生对直角坐标系中点坐标的理解,掌握平面直角坐标系中点坐标的移动是解题的关键.5.若,则()A. -1B. 2C. 0D. 1【答案】A【解析】【分析】同底数幂相加,合并同类项.【详解】解:故选A.【点睛】此题重点考查学生对幂运算的理解,掌握同底数幂相加的法则是解题的关键.6.下列命题是假命题是()A. 平行于同一直线的两条直线平行B. 三个角是直角的四边形是矩形C. 内错角相等D. 如果三角形三个内角的比是,那么这个三角形是直角三角形【答案】C【解析】【分析】假命题的定义:错误的命题称为假命题.【详解】平行于同一直线的两条直线平行是真命题,A正确;三个角是直角的四边形是矩形是真命题,B正确;内错角相等只有在两直线平行的条件下才成立,C错误;如果三角形三个内角的比是,那么这个三角形是直角三角形是真命题,D正确.故选C.【点睛】此题重点考查学生对命题的理解,掌握真命题和假命题的定义是解题的关键.7.某校创新小组8名学生的身高分别是,,,,,,,,这组数据的众数是()A. B. C.和 D.【答案】C【解析】【分析】众数的定义:一组数据中出现次数最多的数.【详解】解:众数的定义:一组数据中出现次数最多的数.根据已知的数据,出现次数最多的数是:和.故选C.【点睛】此题重点考查学生对众数的理解,掌握众数的定义是解题的关键.8.若直线经过点,过点,且与关于轴对称,则与交点坐标为()A. B. C. D.【答案】B【解析】【分析】根据线的对称性结合点的坐标解答即可.【详解】先画图,再根据两直线关于x轴对称的关系找出交点,交点为.故选B.【点睛】此题重点考查学生对两直线对称的关系,掌握点坐标的对称是解题的关键.9.如图,在矩形中,点、、、分别是边、、、的中点,连接、、和.若,用下列结论正确的是()A. B. C. D.【答案】D【解析】【分析】根据已知条件利用勾股定理,线段中点的性质求出和的关系即可.【详解】解:在矩形中,点、、、分别是边、、、的中点,故选D.【点睛】此题重点考查学生对矩形的认识,掌握勾股定理是解题的关键.10.如图,阴影部分是从一块直径为的圆形铁板中截出的一个工件示意图,其中是等边三角形,则阴影部分的面积为()A. B.C. D.【答案】B【解析】【分析】先求的面积和扇形的面积,再计算整个阴影部分的面积.【详解】解:如图,直径为40,则半径为20,即,等边三角形过O点作,根据勾;股定理得:故选B.【点睛】此题重点考查学生对扇形面积的应用,熟练掌握扇形面积的计算方法是解题的关键.二、填空题(本大题共5个小题,每小题3分,共15分)11.已知关于的方程有一个根为3,则的值为_______.【答案】3.【解析】【分析】将3带入方程中即可求出m的值.【详解】解:已知关于的方程有一个根为3,则:故答案为:【点睛】此题重点考查学生对一元二次方程解的理解,掌握一元二次方程的解法是解题的关键.12.小明和小兵进行投靶游戏,如图所示,靶中两个同心圆的半径与的比为,随机投一次,苦投在阴影部分,小明获胜;投在环形部分,小兵获胜;小明获胜的概率记为,小兵获胜的概率记为,则____.(用“”“”“”填空)【答案】【解析】【分析】分别求出阴影部分面积和环形部分面积大小比较即可.【详解】解:两个同心圆的半径与的比为,假设环形面积=大圆面积-小圆面积=小圆面积=所以.故答案为:【点睛】此题重点考查学生对圆的面积的理解,熟练掌握圆的面积的计算方法是解题的关键.13.某校校门口有一个底面为等边三角形的三棱柱(如图).学校计划在三棱柱的侧面上,从顶点绕三棱柱侧面一周到顶点安装灯带,已知此三棱柱的高为,底面边长为,则灯带的长度至少为____.【答案】【解析】【分析】先画出三棱柱的侧面展开图,再根据勾股定理求解.【详解】解:将三棱柱展开如图,连接A’A,则A’A的长度就是彩带的最短长度,三棱柱的高为,底面边长为,灯带的长度至少为:.故答案为:.【点睛】此题最短考查学生对勾股定理的应用能力,掌握勾股定理是解题的关键.14.已知反比例函数,当时,的取值范围是____.【答案】【解析】【分析】先将反比例函数图象画出,再计算.【详解】解:画出函数图象当时,画出点,由图可知,当时,的取值范围是.故答案为:.【点睛】此题重点考查学生对反比例函数图象和性质的理解,掌握反比例函数图象和性质是解题的关键.15.如图,在中,,,是斜边上的中线,将沿直线翻折至的位置,连接.若,计算四边形的面积等于____.【答案】【解析】【分析】根据直角三角形斜边的中线等于斜边的一半得到,从而证明是等边三角形,再结合等腰三角形性质和勾股定理即可求解.【详解】解:过点D作在中,,是斜边上的中线,(沿直线翻折至的位置)是等边三角形故答案为:【点睛】此题重点考查学生对三角函数、勾股定理的应用,熟练掌握三角函数值的解法是解题的关键.三、解答题(本大题共8个小题,共75分.解答题应写出文字说明、证明过程或演算步骤)16.(1)解方程组:(2)解不等式:.【答案】(1);(2).【解析】【分析】(1)根据二元一次方程的解法求解(2)根据不等式的解法先化简再求值.【详解】(1)由②得:,③把③代入①得:,∴,把代入③得:.∴原方程组的解为(2)去分母得:,去括号得:,移项得:,合并同类项:,系数化为1:.【点睛】此题重点考查学生对二元一次方程,不等式解的应用,熟练掌握二元一次方程的解法是解题的关键.17.先化简,再求值:,其中.【答案】.【解析】【分析】先通分,再合并同类项,再求值.【详解】原式当时,原式.【点睛】此题重点考查学生对分式的理解,熟练掌握分式的化简求值是解题的关键.18.2019年8月.山西龙城将迎来全国第二届青年运动会,盛会将至,整个城市已经进入了全力准备的状态.太职学院足球场作为一个重要比赛场馆.占地面积约24300平方米.总建筑面积4790平方米,设有2476个座位,整体建筑简洁大方,独具特色.2018年3月15日该场馆如期开工,某施工队负责安装该场馆所有座位,在安装完476个座位后,采用新技术,效率比原来提升了.结来比原计划提前4天完成安装任务.求原计划每天安装多少个座位.【答案】原计划每天安装100个座位.【解析】【分析】根据题意先设原计划每天安装x个座位,列出方程再求解.【详解】解:设原计划每天安装个座位,采用新技术后每天安装个座位,由题意得:.解得:.经检验:是原方程的解.答:原计划每天安装100个座位.【点睛】此题重点考查学生对分式方程的实际应用,掌握分式方程的解法是解题的关键.19.一声汽笛长鸣,火车开进了蔡家崖.这是我省吕梁革命老区人民期盼已久的客运列车.蔡家崖列车的开通.带动老区驶入了发展红色旅游的快车进.某旅行社对去年“国庆”期间到吕梁观光的游客的出行方式进行了随机抽样调查,整理后绘制了两幅统计图(尚不完整).根据图中信息,回答下列问题:(1)求本次抽样调查的总人数:(2)补全条形统计图;(3)扇形统计图中“其他”部分扇形的圆心角度数为____;(4)去年“国庆”期问到吕梁观光的旅游者为275万人,则选择自驾方式出行的有多少万人.【答案】(1)本次抽样调查的人数为2500人;(2)补全条形统计图见解析;(3)54°;(4)选择自驾方式出游的有110万人.【解析】【分析】(1)根据自驾的人数和所占的百分比求总数(2)根据总数减去公共交通和自驾的人数得到其他人数,补全条形统计统计图(3)根据每个百分比所占的度数乘以其他所占的百分比即可(4)用新的人数乘以自驾所占的百分比即可得到结果.【详解】解:(1)(人).答:本次抽样调查的人数为2500人.(2)补全条形统计图如下.(3)(4)(万人)答:选择自驾方式出游的有110万人.【点睛】此题重点考查学生对统计的实际应用,掌握统计图的数据处理是解题的关键.20.阅读下列材料,并完成相应任务.古希腊数学家,天文学家欧多克索斯(Eudoxus,约前400—前347)曾提出:能否将一第一步:裁一张正方形的纸片,先折出的中点,然后展平,再折出线段第二步:将纸片沿折叠,使落到线段上,第三步:沿折叠,使落在上,的对应点为,展平,这时就是的黄金分割点.任务:(1)试根据以上操作步骤证明就是的黄金分割点;(2)请写出一个生活中应用黄金分割的实际例子.【答案】(1)证明见解析;(2)答案不唯一.如:节目主持人报幕,总是站在舞台上侧近于0.618的位置才是最佳的位置;时装模特、舞蹈演员腿长和身高的比例也近似于0.618比值.【解析】【分析】(1)根据操作步骤先设正方形的边长为,然后利用勾股定理结合折叠的特点求解(2)生活中的例子很多,选择其中一个例子即可.【详解】解:(1)证明:设正方形的边长为,∵为的中点,∴,∴.又∵由折叠可得,∴,又∵,∴,∴点是线段的黄金分割点.(2)答案不唯一.如:节目主持人报幕,总是站在舞台上侧近于0.618的位置才是最佳的位置;时装模特、舞蹈演员腿长和身高的比例也近似于0.618比值.【点睛】此题重点考查学生对正方形性质的实际应用,掌握黄金分割比的证明是解题的关键.21.某市在创建文明城市活动中,对道路进行美化.如图.道路两旁分别有两个高度相同的路灯和,两个路灯之间的距离长为24米,小明在点(,,.在一条直线上)处测得路灯顶部点的仰角为,然后沿方向前进8米到达点处,测得路灯顶部的点仰角为.已知小明的两个观测点,距离地面的高度、均为1.6米,求路灯的高度.(精确到0.1米,参考数据:,)【答案】路灯的高度约为7.5米.【解析】【分析】根据两个仰角的大小结合解直角三角形的方法先求出和的长度,再利用的长度解即可.【详解】解:连接,延长交于点,延长交于点,如图所示,由题意可得,,,,,,设,则,在中,,在中,∴,即,解得,,∴,答:路灯的高度约为7.5米.【点睛】此题重点考查学生对解直角三角形的应用,熟练掌握解直角三角形的方法是解题的关键.22.综合与实践:如图1,将一个等腰直角三角尺的顶点放置在直线上,,,过点作于点,过点作于点.观察发现:(1)如图1.当,两点均在直线的上方时,①猜测线段,与的数量关系,并说明理由;②直接写出线段,与的数量关系;操作证明:(2)将等腰直角三角尺绕着点逆时针旋转至图2位置时,线段,与又有怎样的数量关系,请写出你的猜想,并写出证明过程;拓广探索:(3)将等腰直角三用尺绕着点继续旋转至图3位置时,与交于点,若,,请直接写出的长度.【答案】(1)①.理由见解析;②;(2);证明见解析;(3)的长度为.【解析】【分析】(1)过点作根据已知条件结合直角三角形性质证明,从而得到四边形为正方形,最后得出①,直接写出②(2)过点作,先证明证明四边形为正方形,根据正方形的性质求解(3)过点作,证明,四边形为正方形,再求解.【详解】解:(1)①.理由如下:如图,过点作,交的延长线于点,∵,,∴.又∵∴∴四边形为矩形.∴.又∵,∴.即.在和中,∴.∴,.又∵四边形为矩形,∴四边形为正方形.∴.∴.②.(2)如图,过点作,交延长线于点,∵,,∴.又∵,∴.∴四边形为矩形.∴.又∵,∴,即.在和中,∴.∴,.又∵四边形为矩形,∴四边形正方形.∴.∵,∴.∴.(3)如图,过点作,交于点,同理可证,,四边形为正方形.∴,.∵,∴.∴.∵,,∴,.∵,∴.∴.∴.【点睛】此题重点考查学生对三角形全等和等腰直角三角形的应用,熟练掌握三角形全等的证明方法是解题的关键.23.如图1,在平面直角坐标系中,二次函数交轴于、两点,(点在点的左侧)与轴交于点,连接.(1)求点、点和点的坐标;(2)如图2,若点为第四象限内抛物线上一动点,点的横坐标为,的面积为.求关于的函数关系式,并求出的最大值;(3)抛物线的对称轴上是否存在点,使为等腰三角形?若存在,请直接写出所有点的坐标;若不存在,请说明理由.【答案】(1),,;(2);;(3),,,,【解析】【分析】(1))求当时和当时的解即可(2)根据点的位置结合二次函数的图象和性质求和,从而求得面积的最大值(3)先求出函数的对称轴,设点的坐标,再根据等腰三角形性质分情况讨论求解. 【详解】(1)当时,,解得,,又∵在的左侧,∴,,当时,,∴.(2)∵的横坐标为,在抛物线上.∴的纵坐标为,∴,∵点在第四象限,∴,,连接,∵,,.∴.∵,∴当时,.(3)二次函数的对称轴是设点P的坐标为,又因为分三种情况讨论:当时,解得,此时,当时,解得,此时,,当时,解得,此时,,,,,【点睛】此题重点考查学生对二次函数的图象和性质的应用,熟练掌握二次函数的图象和性质是解题的关键.。

2019-2020年最新山西省中考考前适应性训练数学试卷及答案解析

2019-2020年最新山西省中考考前适应性训练数学试卷及答案解析

2019-2020年最新山西省中考考前适应性训练数学试卷及答案解析山西省中考考前适应性训练数学试卷一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.2014年,山西省公共财政同比增长2.2%,记作+2.2%,那么,一般公共服务支出同比下降6.3%,应记作()A.6.3% B.﹣6.3% C.8.5% D.﹣8.5%2.如图,已知BE∥AC,图中和∠C相等的角是()A.∠ABE B.∠A C.∠ABC D.∠D BE3.计算:(﹣x2y)3,结果正确的是()A.﹣B.﹣C.﹣D.4.2015 年2月,山西省教育厅公布了中考理化实验操作考试的物理、化学试题各24道,某考生从中随机任选一题解答,选中物理试题的概率是()A.B.C.D.5.如图,三角尺与其灯光照射下的中心投影组成了位似图形,它们的相似比为2:3,若三角尺的一边长为8cm,则这条边在投影中的对应边长为()A.8cm B.12cm C.16cm D.24cm6.阅读理解:我们把称作二阶行列式,规定它的运算法则为=ad ﹣bc,例如=1×4﹣2×3=﹣2,如果>0,则x的解集是()A.x>1 B.x<﹣1 C.x>3 D.x<﹣37.如图,已知棋子“车”的坐标为(﹣2,﹣1),棋子“马”的坐标为(1,﹣1),则棋子“炮”的坐标为()A.(3,2)B.(﹣3,2)C.(3,﹣2)D.(﹣3,﹣2)8.如图,已知边长为2cm的正六边形ABCDEF,点A1,B1,C1,D1,E1,F1分别为所在各边的中点,则图中阴影部分的总面积是()A.B.C.D.9.2014年,山西省某地实施了“免费校车工程”.小明原来骑自行车上学,现在乘校车上学可以从家晚10分钟出发,结果与原来到校时间相同.已知小明家距学校5千米,若校车速度是他骑车速度的2倍,设小明骑车的速度为x千米/小时,则所列方程正确的为()A.+=B.=+C.+10=D.﹣10=10.在?ABCD中,BE平分∠ABC交AD于点E,AF⊥CD于点F,交BE于点G,AH⊥BC 于点H,交BE于点I.若BI=IG,且AI=3,则AE的长为()A.3 B.2 C.6 D.3二、填空题(本大题共6个小题,每小题3分,共18分)11.请写出一个实数a,使得实数a﹣1的绝对值等于1﹣a成立,你写出的a的值是.12.已知m﹣n=,则代数式(m+1)2+n(n﹣2m)﹣2m的值是.13.如图,正三角形网络中,已有两个小正三角形被涂黑,再将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有种.14.一个不透明的文具袋装有型号完全相同的3支红笔和2支黑笔,小明、小红两人先后从袋中随机取出一支笔(不放回),两人所取笔的颜色相同的概率是.15.如图,已知函数y=kx+2与函数y=mx﹣4的图象交于点A,根据图象可知不等式kx+2<mx﹣4的解集是.16.如图,在Rt△ABC中,∠ACB=90°,tanB=,点D,E分别在边AB,AC上,DE⊥AC,DE=6,DB=20,则tan∠BCD的值是.三、解答题(本大题共8个小题,共72分,解答应写出文字说明,过程或演算步骤)17.(1)计算:﹣|﹣|+2﹣4+3tan30°(2)化简:÷(a﹣)18.某服装网店李经理用11000元购进了甲、乙两种款式的童装共150件,两种童装的价格如右图所示,请你求出李经理购买甲乙两种款式的童装各多少件?19.如图,已知△ABC.(1)实践与操作:利用尺规按下列要求作图,并在图中标明相应的字母(保留作图痕迹,不写作法)①作BC边上的高AD;②作△ABC的角平分线BE;(2)综合与运用;若△ABC中,AB=AC且∠CAB=36°,请根据作图和已知写出符合括号内要求的正确结论;结论1:;(关于角)结论2:;(关于线段)结论3:.(关于三角形)20.某学习小组想了解某县每个居民一天的平均健身时间,准备采用以下调查方式中的一种进行调查:(1)从一个乡镇随机选取400名居民作为调查对象;(2)从该县体育活动中心随机选取400名锻炼身体的居民作为调查对象;(3)从该县公安局户籍管理处随机抽取400名城乡居民作为调查对象.(1)在上述调查方式中,你认为最合理的是(填序号);(2)该活动小组采用一种调查方式进行了调查,并将所得到的数据制成了如图所示的条形统计图,写出这400名居民每天平均健身时间的众数是小时,中位数是小时;(3)小明在求这400名居民每人每天平均健身时间的平均数时,他是这样分析的:小明的分析正确吗?如果不正确,请求出正确的平均数.(4)若该县有40万人,根据抽样结果估计该县每天健身2小时及以上的人数是多少人?你认为这个调查活动的设计有没有不合理的地方?谈谈你的理由.21.如图,已知⊙O是△ABC的外接圆,AC是直径,∠A=30°,BC=2,点D是AB的中点,连接DO并延长交⊙O于点P,过点P作PF⊥AC于点F.(1)求劣弧PC的长;(结果保留π)(2)求阴影部分的面积.(结果保留π).22.已知某电路的电压U(V),电流I(A),电阻R(Ω)三者之间有关系式U=IR,且电路的电压U恒为220V.(1)求出电流I关于电阻R的函数表达式;(2)如果该电路的电阻为250Ω,则通过它的电流是多少?(3)如图,怎样调整电阻箱R的值,可以使电路中的电流I增大?若电流I=1.1A,求电阻R 的值.23.【问题情境】一节数学课后,老师布置了一道课后练习题:如图:已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,点E、F分别在A和BC上,∠1=∠2,FG⊥AB于点G,求证:△CDE≌△EGF.(1)阅读理解,完成解答本题证明的思路可用下列框图表示:根据上述思路,请你完整地书写这道练习题的证明过程;(2)特殊位置,证明结论若CE平分∠ACD,其余条件不变,求证:AE=BF;(3)知识迁移,探究发现如图,已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,若点E是DB的中点,点F在直线CB上且满足EC=EF,请直接写出AE与BF的数量关系.(不必写解答过程)24.如图,已知二次函数y=ax2+bx﹣4(a≠0)的图象与x轴交于A,B两点(点A在点B 左侧),与y轴交于点C,点A的坐标为(﹣2,0),且当x=﹣1和x=3时,二次函数的值y 相等,直线AD交抛物线于点D(2,m).(1)求二次函数的表达式;(2)点P是线段AB上的一动点,(点P和点A,B不重合),过点P作PE∥AD,交BD于E,连接DP,当△DPE的面积最大时,求点P的坐标;(3)若直线AD 与y轴交于点G,点M是抛物线对称轴l上的动点,点N是x轴上的动点,当四边形CMNG的周长最小时,求出周长的最小值和点M,点N的坐标.山西省中考考前适应性训练数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.2014年,山西省公共财政同比增长2.2%,记作+2.2%,那么,一般公共服务支出同比下降6.3%,应记作()A.6.3% B.﹣6.3% C.8.5% D.﹣8.5%【考点】正数和负数.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:∵2014年,山西省公共财政同比增长2.2%,记作+2.2%,∴一般公共服务支出同比下降6.3%,应记作﹣6.3%,故选:B.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.2.如图,已知BE∥AC,图中和∠C相等的角是()A.∠ABE B.∠A C.∠ABC D.∠DBE【考点】平行线的性质.【分析】直接根据平行线的性质即可得出结论.【解答】解:∵BE∥AC,∴∠C=∠DBE.故选D.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.3.计算:(﹣x2y)3,结果正确的是()A.﹣B.﹣C.﹣D.【考点】幂的乘方与积的乘方.【分析】直接利用积的乘方运算化简求出即可.【解答】解:(﹣x2y)3=﹣x6y3.故选:C.【点评】此题主要考查了积的乘方运算,正确掌握运算法则是解题关键.4.2015 年2月,山西省教育厅公布了中考理化实验操作考试的物理、化学试题各24道,某考生从中随机任选一题解答,选中物理试题的概率是()A.B.C.D.【考点】概率公式.【分析】用物理试题的个数除以题目的总个数即可求得为物理试题的概率.【解答】解:∵物理、化学试题各24道,∴从中随机任选一题解答,选中物理试题的概率是=,故选A.【点评】考查了概率的公式,解题时用到的知识点为:概率=所求情况数与总情况数之比.5.如图,三角尺与其灯光照射下的中心投影组成了位似图形,它们的相似比为2:3,若三角尺的一边长为8cm,则这条边在投影中的对应边长为()A.8cm B.12cm C.16cm D.24cm【考点】位似变换.【分析】利用相似比为2:3,可得出其对应边的比值为2:3,进而求出即可.【解答】解:∵三角尺与其灯光照射下的中心投影组成了位似图形,它们的相似比为2:3,三角尺的一边长为8cm,∴设这条边在投影中的对应边长为:x,则=,解得:x=12.故选:B.【点评】此题主要考查了位似变换,利用相似比得出对应边的比值是解题关键.6.阅读理解:我们把称作二阶行列式,规定它的运算法则为=ad ﹣bc,例如=1×4﹣2×3=﹣2,如果>0,则x的解集是()A.x>1 B.x<﹣1 C.x>3 D.x<﹣3【考点】解一元一次不等式.【专题】新定义.【分析】先根据题意得出关于x的不等式,求出x的取值范围即可.【解答】解:由题意可得2x﹣(3﹣x)>0,解得x>1.故选A.【点评】本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.7.如图,已知棋子“车”的坐标为(﹣2,﹣1),棋子“马”的坐标为(1,﹣1),则棋子“炮”的坐标为()A.(3,2)B.(﹣3,2)C.(3,﹣2)D.(﹣3,﹣2)【考点】坐标确定位置.【专题】数形结合.【分析】先根据棋子“车”的坐标画出直角坐标系,然后写出棋子“炮”的坐标.【解答】解:如图,棋子“炮”的坐标为(3,﹣2).故选C.【点评】本题考查了坐标确定位置:平面坐标系中的点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.8.如图,已知边长为2cm的正六边形ABCDEF,点A1,B1,C1,D1,E1,F1分别为所在各边的中点,则图中阴影部分的总面积是()A.B.C.D.【考点】正多边形和圆.【分析】六边形ABCDEF和A1B1C1D1E1F1都是正多边形,两个多边形的面积的差的一半就是阴影部分的面积.【解答】解:边长是2cm的正六边形ABCDEF的面积是:6××sin60°×22=6cm2.作出连接中心O,连接OD1,OC.在直角△OCD1中,∠O=30°,CD1=CD=1(cm).则OD1=CD1=,OG=OD1=,C1D1=.则A1B1C1D1E1F1的面积是:6××sin60°×()2=cm2.则图中阴影部分的总面积是(6﹣)=.故选A.【点评】本题考查了正多边形的计算,正多边形的计算常用的方法是转化为正多边形的计算,理解两个多边形的面积的差的一半就是阴影部分的面积是关键.9.2014年,山西省某地实施了“免费校车工程”.小明原来骑自行车上学,现在乘校车上学可以从家晚10分钟出发,结果与原来到校时间相同.已知小明家距学校5千米,若校车速度是他骑车速度的2倍,设小明骑车的速度为x千米/小时,则所列方程正确的为()A.+=B.=+C.+10=D.﹣10=【考点】由实际问题抽象出分式方程.【分析】设小明骑车的速度为x千米/小时,校车速度为2x千米/小时,等量关系为:小明骑车所走的时间减去校车所走的时间=10分钟,据此列方程.【解答】解:设小明骑车的速度为x千米/小时,校车速度为2x千米/小时,由题意得,﹣=,即=+.关系B.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.10.在?ABCD中,BE平分∠ABC交AD于点E,AF⊥CD于点F,交BE于点G,AH⊥BC 于点H,交BE于点I.若BI=IG,且AI=3,则AE的长为()A.3 B.2 C.6 D.3【考点】相似三角形的判定与性质;平行四边形的性质.【分析】由平行四边形的性质得到对边平行,得出内错角相等,因为BE平分∠ABC,得到∠1=∠3,证得∠2=∠3,得到AB=AE,由△ABC∽△ADF,得到∠4=∠5,通过三角形全等推出BI=EG,由BI=IG,得到GE=IG,应用直角三角形的性质得出IE的长度,根据勾股定理解出结果.【解答】解:在?ABCD中,∵AD∥BC,∴∠1=∠2∵∠1=∠3,∴∠2=∠3,∴AB=AE,∵AF⊥CD,AH⊥BC,∴∠AHB=∠AFD=90°,在平行四边形ABCD中,∠ABH=∠ADF,∴△ABH∽△ADF,∴∠4=∠5在△ABI与△AEG中,,∴△ABI≌△AEG,∴BI=EG,∵BI=IG,∴GE=IG,∵AD∥BC,∴∠DAH=∠AHB=90°,∴IE=2AG=2AI=6,∴AE==3.故选D.【点评】此题考查了平行四边形的性质、勾股定理,相似三角形的判定和性质,全等三角形的判定与性质,直角三角形的性质,解题的关键是证出△AIE是直角三角形并应用其性质.二、填空题(本大题共6个小题,每小题3分,共18分)11.请写出一个实数a,使得实数a﹣1的绝对值等于1﹣a成立,你写出的a的值是0 .【考点】实数的性质.【专题】开放型.【分析】根据负数的绝对值是它的相反数,可得答案.【解答】解:由实数a﹣1的绝对值等于1﹣a成立,得a﹣1<0,a是小于1的数,故答案为:0.【点评】本题考查了实数的性质,利用负数的绝对值等于它的相反数,a只要小于1即可.12.已知m﹣n=,则代数式(m+1)2+n (n﹣2m)﹣2m的值是 6 .【考点】整式的混合运算—化简求值.【分析】先算乘法,再合并同类项,变形后整体代入,即可得出答案.【解答】解:∵m﹣n=,∴(m+1)2+n(n﹣2m)﹣2m=m2+2m+1+n2﹣2mn﹣2m=m2﹣2mn+n2+1=(m﹣n)2+1=()2+1=6,故答案为:6.【点评】本题考查了整式的混合运算和求值的应用,能根据整式的运算法则进行化简是解此题的关键,用了整体代入思想.13.如图,正三角形网络中,已有两个小正三角形被涂黑,再将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有 3 种.【考点】利用轴对称设计图案.【分析】根据轴对称的概念作答.如果一个图形沿一条直线对折,直线两旁的部分能互相重合,那么这个图形叫做轴对称图形.【解答】解:如图所示:将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有3种.故答案为:3.【点评】本题考查了利用轴对称设计图案的知识,关键是掌握好轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.14.一个不透明的文具袋装有型号完全相同的3支红笔和2支黑笔,小明、小红两人先后从袋中随机取出一支笔(不放回),两人所取笔的颜色相同的概率是.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两人所取笔的颜色相同的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有20种等可能的结果,两人所取笔的颜色相同的有8种情况,∴两人所取笔的颜色相同的概率是:=.故答案为:.【点评】此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.15.如图,已知函数y=kx+2与函数y=mx﹣4的图象交于点A,根据图象可知不等式kx+2<mx﹣4的解集是x<﹣3 .【考点】一次函数与一元一次不等式.【分析】观察函数图象得到当x<﹣3时,y=kx+2的图象位于y=mx﹣4的下方,即kx+2<mx﹣4.【解答】解:∵观察图象知当<>﹣3时,y=kx+2的图象位于y=mx﹣4的下方,根据图象可知不等式kx+2<mx﹣4的解集是x<﹣3,故答案为:x<﹣3.【点评】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b 的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x轴上(或下)方部分所有的点的横坐标所构成的集合.16.如图,在Rt△ABC中,∠ACB=90°,tanB=,点D,E分别在边AB,AC上,DE⊥AC,DE=6,DB=20,则tan∠BCD的值是.【考点】解直角三角形.。

山西省大同市2019-2020学年中考中招适应性测试卷数学试题(3)含解析

山西省大同市2019-2020学年中考中招适应性测试卷数学试题(3)含解析

山西省大同市2019-2020学年中考中招适应性测试卷数学试题(3)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,点A所表示的数的绝对值是()A.3 B.﹣3 C.13D.13-2.下列说法正确的是()A.“明天降雨的概率是60%”表示明天有60%的时间都在降雨B.“抛一枚硬币正面朝上的概率为50%”表示每抛2次就有一次正面朝上C.“彩票中奖的概率为1%”表示买100张彩票肯定会中奖D.“抛一枚正方体骰子,朝上的点数为2的概率为16”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的概率稳定在16附近3.如图,已知A、B两点的坐标分别为(-2,0)、(0,1),⊙C 的圆心坐标为(0,-1),半径为1.若D是⊙C上的一个动点,射线AD与y轴交于点E,则△ABE面积的最大值是A.3 B.113C.103D.44.已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比是3:1,这个多边形的边数是()A.8 B.9 C.10 D.125.如图,AB∥CD,∠1=45°,∠3=80°,则∠2的度数为()A.30°B.35°C.40°D.45°A.x≥﹣3 B.x≠0C.x≥﹣3且x≠0D.x≥37.计算(x-2)(x+5)的结果是A.x2+3x+7 B.x2+3x+10 C.x2+3x-10 D.x2-3x-108.若关于x的一元二次方程(k-1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是( ) A.k<5 B.k<5,且k≠1C.k≤5,且k≠1D.k>59.如图,小明为了测量河宽AB,先在BA延长线上取一点D,再在同岸取一点C,测得∠CAD=60°,∠BCA=30°,AC=15 m,那么河AB宽为()A.15 m B.53m C .103m D .123m10.按如图所示的方法折纸,下面结论正确的个数()①∠2=90°;②∠1=∠AEC;③△ABE∽△ECF;④∠BAE=∠1.A.1 个B.2 个C.1 个D.4 个11.如图,△OAB∽△OCD,OA:OC=3:2,∠A=α,∠C=β,△OAB与△OCD的面积分别是S1和S2,△OAB与△OCD的周长分别是C1和C2,则下列等式一定成立的是()A.32OBCD=B.32αβ=C.1232SS=D.1232CC=12.在下面四个几何体中,从左面看、从上面看分别得到的平面图形是长方形、圆,这个几何体是()A.B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是_______.14.若圆锥的底面半径长为10,侧面展开图是一个半圆,则该圆锥的母线长为_____.15.计算:a 6÷a 3=_________.16.规定:[x]表示不大于x 的最大整数,(x )表示不小于x 的最小整数,[x )表示最接近x 的整数(x≠n+0.5,n 为整数),例如:[1.3]=1,(1.3)=3,[1.3)=1.则下列说法正确的是________.(写出所有正确说法的序号)①当x=1.7时,[x]+(x )+[x )=6;②当x=﹣1.1时,[x]+(x )+[x )=﹣7;③方程4[x]+3(x )+[x )=11的解为1<x <1.5;④当﹣1<x <1时,函数y=[x]+(x )+x 的图象与正比例函数y=4x 的图象有两个交点.17.已知△ABC 中,BC=4,AB=2AC ,则△ABC 面积的最大值为_______.18.在ABC V 中,A ∠:B ∠:C ∠=1:2:3,CD AB ⊥于点D ,若AB 10=,则BD =______三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)为了掌握我市中考模拟数学试题的命题质量与难度系数,命题教师赴我市某地选取一个水平相当的初三年级进行调研,命题教师将随机抽取的部分学生成绩(得分为整数,满分为160分)分为5组:第一组85~100;第二组100~115;第三组115~130;第四组130~145;第五组145~160,统计后得到如图1和如图2所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图,观察图形的信息,回答下列问题:(1)本次调查共随机抽取了该年级多少名学生?并将频数分布直方图补充完整;(3)如果第一组有两名女生和两名男生,第五组只有一名是男生,针对考试成绩情况,命题教师决定从第一组、第五组分别随机选出一名同学谈谈做题的感想,请你用列表或画树状图的方法求出所选两名学生刚好是一名女生和一名男生的概率.20.(6分)甲、乙两个人做游戏:在一个不透明的口袋中装有1张相同的纸牌,它们分别标有数字1,2,3,1.从中随机摸出一张纸牌然后放回,再随机摸出一张纸牌,若两次摸出的纸牌上数字之和是3的倍数,则甲胜;否则乙胜.这个游戏对双方公平吗?请列表格或画树状图说明理由.21.(6分)已知:在⊙O中,弦AB=AC,AD是⊙O的直径.求证:BD=CD.22.(8分)(1)(问题发现)小明遇到这样一个问题:如图1,△ABC是等边三角形,点D为BC的中点,且满足∠ADE=60°,DE交等边三角形外角平分线CE所在直线于点E,试探究AD与DE的数量关系.(1)小明发现,过点D作DF//AC,交AC于点F,通过构造全等三角形,经过推理论证,能够使问题得到解决,请直接写出AD与DE的数量关系:;(2)(类比探究)如图2,当点D是线段BC上(除B,C外)任意一点时(其它条件不变),试猜想AD与DE之间的数量关系,并证明你的结论.(3)(拓展应用)当点D在线段BC的延长线上,且满足CD=BC(其它条件不变)时,请直接写出△ABC与△ADE的面积之比.23.(8分)已知a2+2a=9,求22212321121a a aa a a a+++-÷+--+的值.24.(10分)如图,四边形ABCD的四个顶点分别在反比例函数myx=与nyx=(x>0,0<m<n)的图象上,对角线BD//y轴,且BD⊥AC于点P.已知点B的横坐标为1.当m=1,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.25.(10分)解不等式:233x-﹣12x-≤126.(12分)如图,在Rt中,,分别以点A、C为圆心,大于长为半径画弧,两弧相交于点M、N,连结MN,与AC、BC分别交于点D、E,连结AE.(1)求;(直接写出结果)(2)当AB=3,AC=5时,求的周长.27.(12分)如图,已知点A(1,a)是反比例函数y1=mx的图象上一点,直线y2=﹣1122x+与反比例函数y1=mx的图象的交点为点B、D,且B(3,﹣1),求:(Ⅰ)求反比例函数的解析式;(Ⅱ)求点D坐标,并直接写出y1>y2时x的取值范围;(Ⅲ)动点P(x,0)在x轴的正半轴上运动,当线段PA与线段PB之差达到最大时,求点P的坐标.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】根据负数的绝对值是其相反数解答即可.【详解】|-3|=3,故选A.【点睛】此题考查绝对值问题,关键是根据负数的绝对值是其相反数解答.2.D【解析】【分析】根据概率是指某件事发生的可能性为多少,随着试验次数的增加,稳定在某一个固定数附近,可得答案.【详解】解:A. “明天降雨的概率是60%”表示明天下雨的可能性较大,故A不符合题意;B. “抛一枚硬币正面朝上的概率为12”表示每次抛正面朝上的概率都是12,故B不符合题意;C. “彩票中奖的概率为1%”表示买100张彩票有可能中奖.故C不符合题意;D. “抛一枚正方体骰子,朝上的点数为2的概率为16”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的概率稳定在16附近,故D符合题意;故选D【点睛】本题考查了概率的意义,正确理解概率的含义是解决本题的关键.3.B【解析】试题分析:解:当射线AD与⊙C相切时,△ABE面积的最大.连接AC,∵∠AOC=∠ADC=90°,AC=AC,OC=CD,∴Rt△AOC≌Rt△ADC,∴DE2=EF•OE,∵CF=1,∴DE=,∴△CDE∽△AOE,∴=,即=,解得x=,S△ABE===.故选B.考点:1.切线的性质;2.三角形的面积.4.A【解析】试题分析:设这个多边形的外角为x°,则内角为3x°,根据多边形的相邻的内角与外角互补可的方程x+3x=180,解可得外角的度数,再用外角和除以外角度数即可得到边数.解:设这个多边形的外角为x°,则内角为3x°,由题意得:x+3x=180,解得x=45,这个多边形的边数:360°÷45°=8,故选A.考点:多边形内角与外角.分析:根据平行线的性质和三角形的外角性质解答即可.详解:如图,∵AB∥CD,∠1=45°,∴∠4=∠1=45°,∵∠3=80°,∴∠2=∠3-∠4=80°-45°=35°,故选B.点睛:此题考查平行线的性质,关键是根据平行线的性质和三角形的外角性质解答.6.C【解析】【分析】根据二次根式有意义和分式有意义的条件列出不等式,解不等式即可.【详解】由题意得,x+3≥0,x≠0,解得x≥−3且x≠0,故选C.【点睛】本题考查分式有意义条件,二次根式有意义的条件,熟练掌握相关知识是解题的关键. 7.C【解析】【分析】根据多项式乘以多项式的法则进行计算即可.【详解】故选:C.【点睛】考查多项式乘以多项式,掌握多项式乘以多项式的运算法则是解题的关键.试题解析:∵关于x 的一元二次方程方程()21410k x x -++=有两个不相等的实数根,∴100k -≠⎧⎨∆>⎩,即()2104410k k -≠⎧⎨-->⎩,解得:k <5且k≠1.故选B . 9.A【解析】过C 作CE ⊥AB ,Rt △ACE 中,∵∠CAD=60°,AC=15m ,∴∠ACE=30°,AE=12AC=12×15=7.5m ,CE=AC•cos30°=15×32=1532, ∵∠BAC=30°,∠ACE=30°,∴∠BCE=60°,∴BE=CE•tan60°=153×3=22.5m , ∴AB=BE ﹣AE=22.5﹣7.5=15m ,故选A .【点睛】本题考查的知识点是解直角三角形的应用,关键是构建直角三角形,解直角三角形求出答案. 10.C【解析】∵∠1+∠1=∠2,∠1+∠1+∠2=180°,∴∠1+∠1=∠2=90°,故①正确;∵∠1+∠1=∠2,∴∠1≠∠AEC.故②不正确;∵∠1+∠1=90°,∠1+∠BAE=90°, ∴∠1=∠BAE,又∵∠B =∠C,∴△ABE ∽△ECF.故③,④正确;故选C.A选项,在△OAB∽△OCD中,OB和CD不是对应边,因此它们的比值不一定等于相似比,所以A选项不一定成立;=,所以B选项不成立;B选项,在△OAB∽△OCD中,∠A和∠C是对应角,因此αβC选项,因为相似三角形的面积比等于相似比的平方,所以C选项不成立;D选项,因为相似三角形的周长比等于相似比,所以D选项一定成立.故选D.12.A【解析】试题分析:由题意可知:从左面看得到的平面图形是长方形是柱体,从上面看得到的平面图形是圆的是圆柱或圆锥,综合得出这个几何体为圆柱,由此选择答案即可.解:从左面看得到的平面图形是长方形是柱体,符合条件的有A、C、D,从上面看得到的平面图形是圆的是圆柱或圆锥,符合条件的有A、B,综上所知这个几何体是圆柱.故选A.考点:由三视图判断几何体.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.小林【解析】【分析】【详解】观察图形可知,小林的成绩波动比较大,故小林是新手.故答案是:小林.14.2【解析】【分析】侧面展开后得到一个半圆,半圆的弧长就是底面圆的周长.依此列出方程即可.【详解】设母线长为x,根据题意得2πx÷2=2π×5,解得x=1.故答案为2.15.a1【解析】【分析】根据同底数幂相除,底数不变指数相减计算即可【详解】a6÷a1=a6﹣1=a1.故答案是a1【点睛】同底数幂的除法运算性质16.②③【解析】试题解析:①当x=1.7时,[x]+(x)+[x)=[1.7]+(1.7)+[1.7)=1+1+1=5,故①错误;②当x=﹣1.1时,[x]+(x)+[x)=[﹣1.1]+(﹣1.1)+[﹣1.1)=(﹣3)+(﹣1)+(﹣1)=﹣7,故②正确;③当1<x<1.5时,4[x]+3(x)+[x)=4×1+3×1+1=4+6+1=11,故③正确;④∵﹣1<x<1时,∴当﹣1<x<﹣0.5时,y=[x]+(x)+x=﹣1+0+x=x﹣1,当﹣0.5<x<0时,y=[x]+(x)+x=﹣1+0+x=x﹣1,当x=0时,y=[x]+(x)+x=0+0+0=0,当0<x<0.5时,y=[x]+(x)+x=0+1+x=x+1,当0.5<x<1时,y=[x]+(x)+x=0+1+x=x+1,∵y=4x,则x﹣1=4x时,得x=;x+1=4x时,得x=;当x=0时,y=4x=0,∴当﹣1<x<1时,函数y=[x]+(x)+x的图象与正比例函数y=4x的图象有三个交点,故④错误,故答案为②③.考点:1.两条直线相交或平行问题;1.有理数大小比较;3.解一元一次不等式组.17.163【解析】【分析】设AC=x,则AB=2x,根据面积公式得S △ABC ,由余弦定理求得 cosC 代入化简S △ABC ,由三角形三边关系求得443x << ,由二次函数的性质求得S △ABC 取得最大值.【详解】设AC=x,则AB=2x,根据面积公式得:c=1sin 2sin 2AC BC C x C ⋅⋅= .由余弦定理可得:2163cos 8x C x-= ,∴S △ABC 由三角形三边关系有2442x x x x+>⎧⎨+>⎩ ,解得443x <<,故当x =时, 443x <<取得最大值163, 故答案为:163. 【点睛】本题主要考查了余弦定理和面积公式在解三角形中的应用,考查了二次函数的性质,考查了计算能力,当涉及最值问题时,可考虑用函数的单调性和定义域等问题,属于中档题.18.2.1【解析】【分析】先求出△ABC 是∠A 等于30°的直角三角形,再根据30°角所对的直角边等于斜边的一半求解.【详解】解:根据题意,设∠A 、∠B 、∠C 为k 、2k 、3k ,则k+2k+3k=180°,解得k=30°,2k=60°,3k=90°,∵AB=10,∴BC=12AB=1,∵CD⊥AB,∴∠BCD=∠A=30°,∴BD=12BC=2.1.故答案为2.1.【点睛】本题主要考查含30度角的直角三角形的性质和三角形内角和定理,掌握30°角所对的直角边等于斜边的一半、求出△ABC是直角三角形是解本题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)50(2)420(3)P=5 8【解析】试题分析:(1)首先根据题意得:本次调查共随机抽取了该年级学生数为:20÷40%=50(名);则可求得第五组人数为:50﹣4﹣8﹣20﹣14=4(名);即可补全统计图;(2)由题意可求得130~145分所占比例,进而求出答案;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所选两名学生刚好是一名女生和一名男生的情况,再利用概率公式求解即可求得答案.试题解析:(1)根据题意得:本次调查共随机抽取了该年级学生数为:20÷40%=50(名);则第五组人数为:50﹣4﹣8﹣20﹣14=4(名);如图:(2)根据题意得:考试成绩评为“B”的学生大约有1450×1600=448(名),答:考试成绩评为“B”的学生大约有448名;(3)画树状图得:∵共有16种等可能的结果,所选两名学生刚好是一名女生和一名男生的有8种情况,∴所选两名学生刚好是一名女生和一名男生的概率为:816=12.考点:1、树状图法与列表法求概率的知识,2、直方图与扇形统计图的知识视频20.不公平【解析】【分析】列表得到所有情况,然后找出数字之和是3的倍数的情况,利用概率公式计算后进行判断即可得. 【详解】根据题意列表如下:1 2 3 11 (1,1)(2,1)(3,1)(1,1)2 (1,2)(2,2)(3,2)(1,2)3 (1,3)(2,3)(3,3)(1,3)1 (1,1)(2,1)(3,1)(1,1)所有等可能的情况数有16种,其中两次摸出的纸牌上数字之和是3的倍数的情况有:(2,1),(1,2),(1,2),(3,3),(2,1),共5种,∴P(甲获胜)=516,P(乙获胜)=1﹣516=1116,则该游戏不公平.【点睛】本题考查了列表法或树状图法求概率,判断游戏的公平性,用到的知识点为:概率=所求情况数与总情况数之比.21.证明见解析【解析】【分析】根据AB=AC,得到»»AB AC,于是得到∠ADB=∠ADC,根据AD是⊙O的直径,得到∠B=∠C=90°,根据三角形的内角和定理得到∠BAD=∠DAC,于是得到结论.【详解】证明:∵AB=AC,∴»»AB AC=,∴∠ADB=∠ADC,∵AD是⊙O的直径,∴∠B=∠C=90°,∴∠BAD=∠DAC,∴»»BD CD=,∴BD=CD.【点睛】本题考查了圆周角定理,熟记圆周角定理是解题的关键.22.(1)AD=DE;(2)AD=DE,证明见解析;(3)13.【解析】试题分析:本题难度中等.主要考查学生对探究例子中的信息进行归纳总结.并能够结合三角形的性质是解题关键.试题解析:(10分)(1)AD=DE.(2)AD=DE.证明:如图2,过点D作DF//AC,交AC于点F,∵△ABC是等边三角形,∴AB=BC,∠B=∠ACB=∠ABC=60°.又∵DF//AC,∴∠BDF=∠BFD=60°∴△BDF是等边三角形,BF=BD,∠BFD=60°,∴AF=CD,∠AFD=120°.∵EC是外角的平分线,∠DCE=120°=∠AFD.∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠FAD=60°+∠FAD.∵∠ADC=∠ADE+∠EDC=60°+∠EDC,∴∠FAD=∠EDC.∴△AFD≌△DCE(ASA),∴AD=DE;(3)13.考点:1.等边三角形探究题;2.全等三角形的判定与性质;3.等边三角形的判定与性质.23.22(1)a +,15. 【解析】试题分析:原式第二项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算得到最简结果,把已知等式变形后代入计算即可求出值.试题解析:22212321121a a a a a a a +++-÷+--+=()()()()()211211112a a a a a a a -+-⨯++-++ =()21111a a a --++ =()221a +, ∵a 2+2a=9,∴(a+1)2=1.∴原式=21105=. 24.(1)①132y x =-+;②四边形ABCD 是菱形,理由见解析;(2)四边形ABCD 能是正方形,理由见解析,m+n=32.【解析】【分析】(1)①先确定出点A ,B 坐标,再利用待定系数法即可得出结论;②先确定出点D 坐标,进而确定出点P 坐标,进而求出PA ,PC ,即可得出结论;(2)先确定出B (1,4m ),D (1,4n ),进而求出点P 的坐标,再求出A ,C 坐标,最后用AC=BD ,即可得出结论.【详解】(1)①如图1,4 m= Q,∴反比例函数为4 yx =,当4x=时,1y=,()4,1B∴,当2y=时,42x∴=,2x∴=,()2,2A∴,设直线AB的解析式为y kx b=+,∴2241k bk b+=⎧⎨+=⎩,∴123kb⎧=-⎪⎨⎪=⎩,∴直线AB的解析式为132y x=-+;②四边形ABCD是菱形,理由如下:如图2,由①知,()4,1B ,//BD y Q 轴,()4,5D ∴,Q 点P 是线段BD 的中点,()4,3P ∴,当3y =时,由4y x =得,43x =, 由20y x =得,203x =, 48433PA ∴=-=,208433PC =-=, PA PC ∴=,PB PD =Q ,∴四边形ABCD 为平行四边形,BD AC ⊥Q ,∴四边形ABCD 是菱形;(2)四边形ABCD 能是正方形,理由:当四边形ABCD 是正方形,记AC ,BD 的交点为P ,BD AC ∴=,当4x =时,4m m y x ==,4n n y x == 4,4m B ⎛⎫∴ ⎪⎝⎭,4,4n D ⎛⎫ ⎪⎝⎭, 4,8m n P +⎛⎫∴ ⎪⎝⎭, 8(m A m n ∴+,)8m n +,8(n C m n +,)8m n + AC BD =Q ,∴ 8844n m n m m n m n -=-++, 32m n ∴+=.【点睛】此题是反比例函数综合题,主要考查了待定系数法,平行四边形的判定,菱形的判定和性质,正方形的性质,判断出四边形ABCD 是平行四边形是解本题的关键.25.x≥19. 【解析】【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.【详解】 231132x x ---≤ 2(2﹣3x )﹣3(x ﹣1)≤6,4﹣6x ﹣3x+3≤6,﹣6x ﹣3x ≤6﹣4﹣3,﹣9x≤﹣1, x≥19. 【点睛】考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.26.(1)∠ADE=90°;(2)△ABE 的周长=1.【解析】试题分析:(1)是线段垂直平分线的做法,可得∠ADE=90°(2)根据勾股定理可求得BC=4,由垂直平分线的性质可知AE=CE ,所以△ABE 的周长为AB+BE+AE=AB+BC=1试题解析:(1)∵由题意可知MN 是线段AC 的垂直平分线,∴∠ADE=90°;(2)∵在Rt △ABC 中,∠B=90°,AB=3,AC=5,∴BC==4, ∵MN 是线段AC 的垂直平分线,∴AE=CE ,∴△ABE 的周长=AB+(AE+BE )=AB+BC=3+4=1.考点:1、尺规作图;2、线段垂直平分线的性质;3、勾股定理;4、三角形的周长27.(1)反比例函数的解析式为y=﹣3x ;(2)D (﹣2,32);﹣2<x <0或x >3;(3)P (4,0). 【解析】试题分析:(1)把点B (3,﹣1)带入反比例函数1m y x=中,即可求得k 的值; (2)联立直线和反比例函数的解析式构成方程组,化简为一个一元二次方程,解方程即可得到点D 坐标,观察图象可得相应x 的取值范围;(3)把A (1,a )是反比例函数1m y x=的解析式,求得a 的值,可得点A 坐标,用待定系数法求得直线AB 的解析式,令y=0,解得x 的值,即可求得点P 的坐标. 试题解析:(1)∵B (3,﹣1)在反比例函数1m y x =的图象上,∴-1=m 3, ∴m=-3, ∴反比例函数的解析式为3y x =-; (2)31122y x y x ⎧=-⎪⎪⎨⎪=-+⎪⎩, ∴3x -=1122x -+, x 2-x-6=0,(x-3)(x+2)=0,x 1=3,x 2=-2,当x=-2时,y=32, ∴D (-2,32); y 1>y 2时x 的取值范围是-2<x<0或x>32; (3)∵A (1,a )是反比例函数1m y x =的图象上一点, ∴a=-3,∴A (1,-3),设直线AB 为y=kx+b, 331k b k b +=-⎧⎨+=-⎩, ∴14k b =⎧⎨=-⎩, ∴直线AB 为y=x-4, 令y=0,则x=4,∴P(4,0)。

2019年山西省中考适应性训练数学试卷及答案(word解析版)

2019年山西省中考适应性训练数学试卷及答案(word解析版)

山西省2019年中考适应性训练数学试卷一、选择题(共12小题,每小题2分,满分24分,在每小题给出的四个选项中,只有一项符合题目要求,请选择并在答题卡上将该项涂黑)243.(2分)(2019•山西模拟)在一个不透明的袋子中装有5个除颜色外完全相同的小球,其4.(2分)(2019•山西模拟)如图,将直角三角板ABC沿BC方向平移,得到△A′CC′.已知∠B=30°,∠ACB=90°,则∠BAA′度数为()5.(2分)(2019•山西模拟)如图,将正方体的平面展开图重新折成正方体后,“西”字对面的字是()7.(2分)(2019•山西模拟)2019年1月份,太原市某周的日最高气温统计如下表:则这七8.(2分)(2019•山西模拟)分式方程的解是()9.(2分)(2019•山西模拟)在一定温度下的饱和溶液中,溶质、溶剂质量和溶解度之间存在下列关系:.已知20℃时,硝酸钾的溶解度是31.6克,在此温度下,=,即10.(2分)(2019•山西模拟)如图,A、B两点在河的两岸,要测量这两点之间的距离,测量者在与A同侧的河岸边选定一点C,测出AC=a米,∠A=90°,∠C=40°,则AB等于()米.,11.(2分)(2019•山西模拟)某班学生毕业时,每个同学都要给其他同学写一份留言作为.12.(2分)(2019•山西模拟)如图,菱形ABCD中,E是AD的中点,将△CDE沿CE折叠后,点A和点D恰好重合.若AB=4,则菱形ABCD的面积为()2ADAD=DE=CD=2CE=2×.二、填空题(本大题共6小题,每小题3分,共18分,把答案写在题中横线上)13.(3分)(2019•山西模拟)计算﹣4sin45°的结果是.×故答案为:14.(3分)(2019•山西模拟)经过一年的广泛征集、反复提炼,“山西精神”的表述语“信义、坚韧、创新、图强”于2019底正式对外公布.据不完全统计,山西全省共约121万人参与了征集提炼活动.121万人用科学记数法表示为 1.21×106人.15.(3分)(2019•山西模拟)在一个不透明的盒子里装有4个分别标有数字1、2、3、4的小球,它们除数字外其他均相同.充分摇匀后,先摸回1个球不放回,再摸出一个球.那么这两个球上数字之和为奇数的概率为..故答案为:.16.(3分)(2019•山西模拟)如图所示,在直角梯形ABCD中,AB∥CD,点E为AB的中点,点F为BC的中点,AB=4,EF=2,∠B=60°,则AD的长为2.MB=×=2.17.(3分)(2019•山西模拟)如图,若将平面直角坐标系中“鱼”以原点O为位似中心,按照相似比缩小,则点A的对应点的坐标是(3,﹣2)或(﹣3,2).为位似中心,相似比为18.(3分)(2019•山西模拟)在一次猜数字游戏中,小红写出如下一组数:1,,,,…,小军猜想出的第六个数字是,也是正确的,根据此规律,第n个数是.先把原数据整理得到,,,个数是.,,,,,变形得到,,,,,即,,所以第六个数字是=个数是故答案为三、解答题(本大题共8小题,共78分,解答应写出文字说明、证明过程或演算步骤)19.(12分)(2019•山西模拟)(1)计算:m(m+2)﹣(m﹣1)(m+3)+(﹣2m)2(2)化简分式+﹣1,并选取一个你认为合适的整数a代入求值.•﹣,==220.(6分)(2019•山西模拟)如图1利用正方形各边中点和弧的中点设计的正方形瓷砖图案,用四块如图1所示的正方形瓷砖拼成一个新的正方形,使拼成的图案既是轴对称图形,又是中心对称图形.请你在图2和图3中各画一种拼法(要求两种拼法各不相同).21.(9分)(2019•山西模拟)某科学技术协会为倡导青少年主动进行研究性学习,积极研究身边的科学问题,组织了以“体验、创新、成长”为主题的青少年科技创大赛,在层层选拔的基础上,所有推荐参赛学生分别获得了一、二、三等奖和纪念奖,工作人员根据获奖情况绘制成如图所示的两幅不完整的统计图,根据图中所给出的信息解答下列问题:(1)这次大赛获得三等奖的学生有多少人?(2)请将条形统计图补充完整;(3)扇形统计图中,表示三等奖扇形的圆心角是多少度?(4)若给所有推荐参赛学生每人发一张相同的卡片,各自写上自己的名字,然后把卡片放入一个不透明的袋子里,摇匀后任意摸出一张,求摸出写有一等奖学生名字卡片的概率.200=.22.(8分)(2019•山西模拟)如图,在平面直角坐标系中,点O为坐标原点,一次函数y1=kx+b 与反比例函数y2=的图象相交于A(﹣2,m),B(n,4)两点,与y轴交于点C.(1)求一次函数的解析式(关系式);(2)根据函数图象,写出:①当﹣2≤y1≤4时,自变量x的取值范围是﹣2≤x≤1;②当y2≤4时,自变量x的取值范围是x<0或x≥1;(3)连接OA、OB,求△AOB的面积.的解析式,求=4=,解得.=××23.(9分)(2019•山西模拟)如图,AB是⊙O的直径,C为⊙O上一点,点D在CO的延长线上,连接BD.已知BC=BD,AB=4.(1)若BC=2,求证:BD是⊙O的切线;(2)BC=3,求CD的长.=,=,即=.24.(8分)(2019•山西模拟)2019年1月,由于雾霾天气持续笼罩我国中东部大部分地区,口罩市场出现热卖,某旗舰网店用8000元购进甲、乙两种口罩,销售完后共获利2800元,(2)该网店第二次以原价购进甲、乙、两种口罩,购进乙种口罩袋数不变,而购进甲种口罩袋数是第一次的2倍.甲种口罩按原售价出售,而乙种口罩让利销售.若两种口罩销售完毕,要使第二次销售活动获利不少于3680元,乙种口罩最低售价为每袋多少元?,,25.(12分)(2019•山西模拟)操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN.(1)连接AE,求证:△AEF是等腰三角形;猜想与发现:(2)再(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论.结论1:DM、MN的数量关系是相等;结论2:DM、MN的位置关系是垂直;拓展与探究:(3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.AE MN=DM=26.(14分)(2019•山西模拟)如图,在平面直角坐标系中,O为坐标原点,抛物线y=x2+2x与x轴相交于O、B,顶点为A,连接OA.(1)求点A的坐标和∠AOB的度数;(2)若将抛物线y=x2+2x向右平移4个单位,再向下平移2个单位,得到抛物线m,其顶点为点C.连接OC和AC,把△AOC沿OA翻折得到四边形ACOC′.试判断其形状,并说明理由;(3)在(2)的情况下,判断点C′是否在抛物线y=x2+2x上,请说明理由;(4)若点P为x轴上的一个动点,试探究在抛物线m上是否存在点Q,使以点O、P、C、Q为顶点的四边形是平行四边形,且OC为该四边形的一条边?若存在,请直接写出点Q的坐标;若不存在,请说明理由.y=(令,由此可得抛物线x(y=y=x,且过顶点y=x==2,AC=2xxy=(=0。

2019年山西中考考前适应性训练试题+答案·数学

2019年山西中考考前适应性训练试题+答案·数学

y=-1.
(2)去分母得:2(2x-1)-(1-x)>6, ………………………………………………… 6分
去括号得:4x-2-1+x>6, …………………………………………………………… 7分
移项得:4x+x>2+1+6, ……………………………………………………………… 8分
合并同类项:5x>9, ………………………………………………………………… 9分
系数化为1:x>
9 5

………………………………………………………………… 10分
姨 姨 17.
解:原式=
2x (x+2)·(x-2)
-
1 x-2
·2(x3+x2)
…………………………………………
2分
=(x+22x)-(x-x-22)·2(x3+x2) …………………………………………………… 3分
∵CD=CE-ED,
∴CD=AF-BE=AD-DF-BE=AD-2BE. ∴AD-CD=2BE.
(第 22 题答图 3)
∵CD=3,AD=9,
∴BE=ED=3,CE=CD+ED=6.
∵DH∥EB,

DH EB
=
CD CE
.

DH 3
=
3 6
.
∴DH= 3 . 2
23. 解:(1)当y=0时,x2-2x-3=0,解得x1=3,x2=-1,
又∵A在B的左侧,
∴A(-1,0),B(3,0), ……………………………………… 2分
当x=0时,y=x2-2x-3=-3,∴C(0,-3). ……………………… 3分
(2)∵D的横坐标为m,D在抛物线上.

山西省长治市2019-2020学年中考中招适应性测试卷数学试题(1)含解析

山西省长治市2019-2020学年中考中招适应性测试卷数学试题(1)含解析

山西省长治市2019-2020学年中考中招适应性测试卷数学试题(1)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列运算正确的是()A.a6÷a2=a3B.(2a+b)(2a﹣b)=4a2﹣b2C.(﹣a)2•a3=a6D.5a+2b=7ab2.已知点A、B、C是直径为6cm的⊙O上的点,且AB=3cm,AC=32cm,则∠BAC的度数为()A.15°B.75°或15°C.105°或15°D.75°或105°3.如图,直角坐标平面内有一点(2,4)P,那么OP与x轴正半轴的夹角 的余切值为()A.2 B.12C.55D.54.若抛物线y=x2﹣3x+c与y轴的交点为(0,2),则下列说法正确的是()A.抛物线开口向下B.抛物线与x轴的交点为(﹣1,0),(3,0)C.当x=1时,y有最大值为0D.抛物线的对称轴是直线x=3 25.把一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷2次,若两个正面朝上的编号分别为m,n,则二次函数的图象与x轴有两个不同交点的概率是().A.B.C.D.6.如图所示的几何体是一个圆锥,下面有关它的三视图的结论中,正确的是()A.主视图是中心对称图形B.左视图是中心对称图形C.主视图既是中心对称图形又是轴对称图形D.俯视图既是中心对称图形又是轴对称图形7.若点(x1,y1),(x2,y2),(x3,y3)都是反比例函数y=﹣1x图象上的点,并且y1<0<y2<y3,则下列各式中正确的是( )A .x 1<x 2<x 3B .x 1<x 3<x 2C .x 2<x 1<x 3D .x 2<x 3<x 18.如图,AB 是⊙O 的直径,C ,D 是⊙O 上位于AB 异侧的两点.下列四个角中,一定与∠ACD 互余的角是( )A .∠ADCB .∠ABDC .∠BACD .∠BAD9.一、单选题 小明和小张两人练习电脑打字,小明每分钟比小张少打6个字,小明打120个字所用的时间和小张打180个字所用的时间相等.设小明打字速度为x 个/分钟,则列方程正确的是( )A .1201806x x =+B .1201806x x =-C .1201806x x =+D .1201806x x=- 10.关于x 的一元二次方程230x x m -+=有两个不相等的实数根,则实数m 的取值范围是( ) A .94m < B .94m … C .94m > D .94m … 11.一、单选题如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是( )A .B .C .D .12.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b ,若2)21a b +=(,大正方形的面积为13,则小正方形的面积为( )A .3B .4C .5D .6二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,O 是坐标原点,菱形OABC 的顶点A 的坐标为(﹣3,﹣4),顶点C 在x 轴的负半轴上,函数y =k x(x <0)的图象经过菱形OABC 中心E 点,则k 的值为_____.14.若332y x x =-+-+,则y x = .15.轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3h ,若静水时船速为26km/h ,水速为2km/h ,则A 港和B 港相距_____km .16.如果一个矩形的面积是40,两条对角线夹角的正切值是43,那么它的一条对角线长是__________. 17.如图,点D 、E 、F 分别位于△ABC 的三边上,满足DE ∥BC ,EF ∥AB ,如果AD :DB=3:2,那么BF :FC=_____.18.已知关于x 的一元二次方程(k ﹣5)x 2﹣2x+2=0有实根,则k 的取值范围为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,AB 为⊙O 的直径,C 为⊙O 上一点,∠ABC 的平分线交⊙O 于点D ,DE ⊥BC 于点E .试判断DE 与⊙O 的位置关系,并说明理由;过点D 作DF ⊥AB 于点F ,若BE=33,DF=3,求图中阴影部分的面积.20.(6分)每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买10台节省能源的新设备,现有甲、乙两种型号的设备可供选购,经调查:购买了3台甲型设备比购买2台乙型设备多花了16万元,购买2台甲型设备比购买3台乙型设备少花6万元.求甲、乙两种型号设备的价格;该公司经预算决定购买节省能源的新设备的资金不超过110万元,你认为该公司有几种购买方案;在(2)的条件下,已知甲型设备的产量为240吨/月,乙型设备的产量为180吨/月,若每月要求总产量不低于2040吨,为了节约资金,请你为该公司设计一种最省钱的购买方案.21.(6分)如图,Rt △ABC 中,∠ABC =90°,点D ,F 分别是AC ,AB 的中点,CE ∥DB ,BE ∥DC .(1)求证:四边形DBEC 是菱形;(2)若AD =3, DF =1,求四边形DBEC 面积.22.(8分)问题探究(1)如图①,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,则线段BE、EF、FD之间的数量关系为;(2)如图②,在△ADC中,AD=2,CD=4,∠ADC是一个不固定的角,以AC为边向△ADC的另一侧作等边△ABC,连接BD,则BD的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由;问题解决(3)如图③,在四边形ABCD中,AB=AD,∠BAD=60°,BC=42,若BD⊥CD,垂足为点D,则对角线AC的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由.23.(8分)如图,△ABC的顶点坐标分别为A(1,3)、B(4,1)、C(1,1).在图中以点O为位似中心在原点的另一侧画出△ABC放大1倍后得到的△A1B1C1,并写出A1的坐标;请在图中画出△ABC绕点O逆时针旋转90°后得到的△A1B1C1.24.(10分)在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB 上移动.(1)如图1,当点E在边DC上自D向C移动,同时点F在边CB上自C向B移动时,连接AE和DF 交于点P,请你写出AE与DF的数量关系和位置关系,并说明理由;(2)如图2,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不需证明);连接AC,请你直接写出△ACE为等腰三角形时CE:CD的值;(3)如图3,当E,F分别在直线DC,CB上移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,请你画出点P运动路径的草图.若AD=2,试求出线段CP的最大值.25.(10分)如图所示,平行四边形形ABCD中,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)请添加一个条件使四边形BEDF为菱形.26.(12分)如图,在⊙O的内接四边形ABCD中,∠BCD=120°,CA平分∠BCD.(1)求证:△ABD是等边三角形;(2)若BD=3,求⊙O的半径.27.(12分)济南某中学在参加“创文明城,点赞泉城”书画比赛中,杨老师从全校30个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作鼎的数量进行了分析统计,制作了两幅不完整的统计图.请根据以上信息,回答下列问题:(l)杨老师采用的调查方式是______(填“普查”或“抽样调查”);(2)请补充完整条形统计图,并计算扇形统计图中C班作品数量所对应的圆心角度数______.(3)请估计全校共征集作品的件数.(4)如果全枝征集的作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现要在获得一样等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取的两名学生性别相同的概率.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】A选项:利用同底数幂的除法法则,底数不变,只把指数相减即可;B选项:利用平方差公式,应先把2a看成一个整体,应等于(2a)2-b2而不是2a2-b2,故本选项错误;C选项:先把(-a)2化为a2,然后利用同底数幂的乘法法则,底数不变,只把指数相加,即可得到;D选项:两项不是同类项,故不能进行合并.【详解】A选项:a6÷a2=a4,故本选项错误;B选项:(2a+b)(2a-b)=4a2-b2,故本选项正确;C选项:(-a)2•a3=a5,故本选项错误;D选项:5a与2b不是同类项,不能合并,故本选项错误;故选:B.【点睛】考查学生同底数幂的乘除法法则的运用以及对平方差公式的掌握,同时要求学生对同类项进行正确的判断.2.C【解析】解:如图1.∵AD为直径,∴∠ABD=∠ACD=90°.在Rt△ABD中,AD=6,AB=3,则∠BDA=30°,∠BAD=60°.在Rt△ABD中,AD=6,,∠CAD=45°,则∠BAC=105°;如图2,.∵AD为直径,∴∠ABD=∠ABC=90°.在Rt△ABD中,AD=6,AB=3,则∠BDA=30°,∠BAD=60°.在Rt△ABC中,AD=6,,∠CAD=45°,则∠BAC=15°.故选C.点睛:本题考查的是圆周角定理和锐角三角函数的知识,掌握直径所对的圆周角是直径和熟记特殊角的三角函数值是解题的关键,注意分情况讨论思想的运用.3.B【解析】【分析】作PA⊥x轴于点A,构造直角三角形,根据三角函数的定义求解.【详解】过P作x轴的垂线,交x轴于点A,∵P(2,4),∴OA=2,AP=4,.∴4 tan22APOAα===∴1 cot2α=.故选B.【点睛】本题考查的知识点是锐角三角函数的定义,解题关键是熟记三角函数的定义.4.D【解析】【分析】A、由a=1>0,可得出抛物线开口向上,A选项错误;B、由抛物线与y轴的交点坐标可得出c值,进而可得出抛物线的解析式,令y=0求出x值,由此可得出抛物线与x轴的交点为(1,0)、(1,0),B选项错误;C、由抛物线开口向上,可得出y无最大值,C选项错误;D、由抛物线的解析式利用二次函数的性质,即可求出抛物线的对称轴为直线x=-32,D选项正确.综上即可得出结论.【详解】解:A、∵a=1>0,∴抛物线开口向上,A选项错误;B、∵抛物线y=x1-3x+c与y轴的交点为(0,1),∴c=1,∴抛物线的解析式为y=x1-3x+1.当y=0时,有x1-3x+1=0,解得:x1=1,x1=1,∴抛物线与x轴的交点为(1,0)、(1,0),B选项错误;C、∵抛物线开口向上,∴y无最大值,C选项错误;D、∵抛物线的解析式为y=x1-3x+1,∴抛物线的对称轴为直线x=-b2a=-321=32,D选项正确.故选D.【点睛】本题考查了抛物线与x轴的交点、二次函数的性质、二次函数的最值以及二次函数图象上点的坐标特征,利用二次函数的性质及二次函数图象上点的坐标特征逐一分析四个选项的正误是解题的关键.5.C【解析】分析:本题可先列出出现的点数的情况,因为二次图象开口向上,要使图象与x轴有两个不同的交点,则最低点要小于0,即4n-m2<0,再把m、n的值一一代入检验,看是否满足.最后把满足的个数除以掷骰子可能出现的点数的总个数即可.解答:解:掷骰子有6×6=36种情况.根据题意有:4n-m2<0,因此满足的点有:n=1,m=3,4,5,6,n=2,m=3,4,5,6,n=3,m=4,5,6,n=4,m=5,6,n=5,m=5,6,n=6,m=5,6,共有17种,故概率为:17÷36=.故选C.点评:本题考查的是概率的公式和二次函数的图象问题.要注意画出图形再进行判断,找出满足条件的点.6.D【解析】【分析】先得到圆锥的三视图,再根据中心对称图形和轴对称图形的定义求解即可.【详解】解:A、主视图不是中心对称图形,故A错误;B、左视图不是中心对称图形,故B错误;C、主视图不是中心对称图形,是轴对称图形,故C错误;D、俯视图既是中心对称图形又是轴对称图形,故D正确.故选:D.【点睛】本题考查简单几何体的三视图,中心对称图形和轴对称图形,熟练掌握各自的定义是解题关键.7.D【解析】【分析】先根据反比例函数的解析式判断出函数图象所在的象限及在每一象限内函数的增减性,再根据y1<0<y2<y3判断出三点所在的象限,故可得出结论.【详解】解:∵反比例函数y=﹣1x中k=﹣1<0,∴此函数的图象在二、四象限,且在每一象限内y随x的增大而增大,∵y1<0<y2<y3,∴点(x1,y1)在第四象限,(x2,y2)、(x3,y3)两点均在第二象限,∴x2<x3<x1.故选:D.【点睛】本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出函数图象所在的象限是解答此题的关键.8.D【解析】【详解】∵∠ACD对的弧是»AD,»AD对的另一个圆周角是∠ABD,∴∠ABD=∠ACD(同圆中,同弧所对的圆周角相等),又∵AB为直径,∴∠ADB=90°,∴∠ABD+∠BAD=90°,即∠ACD+∠BAD=90°,∴与∠ACD互余的角是∠BAD.故选D.9.C【解析】【详解】解:因为设小明打字速度为x个/分钟,所以小张打字速度为(x+6)个/分钟,根据关系:小明打120个字所用的时间和小张打180个字所用的时间相等,可列方程得1201806x x=+,故选C.【点睛】本题考查列分式方程解应用题,找准题目中的等量关系,难度不大.10.A【解析】【分析】根据一元二次方程的根的判别式,建立关于m的不等式,求出m的取值范围即可.【详解】∵关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,∴△=b2﹣4ac=(﹣3)2﹣4×1×m>0,∴m<94,故选A.【点睛】本题考查了根的判别式,解题的关键在于熟练掌握一元二次方程根的情况与判别式△的关系,即:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.11.D【解析】试题分析:观察几何体,可知该几何体是由3个大小完全一样的正方体组成的,它的左视图是,故答案选D.考点:简单几何体的三视图.12.C【解析】【详解】如图所示,∵(a+b )2=21∴a 2+2ab+b 2=21,∵大正方形的面积为13,2ab=21﹣13=8,∴小正方形的面积为13﹣8=1.故选C .考点:勾股定理的证明.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.8【解析】【分析】根据反比例函数的性质结合点的坐标利用勾股定理解答.【详解】解:菱形OABC 的顶点A 的坐标为(-3,-4),22345,+=则点B 的横坐标为-5-3=-8,点B 的坐标为(-8,-4),点C 的坐标为(-5,0)则点E 的坐标为(-4,-2),将点E 的坐标带入y=k x (x <0)中,得k=8.给答案为:8.【点睛】此题重点考察学生对反比例函数性质的理解,掌握坐标轴点的求法和菱形性质是解题的关键.14.1.【解析】 试题分析:332y x x =--有意义,必须30x -≥,30x -≥,解得:x=3,代入得:y=0+0+2=2,∴y x =23=1.故答案为1.考点:二次根式有意义的条件.15.1.【解析】【分析】根据逆流速度=静水速度-水流速度,顺流速度=静水速度+水流速度,表示出逆流速度与顺流速度,根据题意列出方程,求出方程的解问题可解.【详解】解:设A 港与B 港相距xkm ,根据题意得:3262262x x +=+- , 解得:x=1,则A 港与B 港相距1km .故答案为:1.【点睛】此题考查了分式方程的应用题,解答关键是在顺流、逆流过程中找出等量关系构造方程. 16.1.【解析】【分析】如图,作BH ⊥AC 于H .由四边形ABCD 是矩形,推出OA=OC=OD=OB ,设OA=OC=OD=OB=5a ,由tan ∠BOH 43BH OH ==,可得BH=4a ,OH=3a ,由题意:212⨯⨯1a×4a=40,求出a 即可解决问题. 【详解】如图,作BH ⊥AC 于H .∵四边形ABCD 是矩形,∴OA=OC=OD=OB ,设OA=OC=OD=OB=5a .∵tan ∠BOH 43BH OH ==,∴BH=4a ,OH=3a ,由题意:212⨯⨯1a×4a=40,∴a=1,∴AC=1. 故答案为:1.【点睛】本题考查了矩形的性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题.17.3:2【解析】因为DE ∥BC,所以32AD AE DB EC ==,因为EF ∥AB,所以23CE CF EA BF ==,所以32BF FC =,故答案为: 3:2.18.1152k k≤≠且【解析】【分析】若一元二次方程有实根,则根的判别式△=b2-4ac≥0,且k-1≠0,建立关于k的不等式组,求出k的取值范围.【详解】解:∵方程有两个实数根,∴△=b2-4ac=(-2)2-4×2×(k-1)=44-8k≥0,且k-1≠0,解得:k≤112且k≠1,故答案为k≤112且k≠1.【点睛】此题考查根的判别式问题,总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)DE与⊙O相切,理由见解析;(2)阴影部分的面积为2π﹣332.【解析】【分析】(1)直接利用角平分线的定义结合平行线的判定与性质得出∠DEB=∠EDO=90°,进而得出答案;(2)利用勾股定理结合扇形面积求法分别分析得出答案.【详解】(1)DE与⊙O相切,理由:连接DO,∵DO=BO,∴∠ODB=∠OBD,∵∠ABC的平分线交⊙O于点D,∴∠EBD=∠DBO ,∴∠EBD=∠BDO ,∴DO ∥BE ,∵DE ⊥BC ,∴∠DEB=∠EDO=90°,∴DE 与⊙O 相切;(2)∵∠ABC 的平分线交⊙O 于点D ,DE ⊥BE ,DF ⊥AB ,∴DE=DF=3,∵∴=6, ∵sin ∠DBF=31=62, ∴∠DBA=30°,∴∠DOF=60°,∴sin60°=32DF DO DO ==,∴,则1322π=-. 【点睛】此题主要考查了切线的判定方法以及扇形面积求法等知识,正确得出DO 的长是解题关键.20.(1)甲,乙两种型号设备每台的价格分别为12万元和10万元.(2)有6种购买方案.(3)最省钱的购买方案为,选购甲型设备4台,乙型设备6台.【解析】【分析】(1)设甲、乙两种型号设备每台的价格分别为x 万元和y 万元,根据购买了3台甲型设备比购买2台乙型设备多花了16万元,购买2台甲型设备比购买3台乙型设备少花6万元可列出方程组,解之即可;(2)设购买甲型设备m 台,乙型设备()10m -台,根据购买节省能源的新设备的资金不超过110万元列不等式,解之确定m 的值,即可确定方案;(3)因为公司要求每月的产量不低于2040吨,据此可得关于m 的不等式,解之即可由m 的值确定方案,然后进行比较,做出选择即可.【详解】(1)设甲、乙两种型号设备每台的价格分别为x 万元和y 万元,由题意得:3216263x y x y -=⎧⎨+=⎩, 解得:1210x y =⎧⎨=⎩, 则甲,乙两种型号设备每台的价格分别为12万元和10万元;(2)设购买甲型设备m 台,乙型设备()10m -台,则()121010110m m +-≤,∴5m ≤,∵m 取非负整数,∴0,1,2,3,4,5m =,∴有6种购买方案;(3)由题意:()240180102040m m +-≥,∴4m ≥,∴m 为4或5,当4m =时,购买资金为:124106108⨯+⨯=(万元),当5m =时,购买资金为:125105110⨯+⨯=(万元),则最省钱的购买方案是选购甲型设备4台,乙型设备6台.【点睛】本题考查了二元一次方程组的应用,一元一次不等式的应用,弄清题意,找准等量关系、不等关系列出方程组与不等式是解题的关键.21. (1)见解析【解析】【分析】(1)根据平行四边形的判定定理首先推知四边形DBEC 为平行四边形,然后由直角三角形斜边上的中线等于斜边的一半得到其邻边相等:CD=BD ,得证;(1)由三角形中位线定理和勾股定理求得AB 边的长度,然后根据菱形的性质和三角形的面积公式进行解答.【详解】(1)证明:∵CE ∥DB ,BE ∥DC ,∴四边形DBEC 为平行四边形.又∵Rt△ABC中,∠ABC=90°,点D是AC的中点,∴CD=BD=12 AC,∴平行四边形DBEC是菱形;(1)∵点D,F分别是AC,AB的中点,AD=3,DF=1,∴DF是△ABC的中位线,AC=1AD=6,S△BCD=12S△ABC∴BC=1DF=1.又∵∠ABC=90°,∴AB=22AC BC-= 2262-= 42.∵平行四边形DBEC是菱形,∴S四边形DBEC=1S△BCD=S△ABC=12AB•BC=12×42×1=42.点睛:本题考查了菱形的判定与性质,直角三角形斜边上的中线等于斜边的一半,三角形中位线定理.由点D是AC的中点,得到CD=BD是解答(1)的关键,由菱形的性质和三角形的面积公式得到S四边形DBEC=S△ABC是解(1)的关键.22.(1)BE+DF=EF;(2)存在,BD的最大值为6;(3)存在,AC的最大值为26.【解析】【分析】(1)作辅助线,首先证明△ABE≌△ADG,再证明△AEF≌△AEG,进而得到EF=FG问题即可解决;(2)将△ABD绕着点B顺时针旋转60°,得到△BCE,连接DE,由旋转可得,CE=AD=2,BD=BE,∠DBE=60°,可得DE=BD,根据DE<DC+CE,则当D、C、E三点共线时,DE存在最大值,问题即可解决;(3)以BC为边作等边三角形BCE,过点E作EF⊥BC于点F,连接DE,由旋转的性质得△DBE是等边三角形,则DE=AC,根据在等边三角形BCE中,EF⊥BC,可求出BF,EF,以BC为直径作⊙F,则点D在⊙F上,连接DF,可求出DF,则AC=DE≤DF+EF,代入数值即可解决问题.【详解】(1)如图①,延长CD至G,使得DG=BE,∵正方形ABCD中,AB=AD,∠B=∠AFG=90°,∴△ABE≌△ADG,∴AE=AG,∠BAE=∠DAG,∵∠EAF=45°,∠BAD=90°,∴∠BAE+∠DAF=45°,∴∠DAG+∠DAF=45°,即∠GAF=∠EAF,又∵AF=AF,∴△AEF≌△AEG,∴EF=GF=DG+DF=BE+DF,故答案为:BE+DF=EF;(2)存在.在等边三角形ABC中,AB=BC,∠ABC=60°,如图②,将△ABD绕着点B顺时针旋转60°,得到△BCE,连接DE.由旋转可得,CE=AD=2,BD=BE,∠DBE=60°,∴△DBE是等边三角形,∴DE=BD,∴在△DCE中,DE<DC+CE=4+2=6,∴当D、C、E三点共线时,DE存在最大值,且最大值为6,∴BD的最大值为6;(3)存在.如图③,以BC为边作等边三角形BCE,过点E作EF⊥BC于点F,连接DE,∵AB=BD,∠ABC=∠DBE,BC=BE,∴△ABC≌△DBE,∴DE=AC,∵在等边三角形BCE中,EF⊥BC,∴BF=BC=2,∴EF=BF=×2=2,以BC为直径作⊙F,则点D在⊙F上,连接DF,∴DF=BC=×4=2,∴AC=DE≤DF+EF=2+2,即AC的最大值为2+2.【点睛】本题考查了全等三角形的判定与性质以及旋转的性质,解题的关键是熟练的掌握全等三角形的判定与性质以及旋转的性质.23.(1)A(﹣1,﹣6);(1)见解析【解析】试题分析:(1)把每个坐标做大1倍,并去相反数.(1)横纵坐标对调,并且把横坐标取相反数.试题解析:解:(1)如图,△A1B1C1为所作,A(﹣1,﹣6);(1)如图,△A1B1C1为所作.24.(1)AE=DF,AE⊥DF,理由见解析;(2)成立,2或2;(3)51【解析】试题分析:(1)根据正方形的性质,由SAS先证得△ADE≌△DCF.由全等三角形的性质得AE=DF,∠DAE=∠CDF,再由等角的余角相等可得AE⊥DF;(2)有两种情况:①当AC=CE时,设正方形ABCD的边长为a,由勾股定理求出2a即可;②当AE=AC时,设正方形的边长为a,由勾股定理求出2a,根据正方形的性质知∠ADC=90°,然后根据等腰三角形的性质得出DE=CD=a即可;(3)由(1)(2)知:点P的路径是一段以AD为直径的圆,设AD的中点为Q,连接QC交弧于点P,此时CP的长度最大,再由勾股定理可得QC的长,再求CP即可.试题解析:(1)AE=DF ,AE ⊥DF ,理由是:∵四边形ABCD 是正方形,∴AD=DC ,∠ADE=∠DCF=90°,∵动点E ,F 分别从D ,C 两点同时出发,以相同的速度在直线DC ,CB 上移动,∴DE=CF ,在△ADE 和△DCF 中AD DC ADE DCF DE CF =⎧⎪∠=∠⎨⎪=⎩,∴ADE DCF ∆≅∆,∴AE=DF ,∠DAE=∠FDC ,∵∠ADE=90°,∴∠ADP+∠CDF=90°,∴∠ADP+∠DAE=90°,∴∠APD=180°-90°=90°,∴AE ⊥DF ;(2)(1)中的结论还成立,有两种情况:①如图1,当AC=CE 时,设正方形ABCD 的边长为a ,由勾股定理得, 222AC CE a a a ==+=,则:2:2CE CD a a ==;②如图2,当AE=AC 时,设正方形ABCD 的边长为a ,由勾股定理得: 222AC AE a a a ==+=,∵四边形ABCD 是正方形,∴∠ADC=90°,即AD ⊥CE ,∴DE=CD=a ,∴CE:CD=2a:a=2;即22;(3)∵点P 在运动中保持∠APD=90°, ∴点P 的路径是以AD 为直径的圆,如图3,设AD 的中点为Q ,连接CQ 并延长交圆弧于点P ,此时CP 的长度最大,∵在Rt △QDC 中,2222215QC CD QD =+=+=∴51CP QC QP =+=,即线段CP 51.点睛:此题主要考查了正方形的性质,勾股定理,圆周角定理,全等三角形的性质与判定,等腰三角形的性质,三角形的内角和定理,能综合运用性质进行推挤是解此题的关键,用了分类讨论思想,难度偏大. 25.见解析【解析】【分析】(1)根据平行四边形的性质可得AB ∥DC ,OB=OD ,由平行线的性质可得∠OBE=∠ODF ,利用ASA 判定△BOE ≌△DOF ,由全等三角形的性质可得EO=FO ,根据对角线互相平分的四边形是平行四边形即可判定四边形BEDF 是平行四边形;(2)添加EF ⊥BD (本题添加的条件不唯一),根据对角线互相垂直的平行四边形为菱形即可判定平行四边形BEDF 为菱形.【详解】(1)∵四边形ABCD 是平行四边形,O 是BD 的中点,∴AB ∥DC ,OB=OD ,∴∠OBE=∠ODF ,又∵∠BOE=∠DOF ,∴△BOE ≌△DOF (ASA ),∴EO=FO ,∴四边形BEDF 是平行四边形;(2)EF ⊥BD .∵四边形BEDF 是平行四边形,∵EF ⊥BD ,∴平行四边形BEDF 是菱形.【点睛】本题考查了平行四边形的性质与判定、菱形的判定,熟知平行四边形的性质与判定及菱形的判定方法是解决问题的关键.26.(1)详见解析;(2【解析】【分析】(1)因为AC 平分∠BCD ,∠BCD =120°,根据角平分线的定义得:∠ACD =∠ACB =60°,根据同弧所对的圆周角相等,得∠ACD =∠ABD ,∠ACB =∠ADB ,∠ABD =∠ADB =60°.根据三个角是60°的三角形是等边三角形得△ABD 是等边三角形.(2)作直径DE ,连结BE ,由于△ABD 是等边三角形,则∠BAD=60°,由同弧所对的圆周角相等,得∠BED =∠BAD =60°.根据直径所对的圆周角是直角得,∠EBD =90°,则∠EDB =30°,进而得到DE =2BE.设EB =x ,则ED =2x ,根据勾股定理列方程求解即可.【详解】解:(1)∵∠BCD=120°,CA 平分∠BCD ,∴∠ACD=∠ACB=60°,由圆周角定理得,∠ADB=∠ACB=60°,∠ABD=∠ACD=60°,∴△ABD 是等边三角形;(2)连接OB 、OD ,作OH ⊥BD 于H ,则DH=12BD=32, ∠BOD=2∠BAD=120°,∴∠DOH=60°,在Rt △ODH 中,OD=sin DH DOH,∴⊙O【点睛】本题是一道圆的简单证明题,以圆的内接四边形为背景,圆的内接四边形的对角互补,在圆中往往通过连结直径构造直角三角形,再通过三角函数或勾股定理来求解线段的长度.27.(1)抽样调查(2)150°(3)180件(4)25 【解析】分析:(1)杨老师从全校30个班中随机抽取了4个班,属于抽样调查.(2)由题意得:所调查的4个班征集到的作品数为:6÷90360=24(件),C 班作品的件数为:24-4-6-4=10(件);继而可补全条形统计图;(3)先求出抽取的4个班每班平均征集的数量,再乘以班级总数可得;(4)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两名学生性别相同的情况,再利用概率公式即可求得答案.详解:(1)杨老师从全校30个班中随机抽取了4个班,属于抽样调查.故答案为抽样调查.(2)所调查的4个班征集到的作品数为:6÷90360=24件, C 班有24﹣(4+6+4)=10件,补全条形图如图所示,扇形统计图中C 班作品数量所对应的圆心角度数360°×1024=150°; 故答案为150°;(3)∵平均每个班244=6件, ∴估计全校共征集作品6×30=180件.(4)画树状图得:∵共有20种等可能的结果,两名学生性别相同的有8种情况,∴恰好选取的两名学生性别相同的概率为82= 205.点睛:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.同时古典概型求法:(1)算出所有基本事件的个数n;(2)求出事件A包含的所有基本事件数m;(3)代入公式P(A)=mn,求出P(A)..。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

∥ ∥ 2x x2-4
-
1 x-2
÷ 3x ,其中 x=-3. 2x+4
18.(本题 8 分)2019 年 8 月,山西龙城将迎来全国第二
届青年运动会,盛会将至,整个城市已经进入了全力
准备的状态. 太原学院足球场作为一个重要比赛场
馆,占地面积约 24300 平方米,总建筑面积 4790 平
方米,设有 2476 个座位,整体建筑简洁大方,独具特
400 3
π+200

3
cm2
%
△ △ C.
400 3
π+100

3
cm2
D. 200π cm2
数学 第 2 页 (共 6 页)
第Ⅱ卷 非选择题 (共 90 分)
二、填空题(本大题共 5 个小题,每小题 3 分,共 15 分) 11. 已知关于 x 的方程 x2-4x+m=0 有一个根为 3,则 m 的值为 ▲ . 12. 小明和小兵进行投靶游戏,如图所示,靶中两个同心圆的半径 OA 与 OB 的比为 3∶4,
从顶点 A 绕三棱柱侧面一周到顶点 A′安装灯带,已知此三棱柱的高为 5 m,底面边
长为 2 m,则灯带的长度至少为 ▲ m.
14. 已知反比例函数 y= 5 ,当 x<-2 时,y 的取值范围是 ▲ . x
15. 如图,在 Rt△ABC 中,∠ACB=90°,BC=8,CD 是斜边 AB 上的
中线,将△ACD 沿直线 CD 翻折至△ECD 的位置,连接 AE.若
(第 22 题图 1)
(第 22 题图 2)
数学 第 5 页 (共 6 页)
(第 22 题图 3)
(第 23 题图 1)
(第 23 题图 2)
数学 第 6 页 (共 6 页)
(第 21 题图)
22.(本题 13 分)综合与实践: 如图 1,将一个等腰直角三角尺 ABC 的顶点 C 放置在直线 l 上,∠ABC=90°,AB=BC, 过点 A 作 AD⊥l 于点 D,过点 B 作 BE⊥l 于点 E. 观察发现: (1)如图 1,当 A,B 两点均在直线 l 的上方时, ①猜测线段 AD,CE 与 BE 的数量关系,并说明理由; ②直接写出线段 DC,AD 与 BE 的数量关系; 操作证明: (2)将等腰直角三角尺 ABC 绕着点 C 逆时针旋转至图 2 位置时,线段 DC,AD 与 BE 又有怎样的数量关系,请写出你的猜想,并写出证明过程; 拓广探索: (3)将等腰直角三角尺 ABC 绕着点 C 继续旋转至图 3 位置时,AD 与 BC 交于点 H, 若 CD=3,AD=9,请直接写出 DH 的长度.
色. 2018 年 3 月 15 日该场馆如期开工,某施工队负责安装该场馆所有座位,在安装完
476 个座位后,采用新技术,效率比原来提升了 25%.结果比原计划提前 4 天完成安装
任务,求原计划每天安装多少个座位.
数学 第 3 页 (共 6 页)
19.(本题 7 分)一声汽笛长鸣,火车开进了蔡家崖.这是我省吕 梁革命老区人民期盼已久的客运列车.蔡家崖列车的开通, 带动老区驶入了发展红色旅游的快车道. 某旅行社对去年 “国庆” 期间到吕梁观光的游客的出行方式进行了随机抽 样调查,整理后绘制了两幅统计图(尚不完整).根据图中信 息,回答下列问题: (1)求本次抽样调查的总人数; (2)补全条形统计图;
第Ⅰ卷 选择题 (共 30 分)
一、选择题(本大题共 10 个小题,每小题 3 分,共 30 分.在每小题给出的四个选项中,只有
一项符合题目要求,请选出并在答题卡上将该项涂黑)
1. 下列各数中是无理数的是
A. 3
B. 1
3
C.
-
5 3
D. -2姨 3
C
2. 如图所示,a∥b,∠BAC=90°,∠C=30°,∠1=10°,则∠2=
D. 1.74 m
8. 若直线l1经过点(0,4),l2经过点(3,2),且l1与l2关于x轴对称,则l1与l2的交点坐标为
A.(-2,0)
B.(2,0)
C.(-6,0)
D.(6,0)
9. 如图,在矩形ABCD中,点E、F、G、H分别是边AD、AB、BC、CD的中点,连接EF、FG、GH和
HE.若AD=2AB,则下列结论正确的是
数学 第 4 页 (共 6 页)
21.(本题 9 分)某市在创建文明城市活动中,对道路进行美化.如图,道路两旁分别有两个 高度相同的路灯 AB 和 CD, 两个路灯之间的距离 BD 长为 24 米, 小明在点 E(B,E, D,G 在一条直线上) 处测得路灯 AB 顶部 A 点的仰角为 45°, 然后沿 BE 方向前进 8 米到达点 G 处,测得路灯 CD 顶部的 C 点仰角为 30°.已知小明的两个观测点 F,H 距 离地面的高度 EF、GH 均为 1.6 米,求路灯 AB 的高度( . 精确到 0.1 米,参考数据:姨 2 ≈1.41,姨 3 ≈1.73)
23.(本题 13 分)如图,在平面直角坐标系中,二次函数 y=x2-2x-3 交 x 轴于 A、B 两点, (点 A 在点 B 的左侧)与 y 轴交于点 C,连接 AC. (1)求点 A、点 B 和点 C 的坐标; (2)若点 D 为第四象限内抛物线上一动点,点 D 的横坐标为 m,△BCD 的面积为 S.求 S 关于 m 的函数关系式,并求出 S 的最大值; (3)抛物线的对称轴上是否存在点 P,使△BCP 为等腰三角形? 若存在,请直接写出所 有点 P 的坐标;若不存在,请说明理由.
姓名
准考证号
山西省 2019 年中考考前适应性训练试题
数学
沿 此 线 折 叠
扫描二维码 关注考试信息
注意事项: 1. 本试卷共 6 页,满分 120 分,考试时间 120 分钟. 2. 答卷前,考生务必将自己的姓名、准考证号填写在本试卷相应的位置. 3. 答案全部在答题卡上完成,答在本试卷上无效. 4. 考试结束后,将本试卷和答题卡一并交回.
DE∥AC,计算四边形 ACED 的面积等于 ▲ .
(第 15 题图)
三、解答题(本大题共 8 个小题,共 75 分.解答题应写出文字说明、证明过程或演算步骤)
16.(每小题 5 分,共 10 分)
∥3x+y=8,
(1)解方程组: x+3y=0;
(2)解不等式:
2x-1 3
-
1-x 6
>1.
17.(本题 7 分)先化简,再求值:
(第 19 题图 1)
(第 19 题图 2)
(3)扇形统计图中“其他”部分扇形的圆心角度数为 ▲ ;
(4)去年“国庆”期间到吕梁观光的旅游者为 275 万人,则选择自驾方式出行的有多少万人.
20.(本题 8 分)阅读下列材料,并完成相应任务.
古希腊数学家,天文学家欧多克索斯(Eudoxus,约前 400—前
B
1
a
A. 40°
B. 50°
C. 30° 3. 下列计算正确的是
A. 姨 5 -姨 3a5
2 A
b
(第 2 题图)
C.(-2a)2=-4a2
D. 3a·3 2a2=6a5
4. 在平面直角坐标系中, 把△AOB以原点为旋转中心逆时针旋转90°, 得到△A′OB′, 若A
347)曾提出:能否将一条线段分成不相等的两部分,使较短线段与
较长线段的比等于较长线段与原线段的比, 这个相等的比就是
姨5 2
-1
=0.618
033
988
749…,
黄金分割在我们生活中有广泛运
用,黄金分割点也可以用折纸的方式得到.
第一步:裁一张正方形的纸片 ABCD,先折出 BC 的中点 E,然后展平,再折出线段
D. 如果三角形三个内角的比是2∶3∶5,那么这个三角形是直角三角形
7. 某校创新小组 8 名学生的身高分别是 1.72 m,1.73 m,1.68 m,1.64 m,1.72 m,1.73 m,1.8 m,
1.81 m,这组数据的众数是
A. 1.72 m
B. 1.73 m
C. 1.72 m和1.73 m
(2,3),则点A的对应点A′的坐标为
A.(3,-2)
B.(-3,2)
C.(-2,3)
D.(-2,-3)
5. 若3n+3n+3n=1,则n=
A. -1
B. 2
C. 0
D. 1
数学 第 1 页 (共 6 页)
6. 下列命题是假命题的是
A. 平行于同一直线的两条直线平行
B. 三个角是直角的四边形是矩形
C. 内错角相等
A. EF=AB
B. EF= 姨 3 AB 2
C. EF=姨 3 AB
D. EF= 姨 5 AB 2
E
A
D
F
H
B
C
G
(第 9 题图)
(第 10 题图)
10. 如图,阴影部分是从一块直径为40 cm的圆形铁板中截出的一个工件示意图,其中
△ABC是等边三角形,则阴影部分的面积为
A. 800π cm2
△ △ B.
AE,再展平;
第二步:将纸片沿 EM 折叠,使 EB 落到线段 EA 上,B 的对应点
为 B′,展平;
第三步:沿 AN 折叠,使 AB 落在 AE 上,B′的对应点为 B″,展平,
这时 B″就是 AB 的黄金分割点.
任务:(1)试根据以上操作步骤证明 B″就是 AB 的黄金分割点; (2)请写出一个生活中应用黄金分割的实际例子.
随机投一次,若投在阴影部分,小明获胜;投在环形部分,小兵获胜;小明获胜的概率 记为 P(小明),小兵获胜的概率记为 P(小兵),则P(小明) ▲ P(小兵)( . 用“>”“<”“=”填空)
相关文档
最新文档