2019-2020年初三数学期末考试题及答案
2019-2020学年度第一学期九年级数学期末试卷试题(含答案)

2019~2020学年度第一学期期末检测九年级数学评分标准(其他解法参照给分)一、选择题(本大题共8小题,每小题3分,共24分.)二、填空题(本大题共10小题,每小题3分,共30分)9.12; 10.1:4; 11.2; 12.>; 13.110;14.不具有; 15. 16.4; 17.16; 18.2+三、解答题(本大题共10小题,共86分.)19.(本题共2小题,每题5分,共10分)(1)(1)计算:1032sin302020-+︒-解:原式11=2132+⨯-…………………………………………………3分 1113=+-……………………………………………………4分 13=…………………………………………………………5分 (2)解方程:2340x x +-=(解法不唯一)解:()()410x x +-=,……………………………………………………7分40x +=,10x -=…………………………………………………9分 1241x x =-=,………………………………………………………10分20.(本小题7分)解:………………………………………………………………………………………5分 P (两次取球得分的总分不小于5分)=13…………………………………………7分21.(本小题7分)(1)816%=50÷,5010148612m =----=;…………………………2分(2)本次抽查的学生文章阅读篇数的中位数为5,众数为4;………………4分(3)14120033650⨯=,………………………………………………………6分 答:估计该校学生在这一周内文章阅读的篇数为4篇的人数为336人.………7分22.(本小题8分)(1)△ABC 的面积是 12 ;…2分(2)如图所示………6分(3)若P (a ,b )为线段BC 上的任一 点,则变换后点P 的对应点'P 的坐标为 (,)22a b .………8分23.(本小题8分)解:设市政府从2017年到2019年对校舍建设投入资金的年平均增长率为x .…1分 根据题意得,28(1)11.52x +=.…………………………………………………4分解这个方程,得 1220% 2.2x x ==-,(不合题意,舍去)……………………7分答:市政府从2017年到2019年对校舍建设投入资金的年平均增长率为20%…8分24.(本小题8分)解:(1)分别过点E 作EF ⊥AC ,EG ⊥AO,垂足为F 、G.∵至DE 处,测得顶点A 的仰角为75°, ∴∠AEG=75°……………1分∵在BC 处测得直立于地面的AO 顶点A 的仰角为30°,∴∠ACE=30°, ……2分 ∴∠CAE=∠AEG -∠ACE=45°……………………………………………3分(2)在Rt △CFE 中,CE=40,∴1sin 3040202EF CE =︒=⨯=………4分 在Rt △AFE 中,∠CAE =45°,AF=FE=20………5分∴sin 452EF AE ===︒…………………………………………6分(第24题)(3)20AC AF CF =+=在Rt △AFE 中,1sin 3020272AG AC =︒=⨯≈()……7分 ∴27 1.529AO AG OG =+=+≈……………………………8分25.(本小题9分)26.(本小题9分)m.…1分解:(1)设矩形生物园的长为xm,则宽为(8-x)m,小兔的活动范围的面积为y227.(本小题10分)(1)证明:如图1中,AE AD ⊥ ,90DAE ∴∠=︒,90E ADE ∠=︒-∠,…………1分AD 平分BAC ∠,12BAD BAC ∴∠=∠,同理12ABD ABC ∠=∠,…………………2分 ADE BAD DBA ∠=∠+∠ ,180BAC ABC C ∠+∠=︒-∠,11()9022ADE ABC BAC C ∴∠=∠+∠=︒-∠,(2)延长AD 交BC 于点F .AB AE = ,ABE E ∴∠=∠,BE 平分ABC ∠,ABE EBC ∴∠=∠,………………………4分E CBE ∴∠=∠,//AE BC ∴,……………………………………5分90AFB EAD ∴∠=∠=︒,BF BD AF DE=, :2:3BD DE = ,(3)ABC 与ADE 相似,90DAE ∠=︒,ABC ∴∠中必有一个内角为90︒ABC ∠ 是锐角,90ABC ∴∠≠︒.………………………………………………………7分 ①当90BAC DAE ∠=∠=︒时,12E C ∠=∠ , 12ABC E C ∴∠=∠=∠, 90ABC C ∠+∠=︒ ,30ABC ∴∠=︒,此时2ABC ADES S =V V .………………………………………8分 ②当90C DAE ∠=∠=︒时,1452E C ∠=∠=︒, 45EDA ∴∠=︒,ABC 与ADE 相似,45ABC ∴∠=︒,此时ABC ADE S S =V V .………………………………………9分28.(本小题10分) 解:(1)由抛物线2y ax bx c =++交x 轴于A 、B 两点,OA =1,OB =3,得点A 坐标为(1,0)-,点B 的坐标为(3,0);…………………………………2分 Q。
2019-2020年湖北省武汉市九年级上册期末数学试卷(含详细解析)

湖北省武汉市九年级(上)期末数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)方程(﹣5)=0化成一般形式后,它的常数项是()A.﹣5B.5C.0D.12.(3分)二次函数y=2(﹣3)2﹣6()A.最小值为﹣6B.最大值为﹣6C.最小值为3D.最大值为33.(3分)下列交通标志中,是中心对称图形的是()A.B.C.D.4.(3分)事件①:射击运动员射击一次,命中靶心;事件②:购买一张彩票,没中奖,则()A.事件①是必然事件,事件②是随机事件B.事件①是随机事件,事件②是必然事件C.事件①和②都是随机事件D.事件①和②都是必然事件5.(3分)抛掷一枚质地均匀的硬币,正面朝上的概率为0.5,下列说法正确的是()A.连续抛掷2次必有1次正面朝上B.连续抛掷10次不可能都正面朝上C.大量反复抛掷每100次出现正面朝上50次D.通过抛掷硬币确定谁先发球的比赛规则是公平的6.(3分)一元二次方程2+2+m=0有两个不相等的实数根,则()A.m>3B.m=3C.m<3D.m≤37.(3分)圆的直径是13cm,如果圆心与直线上某一点的距离是6.5cm,那么该直线和圆的位置关系是()A.相离B.相切C.相交D.相交或相切8.(3分)如图,等边△ABC的边长为4,D、E、F分别为边AB、BC、AC的中点,分别以A、B、C三点为圆心,以AD长为半径作三条圆弧,则图中三条圆弧的弧长之和是()A.πB.2πC.4πD.6π9.(3分)如图,△ABC的内切圆与三边分别相切于点D、E、F,则下列等式:①∠EDF=∠B;②2∠EDF=∠A+∠C;③2∠A=∠FED+∠EDF;④∠AED+∠BFE+∠CDF=180°,其中成立的个数是()A.1个B.2个C.3个D.4个10.(3分)二次函数y=﹣2﹣2+c在﹣3≤≤2的范围内有最小值﹣5,则c的值是()A.﹣6B.﹣2C.2D.3二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)一元二次方程2﹣a=0的一个根是2,则a的值是.12.(3分)把抛物线y=22先向下平移1个单位,再向左平移2个单位,得到的抛物线的解析式是.13.(3分)一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1、2、3、4.随机摸取一个小球然后放回,再随机摸出一个小球,两次取出的小球标号的和等于5的概率是.14.(3分)设计人体雕像时,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,可以增加视觉美感.按此比例,如果雕像的高为2m,那么上部应设计为多高?设雕像的上部高m,列方程,并化成一般形式是.15.(3分)如图,正六边形ABCDEF中,P是边ED的中点,连接AP,则=.16.(3分)在⊙O中,弧AB所对的圆心角∠AOB=108°,点C为⊙O上的动点,以AO、AC为边构造▱AOD C.当∠A=°时,线段BD最长.三、解答题(共8题,共72分)17.(8分)解方程:2+﹣3=0.18.(8分)如图,在⊙O中,半径OA与弦BD垂直,点C在⊙O上,∠AOB=80°(1)若点C在优弧BD上,求∠ACD的大小;(2)若点C在劣弧BD上,直接写出∠ACD的大小.19.(8分)甲、乙、丙三个盒子中分别装有除颜色外都相同的小球,甲盒中装有两个球,分别为一个红球和一个绿球;乙盒中装有三个球,分别为两个绿球和一个红球;丙盒中装有两个球,分别为一个红球和一个绿球,从三个盒子中各随机取出一个小球(1)请画树状图,列举所有可能出现的结果(2)请直接写出事件“取出至少一个红球”的概率.20.(8分)如图,在平面直角坐标系中有点A(﹣4,0)、B(0,3)、P(a,﹣a)三点,线段CD与AB关于点P中心对称,其中A、B的对应点分别为C、D(1)当a=﹣4时①在图中画出线段CD,保留作图痕迹②线段CD向下平移个单位时,四边形ABCD为菱形;(2)当a=时,四边形ABCD为正方形.21.(8分)如图,点D在⊙O的直径AB的延长线上,CD切⊙O于点C,AE⊥CD于点E (1)求证:AC平分∠DAE;(2)若AB=6,BD=2,求CE的长.22.(10分)投资1万元围一个矩形菜园(如图),其中一边靠墙,另外三边选用不同材料建造.墙长24m,平行于墙的边的费用为200元/m,垂直于墙的边的费用为150元/m,设平行于墙的边长为m(1)设垂直于墙的一边长为y m,直接写出y与之间的函数关系式;(2)若菜园面积为384m2,求的值;(3)求菜园的最大面积.23.(10分)如图,点C为线段AB上一点,分别以AB、AC、CB为底作顶角为120°的等腰三角形,顶角顶点分别为D、E、F(点E、F在AB的同侧,点D在另一侧)(1)如图1,若点C是AB的中点,则∠AED=;(2)如图2,若点C不是AB的中点①求证:△DEF为等边三角形;②连接CD,若∠ADC=90°,AB=3,请直接写出EF的长.24.(12分)已知抛物线y=a2+2+c与轴交于A(﹣1,0)、B(3,0)两点,一次函数y =+b的图象l经过抛物线上的点C(m,n)(1)求抛物线的解析式;(2)若m=3,直线l与抛物线只有一个公共点,求的值;(3)若=﹣2m+2,直线l与抛物线的对称轴相交于点D,点P在对称轴上.当PD=PC时,求点P的坐标.湖北省武汉市九年级(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)方程(﹣5)=0化成一般形式后,它的常数项是()A.﹣5B.5C.0D.1【解答】解:∵(﹣5)=0∴2﹣5=0,∴方程(﹣5)=0化成一般形式后,它的常数项是0,故选:C.2.(3分)二次函数y=2(﹣3)2﹣6()A.最小值为﹣6B.最大值为﹣6C.最小值为3D.最大值为3【解答】解:∵a=2>0,∴二次函数有最小值为﹣6.故选:A.3.(3分)下列交通标志中,是中心对称图形的是()A.B.C.D.【解答】解:A、不是中心对称图形;B、不是中心对称图形;C、不是中心对称图形;D、是中心对称图形.故选:D.4.(3分)事件①:射击运动员射击一次,命中靶心;事件②:购买一张彩票,没中奖,则()A.事件①是必然事件,事件②是随机事件B.事件①是随机事件,事件②是必然事件C.事件①和②都是随机事件D.事件①和②都是必然事件【解答】解:射击运动员射击一次,命中靶心是随机事件;购买一张彩票,没中奖是随机事件,故选:C.5.(3分)抛掷一枚质地均匀的硬币,正面朝上的概率为0.5,下列说法正确的是()A.连续抛掷2次必有1次正面朝上B.连续抛掷10次不可能都正面朝上C.大量反复抛掷每100次出现正面朝上50次D.通过抛掷硬币确定谁先发球的比赛规则是公平的【解答】解:抛掷一枚质地均匀的硬币,正面朝上的概率为0.5,可以用到实际生活,通过抛掷硬币确定谁先发球的比赛规则是公平的.故选:D.6.(3分)一元二次方程2+2+m=0有两个不相等的实数根,则()A.m>3B.m=3C.m<3D.m≤3【解答】解:∵一元二次方程2+2+m=0有两个不相等的实数根,∴△=(2)2﹣4m>0,解得:m<3.故选:C.7.(3分)圆的直径是13cm,如果圆心与直线上某一点的距离是6.5cm,那么该直线和圆的位置关系是()A.相离B.相切C.相交D.相交或相切【解答】解:∵圆的直径为13cm,∴圆的半径为6.5cm,∵圆心与直线上某一点的距离是6.5cm,∴圆的半径≥圆心到直线的距离,∴直线于圆相切或相交,故选:D.8.(3分)如图,等边△ABC的边长为4,D、E、F分别为边AB、BC、AC的中点,分别以A、B、C三点为圆心,以AD长为半径作三条圆弧,则图中三条圆弧的弧长之和是()A.πB.2πC.4πD.6π【解答】解:依题意知:图中三条圆弧的弧长之和=×3=2π.故选:B.9.(3分)如图,△ABC的内切圆与三边分别相切于点D、E、F,则下列等式:①∠EDF=∠B;②2∠EDF=∠A+∠C;③2∠A=∠FED+∠EDF;④∠AED+∠BFE+∠CDF=180°,其中成立的个数是()A.1个B.2个C.3个D.4个【解答】解:不妨设∠B=80°,∠A=40°,∠C=60°.∵△ABC的内切圆与三边分别相切于点D、E、F,∴BE=BF,AE=AD,CF=CD,∴∠BEF=∠BFE=∠EDF=50°,∠CFD=∠CDF=∠FED=60°,∠AED=∠ADE=∠EFD =70°,∴∠EDF≠∠B,2∠A≠∠FED+∠EDF,故①③不正确,∵∠B+∠BEF+∠EFB=180°,∠B+∠A+∠C=180°,∴∠BEF+∠BFE=∠A+∠C,∴2∠EDF=∠A+∠C,故②正确,∵∠AED=∠EFD,∠BFE=∠EDF,∠CDF=∠FED,∴∠AED+∠BFE+∠CDF=∠EFD+∠EDF+∠FED=180°,故④正确.故选:B.10.(3分)二次函数y=﹣2﹣2+c在﹣3≤≤2的范围内有最小值﹣5,则c的值是()A.﹣6B.﹣2C.2D.3【解答】解:把二次函数y=﹣2﹣2+c转化成顶点坐标式为y=﹣(+1)2+c+1,又知二次函数的开口向下,对称轴为=﹣1,故当=2时,二次函数有最小值为﹣5,故﹣9+c+1=﹣5,故c=3.故选:D.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)一元二次方程2﹣a=0的一个根是2,则a的值是4.【解答】解:把=2代入方程2﹣a=0得4﹣a=0,解得a=4.故答案为4.12.(3分)把抛物线y=22先向下平移1个单位,再向左平移2个单位,得到的抛物线的解析式是y=2(+2)2﹣1.【解答】解:由“左加右减”的原则可知,二次函数y=22的图象向下平移1个单位得到y=22﹣1,由“上加下减”的原则可知,将二次函数y=22﹣1的图象向左平移2个单位可得到函数y=2(+2)2﹣1,故答案是:y=2(+2)2﹣1.13.(3分)一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1、2、3、4.随机摸取一个小球然后放回,再随机摸出一个小球,两次取出的小球标号的和等于5的概率是.【解答】解:画树状图如下:随机地摸出一个小球,然后放回,再随机地摸出一个小球,共有16种等可能的结果数,其中两次摸出的小球标号的和等于5的占4种,所有两次摸出的小球标号的和等于5的概率为=,故答案为:.14.(3分)设计人体雕像时,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,可以增加视觉美感.按此比例,如果雕像的高为2m,那么上部应设计为多高?设雕像的上部高m,列方程,并化成一般形式是2﹣6+4=0.【解答】解:设雕像的上部高m,则题意得:,整理得:2﹣6+4=0,故答案为:2﹣6+4=015.(3分)如图,正六边形ABCDEF中,P是边ED的中点,连接AP,则=.【解答】解:连接AE,过点F作FH⊥AE,∵六边形ABCDEF是正六边形,∴AB=BC=CD=DE=EF=a,∠AFE=∠DEF=120°,∴∠FAE=∠FEA=30°,∴∠AEP=90°,∴FH=,∴AH=,AE=,∵P是ED的中点,∴EP=,∴AP=.∴=16.(3分)在⊙O中,弧AB所对的圆心角∠AOB=108°,点C为⊙O上的动点,以AO、AC为边构造▱AOD C.当∠A=27°时,线段BD最长.【解答】解:如图,连接OC,延长OA交⊙O于F,连接DF.∵四边形ACDO是平行四边形,∴∠DOF=∠A,DO=AC,∵OF=AO,∴△DOF≌△CAO,∴DF=OC,∴点D的运动轨迹是F为圆心OC为半径的圆,∴当点D在BF的延长线上时,BD的值最大,∵∠AOB=108°,∴∠FOB=72°,∵OF=OB,∴∠OFB=54°,∵FD=FO,∴∠FOD=∠FDO=27°,∴∠A=∠FOD=27°,故答案为27°.三、解答题(共8题,共72分)17.(8分)解方程:2+﹣3=0.【解答】解:∵a=1,b=1,c=﹣3,∴b2﹣4ac=1+12=13>0,∴=,∴1=,2=.18.(8分)如图,在⊙O中,半径OA与弦BD垂直,点C在⊙O上,∠AOB=80°(1)若点C在优弧BD上,求∠ACD的大小;(2)若点C在劣弧BD上,直接写出∠ACD的大小.【解答】解:(1)∵AO⊥BD,∴=,∴∠AOB=2∠ACD,∵∠AOB=80°,∴∠ACD=40°;(2)①当点C1在上时,∠AC1D=∠ACD=40°;②当点C2在上时,∵∠AC2D+∠ACD=180°,∴∠AC2D=140°综上所述,∠ACD=140°或40°.19.(8分)甲、乙、丙三个盒子中分别装有除颜色外都相同的小球,甲盒中装有两个球,分别为一个红球和一个绿球;乙盒中装有三个球,分别为两个绿球和一个红球;丙盒中装有两个球,分别为一个红球和一个绿球,从三个盒子中各随机取出一个小球(1)请画树状图,列举所有可能出现的结果(2)请直接写出事件“取出至少一个红球”的概率.【解答】解:(1)如图所示:所有等可能结果为(红、绿、红)、(红、绿、绿)、(红、绿、红)、(红、绿、绿)、(红、红、红)、(红、红、绿),(绿、绿、红)、(绿、绿、绿)、(绿、绿、红)、(绿、绿、绿)(绿、红、红)、(绿、红、绿)这12种等可能结果;(2)因为“取出至少一个红球”的结果数为10钟,所以“取出至少一个红球”的概率为=.20.(8分)如图,在平面直角坐标系中有点A(﹣4,0)、B(0,3)、P(a,﹣a)三点,线段CD与AB关于点P中心对称,其中A、B的对应点分别为C、D(1)当a=﹣4时①在图中画出线段CD,保留作图痕迹②线段CD向下平移2个单位时,四边形ABCD为菱形;(2)当a=﹣时,四边形ABCD为正方形.【解答】解:(1)①线段CD如图所示;②当AB=BC时,四边形ABCD是菱形,此时C(﹣4,6),原点C坐标(﹣4,8),∴线段CD向下平移2个单位时,四边形ABCD为菱形;故答案为2.(2)由题意AB=5,当PA=PB=时,四边形ABCD是正方形,∴(a)2+(﹣a﹣3)2=()2,解得a=﹣或(舍弃)∴当a=﹣时,四边形ABCD为正方形.故答案为﹣.21.(8分)如图,点D在⊙O的直径AB的延长线上,CD切⊙O于点C,AE⊥CD于点E (1)求证:AC平分∠DAE;(2)若AB=6,BD=2,求CE的长.【解答】(1)证明:连接O C.∵CD是⊙O的切线,∴∠OCD=90°,∵∠AEC=90°,∴∠OCD=∠AEC,∴AE∥OC,∴∠EAC=∠ACO,∵OA=OC,∴∠OAC=∠OCA,∴∠EAC=∠OAC,∴AC平分∠DAE.(2)作CF⊥AB于F.在Rt△OCD中,∵OC=3,OD=5,∴CD=4,∵•OC•CD=•OD•CF,∴CF=,∵AC平分∠DAE,CE⊥AE,CF⊥AD,∴CE=CF=.22.(10分)投资1万元围一个矩形菜园(如图),其中一边靠墙,另外三边选用不同材料建造.墙长24m,平行于墙的边的费用为200元/m,垂直于墙的边的费用为150元/m,设平行于墙的边长为m(1)设垂直于墙的一边长为y m,直接写出y与之间的函数关系式;(2)若菜园面积为384m2,求的值;(3)求菜园的最大面积.【解答】解:(1)根据题意知,y==﹣+;(2)根据题意,得:(﹣+)=384,解得:=18或=32,∵墙的长度为24m,∴=18;(3)设菜园的面积是S,则S=(﹣+)=﹣2+=﹣(﹣25)2+∵﹣<0,∴当<25时,S随的增大而增大,∵≤24,∴当=24时,S取得最大值,最大值为416,答:菜园的最大面积为416m2.23.(10分)如图,点C为线段AB上一点,分别以AB、AC、CB为底作顶角为120°的等腰三角形,顶角顶点分别为D、E、F(点E、F在AB的同侧,点D在另一侧)(1)如图1,若点C是AB的中点,则∠AED=90°;(2)如图2,若点C不是AB的中点①求证:△DEF为等边三角形;②连接CD,若∠ADC=90°,AB=3,请直接写出EF的长.【解答】解:(1)如图1,过E作EH⊥AB于H,连接CD,设EH=,则AE=2,AH=,∵AE=EC,∴AC=2AH=2,∵C是AB的中点,AD=BD,∴CD⊥AB,∵∠ADB=120°,∴∠DAC=30°,∴DC=2,∴DC=CE=2,∵EH∥DC,∴∠HED=∠EDC=∠CED,∵∠AEH=60°,∠AEC=120°,∴∠HEC=60°,∴∠HED=30°,∴∠AED=∠AEH+∠HED=90°;故答案为:90°;(2分)(2)①延长FC交AD于H,连接HE,如图2,∵CF=FB,∴∠FCB=∠FBC,∵∠CFB=120°,∴∠FCB=∠FBC=30°,同理:∠DAB=∠DBA=30°,∠EAC=∠ECA=30°,∴∠DAB=∠ECA=∠FBD,∴AD∥EC∥BF,同理AE∥CF∥BD,∴四边形BDHE、四边形AECH是平行四边形,(4分)∴EC=AH,BF=HD,∵AE=EC,∴AE=AH,∵∠HAE=60°,∴△AEH是等边三角形,∴AE=AH=HE=CE,∠AHE=∠AEH=60°,∴∠DHE=120°,∴∠DHE=∠FCE.∵DH=BF=FC,∴△DHE≌△FCE(SAS),∴DE=EF,∠DEH=∠FEC,∴∠DEF=∠CEH=60°,∴△DEF是等边三角形;(7分)②如图3,过E作EM⊥AB于M,∵∠ADC=90°,∠DAC=30°,∴∠ACD=60°,∵∠DBA=30°,∴∠CDB=∠DBC=30°,∴CD=BC=AC,∵AB=3,∵AC=2,BC=CD=1,∵∠ACE=30°,∠ACD=60°,∴∠ECD=30°+60°=90°,∵AE=CE,∴CM=AC=1,∵∠ACE=30°,∴CE=,Rt△DEC中,DE===,由①知:△DEF是等边三角形,∴EF=DE=.(12分)24.(12分)已知抛物线y=a2+2+c与轴交于A(﹣1,0)、B(3,0)两点,一次函数y =+b的图象l经过抛物线上的点C(m,n)(1)求抛物线的解析式;(2)若m=3,直线l与抛物线只有一个公共点,求的值;(3)若=﹣2m+2,直线l与抛物线的对称轴相交于点D,点P在对称轴上.当PD=PC时,求点P的坐标.【解答】解:(1)∵抛物线y=a2+2+c与轴交于A(﹣1,0)、B(3,0)两点,∴,解得.所以,抛物线的解析式为y=﹣2+2+3;(2)∵抛物线上的点C(m,n),∴n=﹣m2+2m+3,当m=3时,n=0,∴C(3,0),∴一次函数y=+b的图象l经过抛物线上的点C(m,n),∴3+b=0,∴b=﹣3,∴一次函数的解析式为y=﹣3,∵直线l与抛物线只有一个公共点,∴方程﹣3=﹣2+2+3有两个相等的实数根,∴(﹣2)2+4(3+3)=0,解得=﹣4;(3)如图,过C点作CH⊥PD于H,C(m,n)在直线y=+b上,∴n=(﹣2m+2)m+b,∵点C在抛物线上,∴n=﹣m2+2m+3,∴b=m2+3,∴直线l为y=(﹣2m+2)+m2+3,∵直线l与抛物线的对称轴相交于点D,∴D的横坐标为1,代入得:y=﹣2m+2+m2+3=8﹣(﹣m2+2m+3)=8﹣n,∴D(1,8﹣n),设P(1,p),则PD=8﹣n﹣p,HC=m﹣1,PH=p﹣n,在Rt△PCH中,PC=PD=8﹣n﹣p,∴(8﹣n﹣p)2=(p﹣n)2+(m﹣1)2∴(8﹣n﹣p)2﹣(p﹣n)2=(m﹣1)2,∴(8﹣2n)(8﹣2p)=m2﹣2m+1,∵n=﹣m2+2m+3,∴2(4﹣n)(8﹣2p)=4﹣n,∵=﹣2m+2≠0,∴m≠1,∴n≠4,∴4﹣n≠0,∴2(8﹣2p)=1,∴p=,∴P(1,).。
【期末试卷】2019-2020学年度第一学期期末九年级质量检测数学试卷及答案

2019-2020学年度第一学期期末九年级质量检测数 学 试 题(满分:150分;考试时间:120分钟)友情提示:1.所有答案都必须填在答题卡相应的位置上,答在本试卷上一律无效.2.参考公式:抛物线2y ax bx c =++(0a ≠)的顶点是(2b a-,244ac b a -).一、选择题(本大题共10小题,每小题4分,共40分.每小题只有一个正确的选项,请在答题卡的相应位置填涂) 1.若∠A 为锐角,cos A =22,则∠A 的度数为( ) A .75°B .60°C .45°D .30°2.如图所示几何体的左视图是( )A B C D 3.由下列光源产生的投影,是平行投影的是( )A .太阳B .路灯C .手电筒D .台灯4.已知Rt △ABC 中,∠ACB=90º,∠B=54º,CD 是斜边AB上的中线,则∠ACD 的度数是( ) A .18 º B .36 º C .54 ºD .72 º5.二次函数2(1)2y x =--图象的对称轴是( )A .直线1x =B .直线1x =-C .直线2x =D .直线2x =-6.下列方程中,没有实数根的是( )A .2690x x -+=B .2230x x -+=C .20x x -=D .(2)(1)0x x +-=C BAD第2题图第4题图7.如图,以点O为位似中心,将△ABC缩小后得到△DEF,已知OD=1,OA=3.若△DEF的面积为S,则△ABC的面积为()A.2S B.3SC.4S D.9S8.口袋中有若干个形状大小完全相同的白球,为估计袋中白球的个数,现往口袋中放入10个形状大小与白球相同的红球.混匀后从口袋中随机摸出40个球,发现其中有3个红球.设袋中有白球x个,则可用于估计袋中白球个数的方程是()A.10340x=B.10140x=C.1013x=D.1031040x=+9.如图,方格纸中的每个小方格都是边长为1的正方形,△ABC的顶点都在格点上,则sin∠ACB的值为()A.24B.13C.1010D.3101010.如图,已知动点A,B分别在x轴,y轴正半轴上,动点P在反比例函数6(0)y xx=>图象上,P A⊥x轴,△P AB是以P A为底边的等腰三角形.当点A的横坐标逐渐增大时,△P AB的面积将会()A.越来越小B.越来越大C.不变D.先变大后变小二、填空题(本大题共6小题,每小题4分,共24分.请将答案填入答题卡的相应位置)11.已知C是线段AB上一点,若23ACBC=,则ABBC=.12.已知二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,则当0x<时,y随x的增大而.(填“增大”或“减小”)AFEDOCB第7题图第9题图第10题图CAB第12题图xyOA xyOPB13.如图一组平行线,每相邻两条平行线间的距离都相等,△ABC 的三个顶点都在平行线上,则图中一定等于14BC的线段是 .14.如图是某超市楼梯示意图,若BA 与CA 的夹角为α,∠C=90︒,AC =6米,则楼梯高度BC 为 米.15.二次函数2y ax bx c =++(a ,b ,c 为常数且a ≠0)中的x 与y 的部分对应值如下表:已知表中有且只有一组数据错误,则这组错误数据中的x 值是 . 16.如图,1ABB △,112A B B △,…,221n n n A B B ---△,11n n n A B B --△是n 个全等的等腰三角形,其中2AB =,11BB =,底边1BB ,12B B ,…,21n n B B --,1n n B B -在同一条直线上,连接n AB 交21n n A B --于点P ,则1n PB -的值为 .三、解答题(本大题有9小题,共86分.请在答题卡的相应位置作答) 17.(本题满分8分)已知点P (-2,3)在反比例函数ky x=(k 为常数,且0k ≠)的图象上. (1)求这个函数的解析式;(2)判断该反比例函数图象是否经过点A (-1,-3),并说明理由.18.(本题满分8分)小明同学解一元二次方程2410x x --=的过程如图所示, (1)小明解方程的方法是 ,他的求解过程从第 步开始出现错误,这一步的运算依据应该是 ;(2)解这个方程.x … -1 0 1 2 3 … y…-3-41…解:241x x -=……① 2441x x -+= ……② 2(2)1x -=……③ 21x -=± ……④ 123,1x x ==……⑤A BCD E FG HI 第13题图 ABA 1A n-1B 1B 2B n -2 B n-1B nP A n-2第16题图第14题图BC Aα19.(本题满分8分)如图,将矩形纸片ABCD 沿对角线BD 折叠,点C 的对应点为E ,BE 交AD 于点F .求证:△ABF ≌△EDF .20.(本题满分8分)如图,四边形ABCD 是平行四边形,E 为边CD 延长线上一点,连接BE 交边AD 于点F .请找出一对相似三角形,并加以证明.21.(本题满分8分)如图所示,有4张除了正面图案不同,其余都相同的图片.(1)以上四张图片所示的立体图形中,主视图是矩形的有 ;(填字母序号) (2)将这四张图片背面朝上混匀,从中随机抽出一张后放回,混匀后再随机抽出一张.求两次抽出的图片所示的立体图形中,主视图都是矩形的概率. 22.(本题满分10分)某商城将每件成本为50元的工艺品,以60元的单价出售时,每天的销售量是400件.已知在每件涨价幅度不超过15元的情况下,若每件涨价1元,则每天就会少售出10件.设每件工艺品涨了x 元.(1)小明根据题中的数量关系列出代数式(6050)x -+和(40010)x -,其中代数式(6050)x -+表示 ,代数式(40010)x -错误!未找到引用源。
2019—2020学年人教版九年级上册数学期末测试卷及答案

最新 2019—2020 学年人教版九年级上册数学期末测试卷及答案(1)(时间 120 分钟,满分 120 分)一、选择题(每题 3 分,共 30 分)1.以下图形中,既是中心对称图形又是轴对称图形的是()2.将函数 y= 2x2的图象向左平移 1 个单位,再向上平移 3 个单位,可获取的抛物线是()A.y=2(x-1)2- 3B.y=2(x-1)2+3C.y=2(x+1)2- 3D.y=2(x+1)2+33.如图,将 Rt△ABC(此中∠ B=35°,∠C=90°)绕点 A 按顺时针方向旋转到△ AB1 C1的地点,使得点 C、A、 B1在同一条直线上,那么旋转角等于 ( )第 3题图第 6题图第4题图°°°°4.一条排水管的截面以下左图所示,已知排水管的半径OB=10,水面宽 AB=16,则截面圆心 O到水面的距离 OC是()A. 4 B. 5 C. 6 3 D. 65.一个半径为 2cm的圆内接正六边形的面积等于()2B. 63 cm 2C.12 3cm2D.8 3 cm2A. 24cm6.如图,若 AB是⊙ O的直径, CD是⊙ O的弦,∠ ABD=55°,则∠ BCD的度数为 () A.35° B .45° C .55°D .75°7.函数 y2x 28x m 的图象上有两点(,y1), B( x2 , y2 ) ,若 x1x22,则() A. y1y2A x1B. y1 y2C.y1y2D.y1、 y2的大小不确立8.将半径为 3cm 的圆形纸片沿 AB 折叠后,圆弧恰巧能经过圆心O,用图中暗影部分的扇形围成一个圆锥的侧面,则这个圆锥的高为()A. B .C.D.9.一次函数y ax b 与二次函数 y ax2bx c 在同一坐标系中的图像可能是()A.3B.3 根号 3C.D.4二、填空题(每题 3 分,共 18 分)11.抛物线y x 22x 3的极点坐标是12.如图,将△ ABC的绕点 A 顺时针旋转获取△ AED,点 D 正好落在 BC边∠ EAB=°.第 12题图第 14题图13.若函数y mx22x 1 的图象与x轴只有一个公共点,则常数m的值14.抛物线 y=-x 2 +bx+c 的部分图象以下图,若 y> 0,则 x 的取值范围是15.如图,在一个正方形围栏中均匀地漫步者很多米粒,正方形内有一个圆(仔围栏内啄食,则“小鸡正在院内”啄食的概率为_______.16.如图,把直角三角形 ABC的斜边 AB放在定直线 l 上,按顺时针方向在上转动两次,使它转到△ A″B″C″的地点.设 BC=2,AC=2,则极点 A 动到点 A″的地点时,点 A 经过的路线与直线 l所围成的面积_________.三、解答以下各题(共72 分)17.(共 8 分)解方程:( 1)x22x1()22( x3)02 ( x 3)18.(共 6 分)已知对于 x 的一元二次方程kx2(3k 1)x 3 0 (k 0) .( 1)求证:不论 k 取何值,方程总有两个实数根;( 2)若二次函数y kx2(3k 1) x 3 的图象与 x 轴两个交点的横坐标均为整A. B . C .10.如图,有一圆锥形粮堆,其正视图是边长为6m的正三角形 ABC,粮堆母线 AC①△ ABC对于原点 O逆时针旋转 90°获取△ A1B1C1;的中点 P 处有一老鼠正在偷吃粮食,此时,小猫正在 B 处,它要沿圆锥侧面抵达 P②△ A B C 对于原点中心对称的△ A B C .处捕获老鼠,则小猫所经过的最短行程是m.(结果不取近似值)( 2)△ A2B2C2中极点 B2坐标为1 / 320.(共 8 分)某校九年级举行毕业典礼,需要从九年(1)班的 2 名男生 1 名女生(男生用A1表示,女生用 B1表示)和九年( 2)班的 1 名男生 1 名女生(男生用 A2表示,女生用 B2表示)共 5 人中随机选出 2 名主持人.(1)用树状图或列表法列出全部可能情况;(2)求 2 名主持人来自不一样班级的概率;(3)求2名主持人恰巧1 男 1 女的概率.21.(共 8 分)某水果批发商销售每箱进价为 40 元的苹果,物价部门规定每箱售价不得高于 55 元,市场检查发现,若每箱以 50 元的价钱销售,均匀每日销售 90 箱,价钱每提升 1 元,均匀每日少销售 3 箱.(1)求均匀每日销售量y 箱与销售价x元 / 箱之间的函数关系式.(2)求该批发商均匀每日的销售收益w(元)与销售价x(元 / 箱)之间的函数关系式.(3)当每箱苹果的销售价为多少元时,能够获取最大收益?最大收益是多少?23、(共 8 分)已知:如图,抛物线 y= - x2+bx+c 与 x 轴、 y 轴分别订交于其极点为 D.(1)求这条抛物线的分析式;(2)若抛物线与 x 轴的另一个交点为 E.求△ ODE的面积;24、(共 10 分)如图,有一座抛物线形拱桥,在正常水位时水面AB的宽为面 CD的宽是 10m.( 1)求此抛物线的分析式;( 2)现有一辆载有营救物质的货车从甲地出发需经过此桥开往乙地,已知甲地计).货车正以每小时40km的速度开往乙地,当行驶 1 小不时,突然接到紧水位以每小时0.25m 的速度连续上升(货车接到通知时水位在CD处,当水辆通行).试问:假如货车按本来速度行驶,可否安全经过此桥?若能,请说明全经过此桥,速度应超出每小时多少千米?22、(共 8 分)如图,已知 AB是⊙ O的直径,点 C、D 在⊙ O上,点 E 在⊙ O 外,∠ EAC=∠ D=60° .(1)求∠ ABC的度数;(2)求证: AE是⊙ O的切线;(3)当 BC= 4 时,求劣弧AC的长.25、(共 12 分)(2015?武威)如图,在直角坐标系中,抛物线经过点 A(0其对称轴与 x 轴订交于点 M.(1)求抛物线的分析式和对称轴;(2)在抛物线的对称轴上能否存在一点 P,使△ PAB的周长最小?若存在,说明原因;(3)连结 AC,在直线 AC的下方的抛物线上,能否存在一点 N,使△ NAC的的坐标;若不存在,请说明原因.第2页共3页。
2019-2020学年度第一学期九年级数学期末试题附答案答案

我爱美丽靓湖2019-2020学年度第一学期九年级数学期末试题答案一、选择题(本大题10小题,共30分)1. 如图是一个小正方体的展开图,把展开图折叠成小正方体后,“爱”字一面的相对面上的字是( )A. 美B. 丽C. 靓D. 湖【答案】C【解析】解:∵正方体的表面展开图,相对的面之间一定相隔一个正方形, ∴有“爱”字一面的相对面上的字是靓.故选C .正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答. 本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.2.当0<x <-1时,x ,1x,x 2的大小顺序是( ) A.1x <x <x 2 B .x <x 2<1x C .x 2<x <1x D.1x<x 2<x 【答案】A3.2018年5月3日,中国科学院在上海发布了中国首款人工智能芯片:寒武纪(MLU100),该芯片在平衡模式下的等效理论峰值速度达每秒128 000 000 000 000次定点运算,将数128 000 000 000 000用科学记数法表示为( )A .1.28×1014B .1.28×10﹣14C .128×1012D .0.128×1011【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【解答】解:将128 000 000 000 000用科学记数法表示为:1.28×1014. 故选:A .【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.如图,直线a ,b 被直线c 所截,a ∥b ,∠1=60°,则∠2的度数是( )A .120°B .60°C .45°D .30°【分析】利用两直线平行,同位角相等就可求出.【解答】解:∵直线被直线a 、b 被直线c 所截,且a ∥b ,∠1=60°∴∠2=∠1=60°.故选:B .【点评】本题考查了平行线的性质,应用的知识为两直线平行,同位角相等.5.若a +b =1,则a 2−b 2+2b 的值为( )A. 4B. 3C. 1D. 0【答案】C【解析】解:∵a +b =1,∴a 2−b 2+2b =(a +b)(a −b)+2b =a −b +2b =a +b =1.故选:C .首先利用平方差公式,求得a 2−b 2+2b =(a +b)(a −b)+2b ,继而求得答案. 此题考查了平方差公式的应用.注意利用平方差公式将原式变形是关键.6.为估计鱼塘中的鱼的数量,可以先从鱼塘中随机打捞50条鱼,在每条鱼身上做上记号后,把这些鱼放归鱼塘,经过一段时间,等这些鱼完全混合于鱼群后,再从鱼塘中随机打捞50条鱼,发现只有2条鱼是前面做好记号的,那么可以估计这个鱼塘鱼的数量约为( )A. 1250条B. 1750条C. 2500条D. 5000条【答案】A【解析】解:由题意可得:50÷250=1250(条).故选:A .首先求出有记号的2条鱼在50条鱼中所占的比例,然后根据用样本中有记号的鱼所占的比例等于鱼塘中有记号的鱼所占的比例,即可求得鱼的总条数.本题考查了统计中用样本估计总体,表示出带记号的鱼所占比例是解题关键.7.若不等式组{x >a x −3≤0,只有三个正整数解,则a 的取值范围为( ) A. 0≤a <1B. 0<a <1C. 0<a ≤1D. 0≤a ≤1 【答案】A【解析】解:{x >a ①x −3≤0 ②∵解不等式①得:x ≤3,又∵不等式组{x >a x −3≤0只有三个正整数解, ∴0≤a <1,故选:A .先确定不等式组的整数解,再求出a 的范围即可.本题考查了一元一次不等式组的整数解的应用,能根据已知不等式组的解集和整数解确定a 的取值范围是解此题的关键.8.方程(x+1)2=9的根是( )A .x =2B .x =-4C .x 1=2 x 2=-4D .x 1=4 x 2=-2解析: 把x=2、-2、4、-4分别代入方程(x+1)2=9中发现只有x =2和x =-4能使方程左右两边相等,所以选择答案C9.如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,下列说法中不正确的是( )A. DE =12BCB. AD AB =AE ACC. △ADE∽△ABCD. S △ADE :S △ABC =1:2【答案】D【解析】解:∵D 、E 分别是AB 、AC 的中点,∴DE//BC ,DE =12BC ,∴ADAB =AEAC =DEBC =12,△ADE∽△ABC , ∴S △ADE :S △ABC =(AD AB )2=14, ∴A ,B ,C 正确,D 错误;故选:D .根据中位线的性质定理得到DE//BC ,DE =12BC ,再根据平行线分线段成比例定理和相似三角形的性质即可判定.该题主要考查了平行线分线段成比例定理和相似三角形的性质即可判定;解题的关键是正确找出对应线段,准确列出比例式求解、计算、判断或证明.10.如图,抛物线y =ax 2+bx +c(a ≠0)过点(1,0)和点(0,−2),且顶点在第三象限,设P =a −b +c ,则P 的取值范围是( )A. −4<P <0B. −4<P <−2C. −2<P <0D. −1<P <0【答案】A【解析】解:经过点(1,0)和(0,−2)的直线解析式为y =2x −2,当x =−1时,y =2x −2=−4,而x =−1时,y =ax 2+bx +c =a −b +c ,∴−4<a −b +c <0,即−4<P <0,故选:A .先利用待定系数法求出经过点(1,0)和(0,−2)的直线解析式为y =2x −2,则当x =−1时,y =2x −2=−4,再利用抛物线的顶点在第三象限,从而得到所以−4<a −b +c <0,根据顶点的纵坐标和与y 轴的交点坐标即可得出答案.本题考查了二次函数图象与系数的关系:二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时,对称轴在y 轴左;当a 与b 异号时,对称轴在y 轴右.常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c).抛物线与x 轴交点个数由判别式确定:△=b 2−4ac >0时,抛物线与x 轴有2个交点;△=b 2−4ac =0时,抛物线与x 轴有1个交点;△=b 2−4ac <0时,抛物线与x 轴没有交点二.填空题(本题共8小题,共计24分)11.函数y =√x+3x−1中自变量x 的取值范围是答案: x ≥−3且x ≠1【解析】【分析】本题考查了函数自变量的取值范围,要注意几点:①被开方数为非负数;②分母不为0;③a 0中a ≠0.根据被开方数为非负数和分母不为0列不等式计算.【解答】解:根据题意得:{x +3≥0x −1≠0, 解得:x ≥−3且x ≠1.12.因式分解:16a 2−16a +4= ______ .【答案】4(2a −1)2【解析】解:原式=4(4a 2−4a +1)=4(2a −1)2,故答案为:4(2a −1)2.首先提取公因式4,再利用完全平方公式进行二次分解即可.本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.13.一组数据2,4,a ,7,7的平均数x =5,则方差S 2=________.【答案】3.6【解析】解:∵数据2,4,a ,7,7的平均数x =5,∴2+4+a +7+7=25,解得a =5,∴方差s 2=15[(2−5)2+(4−5)2+(5−5)2+(7−5)2+(7−5)2]=3.6;故答案为:3.6.根据平均数的计算公式:x=x1+x2+⋯+x nn ,先求出a的值,再代入方差公式S2=1n[(x1−x)2+(x2−x)2+⋯+(x n−x)2]进行计算即可.本题主要考查的是平均数和方差的求法,一般地设n个数据,x1,x2,…x n的平均数为x,则方差S2=1n[(x1−x)2+(x2−x)2+⋯+(x n−x)2].14.若x1,x2是一元二次方程x2+3x−5=0的两个根,则x12x2+x1x22的值是______.【答案】15【解析】解:∵x1,x2是一元二次方程x2+3x−5=0的两个根,∴x1+x2=−3,x1x2=−5,∴x12x2+x1x22=x1x2(x1+x2)=−5×(−3)=15,故答案为:15.由根与系数的关系可求得(x1+x2)与x1x2的值,代入计算即可.本题主要考查根与系数的关系,由根与系数的关系求得(x1+x2)与x1x2的值是解题的关键.15.如图,在⊙O中,C是弦AB上一点,AC=2,CB=4.连接OC,过点C作DC⊥OC,与⊙O交于点D,DC的长为______.【答案】2√2【解析】解:延长DC交⊙O于点E.∵OC⊥DE,∴DC=CE,∵AC⋅CB=DC⋅EC(相交弦定理,可以证明△ADC∽△EBC得到),∴DC2=2×4=8,∵DC>0,∴DC=2√2,故答案为2√2.延长DC交⊙O于点E.由相交弦定理构建方程即可解决问题.本题考查垂径定理,相交弦定理等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题.16.如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为30°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为90米,那么该建筑物的高度BC约为______米.(精确到1米,参考数据:√3≈1.73)【答案】208【解析】解:由题意可得:tan30°=BDAD =BD90=√33,解得:BD=30√3,tan60°=DCAD =DC90=√3,解得:DC=90√3,故该建筑物的高度为:BC=BD+DC=120√3≈208(m),故答案为:208.分别利用锐角三角函数关系得出BD,DC的长,进而求出该建筑物的高度.此题主要考查了解直角三角形的应用,熟练应用锐角三角函数关系是解题关键.17.如图,三角形ABC是边长为1的正三角形,与所对的圆心角均为120°,则图中阴影部分的面积为.考点:扇形面积的计算;等边三角形的性质.分析:设与相交于点O,连OA,OB,OC,线段OA将阴影的上方部分分成两个弓形,将这两个弓形分别按顺时针及逆时针方向绕点O旋转120°后,阴影部分便合并成△OBC,得到它的面积等于△ABC面积的三分之一,利用等边三角形的面积公式:×边长2,即可求得阴影部分的面积.解答:解:如图,设与相交于点O,连接OA,OB,OC,线段OA将阴影的上方部分分成两个弓形,将这两个弓形分别按顺时针及反时针绕点O旋转120°后,阴影部分便合并成△OBC,它的面积等于△ABC面积的三分之一,∴S阴影部分=××12=.故答案为:.点评:本题考查了旋转的性质:旋转前后两图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段所夹的角等于旋转角.也考查了等边三角形的面积公式:×边长2.x2−4与x轴交于A、B两点,P是以点C(0,3)18.如图,抛物线y=14为圆心,2为半径的圆上的动点,Q是线段PA的中点,连结OQ.则线段OQ的最大值是【答案】72【解析】解:连接BP,如图,x2−4=0,解得x1=4,x2=−4,则A(−4,0),当y=0时,14B(4,0),∵Q是线段PA的中点,∴OQ为△ABP的中位线,BP,∴OQ=12当BP最大时,OQ最大,而BP过圆心C时,PB最大,如图,点P运动到P′位置时,BP最大,∵BC=√32+42=5,∴BP′=5+2=7,∴线段OQ的最大值是7.2x2−4=0得A(−4,0),B(4,0),再判断OQ为△ABP的中位线连接BP,如图,先解方程14BP,利用点与圆的位置关系,BP过圆心C时,PB最大,如图,点P运动到得到OQ=12P′位置时,BP最大,然后计算出BP′即可得到线段OQ的最大值.本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.也考查了三角形中位线.三、解答题(本题共计10个小题,共计66分)19.(本题满分4分)计算:+(﹣3)0﹣6cos45°+()﹣1.【分析】本题涉及零指数幂、负指数幂、二次根式化简和特殊角的三角函数值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=3+1﹣6×+2=3+1﹣3+2=3.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.20.(本题满分4分)解不等式<x+1,并把它的解集在数轴上表示出来.【分析】根据解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.依次计算可得.【解答】解:去分母,得:5x﹣1<3x+3,移项,得:5x﹣3x<3+1,合并同类项,得:2x<4,系数化为1,得:x<2,将不等式的解集表示在数轴上如下:【点评】本题主要考查解一元一次不等式,解题的关键是掌握解不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.21.(本题满分5分)关于x的分式方程﹣=总无解,求a的值.【分析】分式方程去分母转化为整式方程,分类讨论a的值,使分式方程无解即可.【解答】解:去分母得:3﹣x﹣a(x﹣2)=﹣2,即(a+1)x=2a+5,当a=﹣1时,显然方程无解;当a≠﹣1时,x=,当x=2时,a不存在;当x=3时,a=2,综上,a的值为﹣1,2.【点评】本题考查了分式方程无解的条件,分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于0.22.(本题满分8分)某中学艺术节期间,学校向学生征集书画作品,杨老师从全校30个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作品的数量进行了分析统计,制作了两幅不完整的统计图.请根据以上信息,回答下列问题:(1)杨老师采用的调查方式是(填“普查”或“抽样调查”);(2)请你将条形统计图补充完整,并估计全校共征集多少件作品?(3)如果全校征集的作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现要在获得一等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取的两名学生性别相同的概率.【分析】(1)杨老师从全校30个班中随机抽取了4个班,属于抽样调查.(2)由题意得:所调查的4个班征集到的作品数为:6÷=24(件),C班作品的件数为:24﹣4﹣6﹣4=10(件);继而可补全条形统计图;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好抽中两名学生性别相同的情况,再利用概率公式即可求得答案.【解答】解:(1)杨老师从全校30个班中随机抽取了4个班,属于抽样调查.故答案为抽样调查.(2)所调查的4个班征集到的作品数为:6÷=24件,平均每个班=6件,C班有10件,∴估计全校共征集作品6×30=180件.条形图如图所示,(3)画树状图得:∵共有20种等可能的结果,两名学生性别相同的有8种情况,∴恰好抽中两名学生性别相同的概率为:=.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.同时考查了概率公式.23.(本题满分6分)如图,在△ABC中,DE分别是AB,AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连CF(1)求证:四边形BCFE是菱形;(2)若CE=6,∠BEF=120°,求菱形BCFE的面积.【分析】(1)从所给的条件可知,DE是△ABC中位线,所以DE∥BC且2DE=BC,所以BC和EF平行且相等,所以四边形BCFE是平行四边形,又因为BE=FE,所以是菱形;(2)由∠BEF是120°,可得∠EBC为60°,即可得△BEC是等边三角形,求得BE=BC=CE=6,再过点E作EG⊥BC于点G,求的高EG的长,即可求得答案.【解答】(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC且2DE=BC,又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四边形BCFE是平行四边形,又∵BE=EF,∴四边形BCFE是菱形;(2)解:∵∠BEF=120°,∴∠EBC=60°,∴△EBC是等边三角形,∴BE=BC=CE=6,过点E作EG⊥BC于点G,∴EG=BE•sin60°=6×=3,∴S菱形BCFE=BC•EG=6×3=18.【点评】本题考查菱形的判定和性质以及三角形中位线定理,以及菱形的面积的计算等知识点.注意证得△BEC是等边三角形是关键.24.(本题满分7分)快递公司为提高快递分拣的速度,决定购买机器人来代替人工分拣.已知购买甲型机器人1台,乙型机器人2台,共需14万元;购买甲型机器人2台,乙型机器人3台,共需24万元.(1)求甲、乙两种型号的机器人每台的价格各是多少万元;(2)已知甲型和乙型机器人每台每小时分拣快递分别是1200件和1000件,该公司计划购买这两种型号的机器人共8台,总费用不超过41万元,并且使这8台机器人每小时分拣快递件数总和不少于8300件,则该公司有哪几种购买方案?【答案】解:(1)设甲型机器人每台价格是x 万元,乙型机器人每台价格是y 万元,根据题意得{x +2y =142x +3y =24解这个方程组得:{x =6y =4答:甲、乙两种型号的机器人每台价格分别是6万元、4万元.(2)设该公可购买甲型机器人a 台,乙型机器人(8−a)台,根据题意得{6a +4(8−a)≤411200a +1000(8−a)≥8300解这个不等式组得32≤a ≤92∵a 为正整数∴a 的取值为2,3,4,∴该公司有3种购买方案,分别是购买甲型机器人2台,乙型机器人6台购买甲型机器人3台,乙型机器人5台购买甲型机器人4台,乙型机器人4台26.(本题满分7分)如图,已知一次函数与反比例函数的图象相交于点A (4,n ),与x 轴相交于点B .(1)填空:n 的值为 ,k 的值为 ; (2)以AB 为边作菱形ABCD ,使点C 在x 轴正半轴上,点D 在第一象限,求点D 的坐标;(3)考察反比函数的图象,当时,请直接写出自变量x 的取值范围.(1)3,1226.(本题满分7分)如图①,一个正方体铁块放置在圆柱形水槽内,现以一定的速度往水槽中注水,28s时注满水槽.水槽内水面的高度y(cm)与注水时间x(s)之间的函数图象如图②所示.(1)正方体的棱长为cm;(2)求线段AB对应的函数解析式,并写出自变量x的取值范围;(3)如果将正方体铁块取出,又经过t(s)恰好将此水槽注满,直接写出t的值.【解答】解:(1)由题意可得:12秒时,水槽内水面的高度为10cm,12秒后水槽内高度变化趋势改变,故正方体的棱长为10cm;故答案为:10;(2)设线段AB对应的函数解析式为:y=kx+b,∵图象过A(12,10),B(28,20),∴,解得:,∴线段AB对应的解析式为:y=x+(12≤x≤28);(3)∵28﹣12=16(s),∴没有立方体时,水面上升10cm,所用时间为:16秒,∵前12秒由立方体的存在,导致水面上升速度加快了4秒,∴将正方体铁块取出,经过4秒恰好将此水槽注满.27.(本题满分9分)如图,△ABC内接于⊙O,CD平分∠ACB交⊙O于D,过点D作PQ//AB 分别交CA、CB延长线于P、Q,连接BD.(1)求证:PQ是⊙O的切线;(2)求证:BD2=AC⋅BQ;(3)若AC、BQ的长是关于x的方程x+4x =m的两实根,且tan∠PCD=13,求⊙O的半径.(x−ℎ)2−2与x轴交于A,B两点(点A在点28.(本题满分9分)如图,抛物线l:y=12B的左侧),将抛物线l在x轴下方部分沿轴翻折,x轴上方的图象保持不变,就组成了函数f的图象.(1)若点A的坐标为(1,0).①求抛物线l的表达式,并直接写出当x为何值时,函数f的值y随x的增大而增大;②如图2,若过A点的直线交函数f的图象于另外两点P,Q,且S△ABQ=2S△ABP,求点P 的坐标;(2)当2<x<3时,若函数f的值随x的增大而增大,直接写出h的取值范围.4.【答案】解:(1)①把A(1,0)代入抛物线y=12(x−ℎ)2−2中得:12(x−ℎ)2−2=0,解得:ℎ=3或ℎ=−1,∵点A在点B的左侧,∴ℎ>0,∴ℎ=3,∴抛物线l的表达式为:y=12(x−3)2−2,∴抛物线的对称轴是:直线x=3,由对称性得:B(5,0),由图象可知:当1<x<3或x>5时,函数f的值y随x的增大而增大;②如图2,作PD⊥x轴于点D,延长PD交抛物线l于点F,作QE⊥x轴于E,则PD//QE,由对称性得:DF=PD,∵S△ABQ=2S△ABP,∴12AB⋅QE=2×12AB⋅PD,∴QE=2PD,∵PD//QE,∴△PAD∽△QAE,∴AEAD =QEPD,∴AE=2AD,设AD=a,则OD=1+a,OE=1+2a,P(1+a,−[12(1+ a−3)2−2]),∵点F、Q在抛物线l上,∴PD=DF=−[12(1+a−3)2−2],QE =12(1+2a −3)2−2, ∴12(1+2a −3)2−2=−2[12(1+a −3)2−2], 解得:a =83或a =0(舍),∴P(113,169); (2)当y =0时,12(x −ℎ)2−2=0,解得:x =ℎ+2或ℎ−2,∵点A 在点B 的左侧,∴A(ℎ−2,0),B(ℎ+2,0),如图3,作抛物线的对称轴交抛物线于点C ,分两种情况:①由图象可知:图象f 在AC 段时,函数f 的值随x 的增大而增大,则{ℎ−2≤2ℎ≥3, ∴3≤ℎ≤4,②由图象可知:图象f 点B 的右侧时,函数f 的值随x 的增大而增大,即:ℎ+2≤2,ℎ≤0,综上所述,当3≤ℎ≤4或ℎ≤0时,函数f 的值随x 的增大而增大.【解析】(1)①利用待定系数法求抛物线的解析式,由对称性求点B 的坐标,根据图象写出函数f 的值y 随x 的增大而增大(即呈上升趋势)的x 的取值;②如图2,作辅助线,构建对称点F 和直角角三角形AQE ,根据S △ABQ =2S △ABP ,得QE =2PD ,证明△PAD∽△QAE ,则AE AD =QE PD ,得AE =2AD ,设AD =a ,根据QE =2FD 列方程可求得a的值,并计算P 的坐标;(2)先令y =0求抛物线与x 轴的两个交点坐标,根据图象中呈上升趋势的部分,有两部分:分别讨论,并列不等式或不等式组可得h 的取值.本题是二次函数的综合题,考查了利用待定系数法求二次函数的解析式、二次函数的增减性问题、三角形相似的性质和判定,与方程相结合,找等量关系,第二问还运用了数形结合的思想解决问题.。
人教版2019-2020学年九年级数学上册期末试卷(含答案解析)

人教版2019-2020学年九年级数学上册期末试卷(含答案解析)一、选择题(本大题共10小题,每小题3分,共30分) 1.如图图形中,是中心对称图形的是( ) A.B.C.D.2.“抛一枚均匀硬币,落地后正面朝上”这一事件是( ) A. 随机事件 B. 确定事件 C. 必然事件 D. 不可能事件3.在平面直角坐标系中,点关于原点对称的点的坐标是( )A. B. C. D.4.抛物线y=(x-1)2+2的顶点坐标是( ) A. B. C. D.5.若正六边形外接圆的半径为4,则它的边长为( ) A. 2 B. C. 4 D.6.在一个不透明的袋子中,装有红球、黄球、篮球、白球各1个,这些球除颜色外无其他差别,从袋中随机取出一个球,取出红球的概率为( )A.21 B. 31 C. 41D. 1 7.若关于x 的一元二次方程没有实数根,则实数m 的取值是( )A. B. C. D .8.有x 支球队参加篮球比赛,共比赛了45场,每两队之间都比赛一场,则下列方程中符合题意的是( ) A.B.C.D.9.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E .若AB=8,AE=1,则弦CD 的长是( )A. B. 2 C. 6 D. 8 10.当时,与的图象大致是( )A. B. C. D.二、填空题(本大题共7小题,每小题4分,共28分)11.方程的解是______.12.如图,已知⊙O 是△ABC 的外接圆,若∠BOC=100°,则∠BAC=______.13.将抛物线向左平移2个单位得到新的抛物线,则新抛物线的解析式是______.14.从甲、乙、丙、丁4名三好学生中随机抽取2名学生担任升旗手,则抽取的2名学生是甲和乙的概率为________.15.如图,在△ABC中,∠BAC=60°,将△ABC绕着点A顺时针旋转40°后得到△ADE,则∠BAE=_____.16.如图,在中,,以点A为圆心,2为半径的与BC相切于点D,交AB于点E,交AC于点F,点P是上的一点,且,则图中阴影部分的面积为______.17.正方形A1B1C2C1,A2B2C3C2,A3B3C4C3按如图所示的方式放置,点A1、A2、A3和点C1、C2、C3、C4分别在抛物线y=x2和y轴上,若点C1(0,1),则正方形A3B3C4C3的面积是.三、解答题(一)(本大题共3小题,每小题6分,共18分)18.解一元二次方程:.19.有一个人患了流感,经过两轮传染后共有81人患了流感.每轮传染中平均一个人传染了几个人?按照这样的速度传染,第三轮将又有多少人被传染?20.如图,在中,,是绕着点C顺时针方向旋转得到的,此时B、C、E在同一直线上.求旋转角的大小;若,,求BE的长.四、解答题(二)(本大题共3小题,每小题8分,共24分)21.如图,在中,,.用直尺和圆规作,使圆心O在BC边,且经过A,B两点上不写作法,保留作图痕迹;连接AO,求证:AO平分.22.车辆经过润扬大桥收费站时,4个收费通道A.B、C、D中,可随机选择其中的一个通过.(1)一辆车经过此收费站时,选择A通道通过的概率是;(2)求两辆车经过此收费站时,选择不同通道通过的概率.23.4件同型号的产品中,有1件不合格品和3件合格品.(1)从这4件产品中随机抽取1件进行检测,求抽到的是不合格品的概率;(2)从这4件产品中随机抽取2件进行检测,求抽到的都是合格品的概率;(3)在这4件产品中加入x件合格品后,进行如下试验:随机抽取1件进行检测,然后放回,多次重复这个试验,通过大量重复试验后发现,抽到合格品的频率稳定在0.95,则可以推算出x的值大约是多少?五、解答题(三)(本大题共2小题,每小题10分,共20分)24.如图,AB是的直径,点C、D在上,且AD平分,过点D作AC的垂线,与AC的延长线相交于E,与AB的延长线相交于点F,G为AB的下半圆弧的中点,DG交AB于H,连接DB、GB.证明EF是的切线;求证:;已知圆的半径,,求GH的长.25.如图,抛物线与x轴交于A、B两点,与y轴交于C点,且一1,.求抛物线的解析式及顶点D的坐标;判断的形状,证明你的结论;点M是抛物线对称轴上的一个动点,当周长最小时,求点M的坐标及的最小周长.期末模拟试卷(解析版)一、选择题1.如图图形中,是中心对称图形的是()A. B. C. D.【答案】D根据中心对称图形的概念和识别,可知D是中心对称图形,A、C是轴对称图形,D既不是中心对称图形,也不是轴对称图形.故选:D.点睛:本题考查中心对称图形,掌握中心对称图形的概念,会判断一个图形是否是中心对称图形.2.“抛一枚均匀硬币,落地后正面朝上”这一事件是()A. 随机事件B. 确定事件C. 必然事件D. 不可能事件【答案】A试题分析:根据题意可得:正面朝上属于随机事件.考点:随机事件.3.在平面直角坐标系中,点关于原点对称的点的坐标是()A. B. C. D.【分析】根据关于关于原点对称的点,横坐标与纵坐标都互为相反数.填空即可. 【详解】点P(-3,4)关于原点对称的点的坐标是(3,-4). 故答案选:B.【点睛】本题考查的知识点是关于原点对称的点的坐标,解题的关键是熟练的掌握关于原点对称的点的坐标.4.抛物线y=(x-1)2+2的顶点坐标是( ) A. B. C. D. 【答案】A 【分析】由抛物线解析式即可求得答案. 【详解】解:∵y=(x-1)2+2, ∴抛物线顶点坐标为(1,2), 故选:A .【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在 y=(x-h)2+k 中,顶点坐标为(h ,k),对称轴为x=h . 5.若正六边形外接圆的半径为4,则它的边长为( ) A. 2 B. C. 4 D.【答案】C 【分析】根据正六边形的外接圆半径和正六边形的边长将组成一个等边三角形, 即可求解. 【详解】解:正六边形的中心角为, 那么外接圆的半径和正六边形的边长将组成一个等边三角形,故正六边形的外接圆半径等于 4, 则正六边形的边长是4. 故选:C.【点睛】本体主要圆与正多边形的性质,其中正六边形的外接圆半径和正六边形的边长将组成一个等边三角形.6.在一个不透明的袋子中,装有红球、黄球、篮球、白球各1个,这些球除颜色外无其他差别,从袋中随机取出一个球,取出红球的概率为( )A.21 B. 31 C. 41D. 1 【答案】C试题分析:∵共有4个球,红球有1个,∴摸出的球是红球的概率是:P=.故选C . 考点:概率公式.7.若关于x 的一元二次方程没有实数根,则实数m 的取值是( ) A. B. C. D.试题解析:关于的一元二次方程没有实数根,,解得:故选C.8.有x支球队参加篮球比赛,共比赛了45场,每两队之间都比赛一场,则下列方程中符合题意的是()A. B.C. D.【答案】A试题分析:∵有x支球队参加篮球比赛,每两队之间都比赛一场,∴共比赛场数为x(x ﹣1),∴共比赛了45场,∴x(x﹣1)=45,故选A.考点:由实际问题抽象出一元二次方程.9.如图,AB是⊙O的直径,弦CD⊥AB于点E.若AB=8,AE=1,则弦CD的长是()A. B. 2 C. 6 D. 8【答案】B【分析】根据垂径定理,构造直角三角形,连接OC,在RT△OCE中应用勾股定理即可。
2019-2020年九年级数学期末试题卷及答案

2019-2020年九年级数学期末试题卷及答案说明:1、本试卷分为A 卷和B 卷,其中A 卷共100分,B 卷共50分,满分150分,考试时间120分钟. 2、此试卷上不答题,所有题的答案请一律答在答题卷上.题号 A 卷A 卷B 卷B 卷 全卷 一 1-10 二 11-14 三 15,16四 17, 18五 19,20一 21-25 二 26 三 27 四 28 得分A 卷(满分100分)一、选择题:(每小题3分,共30分)1.用配方法解方程x 2+x =2,要使方程左边为x 的完全平方式,应把方程两边同时A .加41 B .加21C .减41 D .减212.如图,⊙O 的直径CD ⊥AB ,∠AOC =60°,则∠CDB =A .20°,B .30°,C .40°,D .50°3.如图,科丽村准备在坡角为α的山坡上栽树,要求相邻两树之间的水平距离 为5米,那么这两树在坡面上的距离AB=()米A . αcos 5B .αcos 5 C . αsin 5 D .αsin 54.双曲线y =与直线y =2x +1的一个交点横坐标为﹣1,则k =A .﹣2B .﹣1C . 1D .2 5.对于抛物线21(1)2y x =---3的说法错误的是A.抛物线的开口向下B.抛物线的顶点坐标是(1,-3)C.抛物线的对称轴是直线1x =D.当1x >时,y 随x 的增大而增大6.如图,小明设计了一个测量圆直径的工具,标有刻度的尺子OA 、OB 在O点钉在一起,并使它们保持垂直,在测直径时,把O 点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,则圆直径为A .9个单位B .10个单位C .12个单位D .15个单位7.△ABC 中,∠A 、∠B 都是锐角,且sinA=21,cosB=23,则△ABC 的形状是 A . 锐角三角形 B .直角三角形 C .钝角三角形 D .不能确定8. 已知反比例函数k y x=的图象如图所示,二次函数222y kx x k =-+的图象大致为9.如图,AB 为⊙O 的直径,PD 切⊙O 于点C ,交AB 的延长线于D ,且CO=CD ,则∠PCA= A .30° B .45° C .60° D .67.5°10.如果关于x 的一元二次方程kx 2-1k 3+x +1=0有两个不相等的实数根,那么k 的取值范围是A . -31≤k <1且k ≠0 B .k <1且k ≠0 C .-31≤k <1 D .k <1二、填空题(每小题4分,共16分)11.方程x(3x-2)=4(3x-2)的根为 .12.已知方程22350--=x x 两根为5,12-,则抛物线2235=--y x x 与x 轴两个交点间距离为 .13.如图,△ABC 的外接圆的圆心坐标为 .14.如图,菱形ABCD 中,对角线AC =10 cm ,BD =6 cm ,则sin∠DAC = . 三、(第15题每小题6分,第16题6分,共18分) 15.(1)解方程:2x 2-6x +1=0. ⑵ 计算:︒︒︒sin60cos60tan45-·tan 30°16.一艘轮船自西向东航行,在A 处测得东偏北21.3°方向有一座小岛C ,继续向东航行60海里到达B 处,测得小岛C 此时在轮船的东偏北63.5°方向上.之后,轮船继续向东航行多少海里,距离小岛C 最近?(参考数据:sin21.3°≈925,tan21.3°≈25, sin63.5°≈910,tan63.5°≈2)四、(第17题9分,第18题9分,共18分) 17.已知甲同学手中藏有三张分别标有数字12,14,1的卡片,乙同学手中藏有三张分别标有数字1,3,2的卡片,卡片外形相同.现从甲乙两人手中各任取一张卡片,并将它们的数字分别记为a ,b .(1)请你用树形图或列表法列出所有可能的结果.(2)现制定这样一个游戏规则:若所选出的a ,b 能使得210ax bx ++=有两个不相等的实数根,则甲获胜;否则乙获胜.请问这样的游戏规则公平吗?请你用概率知识解释.题号 1 2 3 4 5 6 7 8 9 10 答案α5米AB(第2题图)ABO CD B C D A (第3题图) (第6题图)B F0 E AODCAB(第14题图)C DAOPB (第9题图)(第13题图)OABxyDC18.如图,△ABC 是等边三角形,CE 是外角平分线,点D 在AC 上,连结BD 并延长与CE 交于点E . (1)求证:△ABD ∽△CED .(2)若AB =6,AD =2CD ,求BE 的长.五、(第19题9分,第20题9分,共18分)19.4月初某地香菇价格大幅度下调,下调后每斤香菇价格是原价格的23,原来用60元买到的香菇下调后可多买2斤.香菇价格4月底开始回升,经过两个月后,香菇价格上调为每斤14.4元.(1)求4月初香菇价格下调后每斤多少元?(2)求5、6月份香菇价格的月平均增长率.20. 如图,已知A 、B 两点的坐标分别为A (0,23),B (2,0)直线AB 与反比例函数y =mx的图象交与点C 和点D (-1,a ). (1)求直线AB 和反比例函数的解析式; (2)求∠ACO 的度数.B 卷(共50分)一、填空题(每小题4分,共20分)21.设04-x x x x 221=+是方程、两个实数根,则1052231+-x x =_______.22. 已知a 、b ≠0,且,02b -ab 3a 22=+则=+abb a -a b -b a 22________.23.已知:Rt △ABC 中,∠ACB =90°,CD ⊥AB 于D 点,AB =2m ,BD =m -1, 54cos =A .则m=___________.24.如图,AB 是⊙O 的直径,AB =4,过点B 作⊙O 的切线,C 是切线上一点,且BC =2,P 是线段OA 中点,连结PC 交⊙O 于点D ,过点P 作PC 的垂线,交切线BC 于点E ,交⊙O 于点F ,连结DF 交AB 于点G ,则PE 的长为 .25.如图,已知双曲线(k 为常数)与直线l 相交于A 、B 两点,第一象限内的点M (点M 在A 的左侧)在双曲线上,设直线AM 、BM 分别与y 轴交于P 、Q 两点.若AM=m•MP ,BM=n•MQ ,则m ﹣n 的值是______.(第24题图) A D EB F CCA BD O P EFG(第25题图)二、解答题(共9分)26.某商店经销某玩具每个进价60元,每个玩具不得低于80元出售.玩具的销售单价m(元/个)与销售数量n(个)之间的函数关系如图所示.(1)试求表示线段AB的函数的解析式,并求出当销售数量n=20时单价m的值;(2)写出该店当一次销售n(n>10)个时,所获利润w(元)与n(个)之间的函数关系式:(3)店长李明经过一段时间的销售发现:卖27个赚的钱反而比卖30个赚的钱多,你能用数学知识解释这一现象吗?为了不出现这种现象,在其他条件不变的情况下,店长应把售价最低价每个80元至少提高到多少?三、解答题(共9分)27.如图,△ABC内接于半圆,圆心为O,AB是直径,过A作直线MN,若∠MAC=∠ABC.(1)求证:MN是半圆的切线;(2)设D是弧AC的中点,连接BD交AC于G,过D作DE⊥AB于E,交AC于F.求证:DE=AC;(3)在(2)的条件下,若△DFG的面积为S,且DG=a,GC=b,试求△BCG的面积.(用a、b、s的代数式表示)四、解答题(共12分)28.已知两直线l1、l2分别经过点A(3,0),点B(﹣1,0),并且当两条直线同时相交于y轴负半轴的点C 时,恰好有l1⊥l2,经过点A、B、C的抛物线的对称轴与直线l2交于点K,如图所示.(1)求抛物线的解析式;(2)在抛物线上是否存在点P,使得以A、B、C、P为顶点的四边形的面积等于△ABC的面积的倍?若存在,求出点P的坐标;若不存在,请说明理由.(3)将直线l1按顺时针方向绕点C旋转α°(0<α<90),与抛物线的另一个交点为M.求在旋转过程中△MCK 为等腰三角形时的α的值.成都市武侯区2012-2013学年度上期教学质量测评试题九年级数学试卷参考答案及评分标准说明:1、本试卷分为A 卷和B 卷,其中A 卷共100分,B 卷共50分,满分150分,考试时间120分钟. 2、此试卷上不答题,所有题的答案请一律答在答题卷上.题号 A 卷A 卷B 卷B 卷 全卷 一 1-10 二 11-14 三 15,16 四 17, 18 五 19,20, 一21-25 二 26 三 27 四 28 满分301618181810020991250150A 卷(共100分)一、选择题:(每小题3分,共30分)题号 1 2 34 5 6 7 8 9 10 答案ABBCDBCDDA二、填空题(每小题4分,共16分)题号 111213 14答案4,或3227(5,2)34343 三、(第15题每小题6分,第16题6分,共18分) 15.(1)解方程:2x 2-6x +1=0.解:因为a =2,b =-6,c =1,(1分) ∴b 2-4ac =(-6)2-4×2×1=28.(2分)aacb b x 242-±-=(3分)⋅±=±=⨯±=273472622286 (5分) ∴原方程的根为⋅-=+=273,27321x x (6分) ⑵ 计算: ︒︒︒sin60cos60tan45-·tan 30°解:原式=312321-1⨯ (4分)=3131⨯(5分)=31(6分)16.解:过C 作AB 的垂线,交直线AB 于点D ,得到Rt △ACD 与Rt △BCD .设BD =x 海里,(1分)在Rt △BCD 中,tan ∠CBD =CDBD,∴CD =x ·tan63.5°≈2x 海里.(2分)在Rt △ACD 中,AD =AB +BD =(60+x)海里,tan ∠A =CDAD∴CD =( 60+x ) ·tan21.3°≈25( 60+x )海里. (3分)∴()22605x x =+.解得,x =15. (5分)答:轮船继续向东航行15海里,距离小岛C 最近(6分) 四、(第17题9分,第18题9分,共18分)17.解:(1)(a,b )的可能结果有⎪⎭⎫⎝⎛1,21、⎪⎭⎫ ⎝⎛2,21、⎪⎭⎫ ⎝⎛3,21、⎪⎭⎫ ⎝⎛1,41、⎪⎭⎫ ⎝⎛2,41、⎪⎭⎫⎝⎛3,41、(1,1)、(1,2)及(1,3),∴(a,b)取值结果共有9种 (4分). (2)∵Δ=b 2-4a 与对应(1)中的结果为: -1、2、7、0、3、8、-3、0、5 (7分) ∴P (甲获胜)= P (Δ>0)=95 >P (乙获胜) =94(8分) ∴这样的游戏规则对甲有利,不公平. (9分) 18.(1)证明:∵ △ABC 是等边三角形 ∴ ∠BAC =∠ACB =60°.∠ACF =120° (2分) ∵ CE 是外角平分线, ∴ ∠ACE =60°.∴ ∠BAC =∠ACE又∵ ∠ADB =∠CDE ,∴ △ABD ∽△CED (4分) (2)解:作BM ⊥AC 于点M ,AC =AB =6 (5分) ∴ AM =CM =3,BM =AB ·sin60°=33 (6分) ∵ AD =2CD ,∴ CD =2,AD =4,MD =1 在Rt △BDM 中,BD =22BM MD +=27(7分) 由(1)△ABD ∽△CED 得,BD AD ED CD=,272ED =(8分) ∴ ED =7,∴ BE =BD +ED =37. (9分)五、(第19题9分,第20题9分,共18分)19.解:(1)设4月初香菇价格下调后每斤x 元.根据题意,得6060232x x -=,解得10x =(3分), 经检验,10x =是原方程的解BCDAADE BFCMOA B xyDC答:4月初香菇价格下调后每斤10元. (4分) (2)设5、6月份香菇价格的月平均增长率为y .根据题意,得210(1)14.4y += (7分)解得120.220% 2.2y y ===-,(舍去)答:5、6月份香菇价格的月平均增长率为20%.(9分)20.解:(1)设直线AB 的解析式为y =kx +b ,将A (0,23),B (2,0)代入得⎩⎨⎧b =232k +b =0 解得⎩⎨⎧k =-3b =23 ∴直线AB 的解析式为y =-3x +23 (2分)将D (-1,a )代入y =-3x +23,得a =33∴D (-1,33), (3分)将D (-1,33)代入y =mx中,得m =-33∴反比例函数的解析式为y =-3 3x(4分) (2)解方程组得⎩⎪⎨⎪⎧y =-3x +23y =-33x得⎩⎨⎧x 1=3y 1=- 3 ⎩⎨⎧x 2=-1y 2=33, ∴点C 坐标为(3,-3) (6分)过点C 作CH ⊥x 轴于点H ,在Rt △OMC 中,CH =3,OH =3∴tan ∠COH =CHOH=33,∴∠COH =30° (8分) 在Rt △AOB 中,tan ∠ABO =AOOB=232=3,∴∠ABO =60°(9分) ∴∠ACO =∠ABO -∠COH =30°.B 卷(共50分)一、填空题(每小题4分,共20分)题号 21 22 232425 答案-19-3或2725 1323-2二、解答题(共9分)26.解:(1)设m=kx+b ,把A (10,100)和B (30,80)代入上式,得10k+b=100,30k+b=80, 解得k=﹣1,b=110,∴线段AB 的函数的解析式为m=﹣n+110(10≤n ≤30);(2分) 当n=20时,m=﹣20+110=90;(3分)(2)当10<n <30时,W=(m ﹣60)n=(﹣n+110﹣60)n=﹣n 2+50n ,当n ≥30时,W=(80﹣60)n=20n ;(3)W=﹣n 2+50n=﹣(n ﹣25)2+625,①当10<n ≤25时,W 随n 的增大而增大,即卖的越多,利润越大; ②当25<n ≤30时,W 随n 的增大而减小,即卖的越多,利润越小; ∴卖27个赚的钱反而比卖30个赚的钱多.所以为了不出现这种现象,在其他条件不变的情况下,店长应把最低价每个80元至少提高到85元.三、解答题(共9分)27.解:(1)∵AB 是直径,∴∠C=90°,∴∠CBA+∠BAC=90°,(1分) 又∵∠MAC=∠ABC ,∴∠MAC+∠CAB=90°, 即∠BAM=90°,∴OA ⊥MN ,(2分) ∴MN 是⊙O 的切线;(3分)(2)连接OD 交AC 于H ,∵D是AC中点,∴OD⊥AC,AH=AC,(4分)∵∠DOE=∠AOH,∠OHA=∠OED=90°,OA=OD,(5分)∴△OAH≌△ODE,∴DE=AH=AC;(6分)(3)连接AD,由(2)知△OAH≌△ODE,∴∠ODE=∠OAH,又∵OA=OD,∴∠ODA=∠OAD,∴∠ODA﹣ODE=∠OAD﹣∠OAH,即∠FDA=∠FAD,∴FD=FA,(7分)∵AB是直径,∴∠BDA=90°,∴∠FDA+∠GDF=90°,∠DAF+∠DGF=90°,∴∠GDF=∠DGF,∴FG=DF,∴FG=FA=FD,∴S△DGF=S△ADG,(8分)又∵△BCG∽△ADG,∴S△BCG:S△ADG=()2=()2,∴S△BCG=.(9分)四、解答题(共12分)28.解:(1)在Rt△ABC中,OB=1,OA=3,且CO⊥AB;∴OC==,则C(0,﹣);设抛物线的解析式为:y=a(x+1)(x﹣3),代入点C的坐标后,得:a(0+1)(0﹣3)=﹣,a=∴抛物线的解析式:y=(x+1)(x﹣3)=x2﹣x﹣.(3分)(2)OA=3、OB=1、OC=,则:S△ABC=AB•OC=×4×=2.①当点P在x轴上方时,由题意知:S△ABP=S△ABC,则:点P到x轴的距离等于点C到x轴距离的一半,即点P的纵坐标为;令y=x2﹣x﹣=,化简得:2x2﹣4x﹣9=0解得x=;∴P1(,)、P2(,);(5分)②当点P在抛物线的B、C段时,显然△BCP的面积要小于S△ABC,此种情况不合题意;(6分)③当点P在抛物线的A、C段时,S△ACP=AC•h=S△ABC=,则h=1;在射线CK上取点D,使得CD=h=1,过点D作直线DE∥l1,交y轴于点E,如右图;在Rt△CDE中,∠ECD=∠BCO=30°,CD=1,则CE=、OE=OC+CE=,点E(0,﹣)∴直线DE:y=x﹣﹣,联立抛物线的解析式,有:,解得:、∴P3(1,﹣)、P4(2,﹣);(8分)综上,存在符合条件的点P为(,)、(,)、(1,﹣)、(2,﹣).(8分)(3)由(1)知:y=x2﹣x﹣=(x﹣1)2﹣,∴抛物线的对称轴x=1;在Rt△OBC中,OB=1,OC=,则∠BCO=∠1=30°、∠2=∠3=90°﹣∠BCO=60°、BC=2;过点C作直线CN∥x轴,交抛物线于点N,如右图;由抛物线的对称性可得:N(2,﹣),所以CN=2;易知直线BC:y=﹣x﹣,则K(1,﹣2),CK==2;在△CKN中,∠2=60°,CN=CK=2,那么△CKN是等边三角形﹣﹣﹣﹣①.Ⅰ、KC=KM时,点C、M关于抛物线的对称轴对称,符合①的情况,即点M、N重合;Ⅱ、KC=CN时,由于KC=BC,所以此时点M与B、N重合;Ⅲ、MK=MC时,点M在线段CK的中垂线上,此时M、N重合;综上,只有一个符合条件的点M(即点N),此时直线l1的旋转角度α=∠ACN=90°﹣∠2=30°.(12分)。
2019-2020学年度第一学期期末检测九年级数学试题(人教版 含参考答)

2019-2020学年度第一学期期末检测九年级数学试题第I 卷(选择题 共30分)一、选择题(本大题共10个,每小题3分,共30分。
在每小题给出的四个选项中只有一个符合要求)1.下列图形中,既是轴对称图形又是中心对称图形的是A. 等边三角形B. 平行四边形C. 矩形D. 正五边形2.下列事件中,必然事件是A. 某射击运动射击一次,命中靶心B. 通常情况下,水加热到100℃时沸腾C. 掷一次骰子,向上的一面是6点D. 抛一枚硬币,落地后正面朝上3.已知关于x 的一元二次方程x 2+2kx+(k-1)2=0有两个不相等的实数根,则K 的取值范围为 A. K >12 B. K >-12 C. K >18 D. K <124.如图,电线杆CD 的高度为h ,两根拉线AC 与BC 相互垂直,∠CAB=θ,则拉线BC 的长度为(A ,D ,B 在同一条直线上)A cos θ5.已知点A (1x ,1y ),B (2x ,2y )为反比例函数y=6x图象上的两点,当1x >2x >0时,下列结论正确的是A. 0 <1y <2y B. 0 <2y <1yB. C.1y<2y <0 D.2y<1y<06.将二次函数y=12x2-2x+5化成y=a(x-h)2+k的形式为A.Y=12(x-4)2+3 B. Y=12(x-4)2+1C. Y=12(x-2)2+3 D. Y=12(x-2)2+17.如图,AB是⊙O的直径,BC=1,C,D是圆周上的点,且∠CDB=30°,则图中阴影部分的面积为A.8.如图,小正方形的边长均为1,则图中三角形(阴影部分)与△ABC相似的是A. B. C. D.点,其横坐标为1,则一次函数的图象可能是....10.在平面直角坐标系中,正方形A1B1C1D1,D1E1F1B2,A2B2C2D2,D2E3E4B3,A3B3C3D3,…,按如图所示的方式放置,其中点B1在y轴上,点C1,E1,E2,C2,E3,E4,C3,…在x轴上,已知正方形A1B1C1D1的边长为1,∠OB1C1=30°,B1C1∥B2C2∥B3C3…,则正方形A n B n C n D n的边长是第II卷(非选择题共70分)二、填空题(本大题共5个小题,每小题3分,共15分)12.将抛物线y=2x2向上平移3个单位,得到的抛物线的解析式是___________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年初三数学期末考试题及答案学校 班级 姓名 考号考生须知 1.本试卷共6页,共五道大题,25道小题,满分120分.考试时间120分钟. 2.在试卷上准确填写学校名称、班级、姓名和考号. 3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效. 4.在答题卡上选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答.5.考试结束,请将本试卷和答题卡一并交回. 一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.下列一元二次方程中有两个相等的......实数根的是A .2240x x +-=B . 2260x x --=C .2440x x -+=D .2350x x ++=2.下列图形中,既是轴对称图形又是中心对称图形的是3.如图,AB 是⊙O 的弦,OC ⊥AB 于点C ,若AB =4,OC =1, 则⊙O 的半径为A 3B 5C .25D .64. 从1,2,3,4这四个数中,随机抽取两个相加,和为偶数的概率为 A.13 B. 12 C. 23 D. 565.若将抛物线y=22x 先向左平移2个单位,再向下平移1个单位得到一个新的抛物线,则新抛物线的顶点坐标是 A .(2,1)-B .(2,1)--C .(2,1)D . (2,1)-6.如图,在△ABC 中,若DE ∥BC ,AD ∶BD =1∶2,若△ADE 的面积等于2,则△ABC 的面积等于A.6B.8C.12D.187.如图,AB 是⊙O 的直径,弦CD ⊥AB ,∠CDB =30°,CD =23, 则阴影部分图形的面积为 A .4π B .2πC .πD .2π38. 已知点A (0,2),B (2,0),点C 在2y x =的图象上,若△ABC 的面积为2,则这样的C 点有A .1 个B .2个C .3个D .4个 二、填空题(本题共16分,每小题4分)9.已知x =1是方程x 2+bx -2=0的一个根,则b 的值是 ;方程的另一个根是 . 10.点A (1x ,1y )、B (2x ,2y )在二次函数221y x x =--的图象上,若2x >1x >1,则1y 与2y 的大小关系是1y 2y .(用“>”、“<”、“=”填空)11.两块大小一样斜边为4且含有30°角的三角板如图水平放置.将△CDE 绕C 点按逆时针方向旋转,当E 点恰好落在AB 边上的'E 点时,'EE 的长度为 .12.如图所示,在△ABC 中,BC =6,E ,F 分别是AB ,AC 的中点,点P 在射线EF 上,BP交CE 于D ,点Q 在CE 上且BQ 平分∠CBP ,设BP =y ,PE =x .当CQ =21CE 时,y 与x 之间的函数关系式是 ; 当CQ =n1CE (n 为不小于2的常数)时, y 与x 之间的函数关系式是 . 三、解答题(本题共30分,每小题5分) 13. 解方程:2316x x -= .14.小明同学用纸板制作了一个圆锥形漏斗模型,如图所示,它的底面半径OB =3cm ,高OC =4cm ,求这个圆锥形漏斗的侧面积.15.如图,在边长为1的小正方形组成的网格中,△ABC和△DEF的顶点都在格点上,判断△ABC和△DEF是否相似,并说明理由.16.画图:(1)如图,在边长为1的小正方形组成的网格中,△OAB的顶点都在格点上,请将△OAB 绕点O顺时针旋转90°,画出旋转后的△OA′B′;(2)在4×4的方格中有五个同样大小的正方形如图摆放,移动其中一个正方形到空白方格中,与其余四个正方形组成的新图形是一个中心对称图形.在图1,图2中分别画出两种符合题意的图形.17.已知关于x的一元二次方程(m -2)x2 + 2mx + m +3 = 0 有两个不相等的实数根.(1)求m的取值范围;(2)当m取满足条件的最大整数时,求方程的根.18.如图,点A,B,C,D在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,求∠OAD+∠OCD的度数.四、解答题(本题共20分,每小题5分)19.随着我国经济的发展,越来越多的人愿意走出国门旅游. 据有关报道,我国2010年和2012年公民出境旅游总人数分别约为6000万人次,8640万人次,求这两年我国公民出境旅游总人数的年平均增长率.20. 如图,PB切⊙O于B点,直线PO交⊙O于点E,F,过点B作PO的垂线BA,垂足为点D,交⊙O于点A,延长AO交⊙O于点C,连结BC,AF.(1)求证:直线P A为⊙O的切线;(2)若BC=6,AD∶FD=1∶2,求⊙O的半径的长.21. 某小区为了促进生活垃圾的分类处理,将生活垃圾分为厨余、可回收和其他三类,分别记为a,b,c,并且设置了相应的垃圾箱,“厨余垃圾”箱、“可回收物”箱和“其他垃圾”箱,分别记为A,B,C.(1)若将三类垃圾随机投入三类垃圾箱,请用画树状图的方法求垃圾投放正确的概率;(2)为调查居民生活垃圾分类投放情况,现随机抽取了该小区三类垃圾箱中总1 000吨生活垃圾,数据统计如下(单位:吨):A B Ca400 100 100b30 240 30c20 20 60试估计“.厨余垃圾.....投放正确的概率.22.“十八大”报告一大亮点就是关注民生问题,交通问题已经成了全社会关注的热点.为了解新建道路的通行能力,某研究表明,某种情况下,车流速度V(单位:千米/时)是车流密度x(单位:辆/千米)的函数,函数图象如图所示.(1)求V 关于x 的函数表达式;(2)车流量是单位时间内通过观测点的车辆数,计算公式为:车流量P =车流速度V ×车流密度x .若车流速度V 低于80千米/时,求当车流密度x 为多少时,车流量P (单位:辆/时)达到最大,并求出这一最大值.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.已知,二次函数2y ax bx =+的图象如图所示.(1)若二次函数的对称轴方程为1x =,求二次函数的解析式;(2)已知一次函数y kx n =+,点(,0)P m 是x 轴上的一个动点.若在(1)的条件下,过点P 垂直于x 轴的直线交这个一次函数的图象于点M ,交二次函数2y ax bx =+的图象于点N .若只有当1<m <53时,点M 位于点N 的上方,求这个一次函数的解析式;(3)若一元二次方程20ax bx q ++=有实数根,请你构造恰当的函数,根据图象直接写出q 的最大值.24. 如图1,在等腰直角△ABC 中,∠BAC =90°,AB =AC =2,点E 是BC 边上一点,∠DEF =45°且角的两边分别与边AB ,射线CA 交于点P ,Q . (1)如图2,若点E 为BC 中点,将∠DEF 绕着点E 逆时针旋转,DE 与边AB 交于点P ,EF 与CA 的延长线交于点Q .设BP 为x ,CQ 为y ,试求y 与x 的函数关系式,并写出自变量x 的取值范围;(2)如图3,点E 在边BC 上沿B 到C 的方向运动(不与B ,C 重合),且DE 始终经过点A ,EF 与边AC 交于Q 点.探究:在∠DEF 运动过程中,△AEQ 能否构成等腰三角形,若能,求出BE 的长;若不能,请说明理由.25. 在平面直角坐标系xOy 中,抛物线22(1)6y x m x m =---+-交x 轴负半轴于点A ,交y 轴正半轴于点B (0 , 3),顶点C 位于第二象限,连结AB ,AC ,BC . (1) 求抛物线的解析式;(2) 点D 是y 轴正半轴上一点,且在B 点上方,若∠DCB =∠CAB ,请你猜想并证明CD 与AC 的位置关系;(3) 设与△AOB 重合的△EFG 从△AOB 的位置出发,沿x 轴负方向平移t 个单位长度(0<t≤3)时,△EFG 与△ABC 重叠部分的面积为S ,求S 与t 之间的函数关系式.东城区2012-2013学年第一学期期末统一检测 初三数学试题参考答案及评分标准 2013.1题号 1 2 3 4 5 6 7 8 答案CCBABDDD题号 9 101112答案1;-212y y <3π y = –x +6; y = –x +6(n –1)三、解答题(本题共30分,每小题5分) 13. 解方程:2316x x -= . 解:移项,得2361x x -= . ………………..1分 二次项系数化为1,得 2123x x -= . ………………..2分 配方 24(1)3x -= . ………………..4分 由此可得 1231x =2231x =. ………………..5分 14. 解:根据题意,由勾股定理可知222BC BO CO =+.∴ 5BC =cm. ………………..2分∴ 圆锥形漏斗的侧面积=15OB BC ππ⋅⋅= cm 2 . ………………..5分 15.解:△ABC 和△DEF 相似. ………………..1分由勾股定理,得25AB =5AC =,BC =5, DE =4,DF =2,25EF = ………………..3分522AB AC BC DE DF EF ===5= ………………..4分 ∴△ABC ∽△DEF . ………………..5分16.(1)………………..3分(2)………………..5分17.解:(1) ∵ 关于x 的一元二次方程(m -2)x 2 + 2mx + m +3 = 0 有两个不相等的实数根, ∴ 20m -≠,即2m ≠. ………………..1分 又 ∵ 2(2)4(2)(3)4(6)m m m m ∆=--+=--, ∴ 0∆>即4(6)0m -->.解得 6m <.∴ m 的取值范围是6m <且m ≠ -2. ………………..2分(2)在6m <且m ≠ -2的范围内,最大整数m 为5. ………………..3分 此时,方程化为231080x x ++=.∴ 方程的根为 12x =-, 243x =- . ………………..5分18.解: ∵ 四边形ABCD 是圆内接四边形,∴ ∠B +∠D =180°. ………………..1分 ∵ 四边形OABC 为平行四边形,∴ ∠AOC =∠B . ………………..2分 又由题意可知 ∠AOC =2∠D .∴ 可求 ∠D =60°. ………………..3分连结OD ,可得AO =OD ,CO =OD .∴∠OAD=∠ODA,∠OCD=∠ODC.………………..4分∴∠OAD+∠OCD=∠ODA+∠ODC=∠D=60°.………………..5分四、解答题(本题共20分,每小题5分)19. 解:设这两年我国公民出境旅游总人数的年平均增长率为x.………………..1分根据题意得26000(1)8640x+=.………………..2分解得10.2x=,12.2x=-(不合题意,舍去).………………..4分答:这两年我国公民出境旅游总人数的年平均增长率为20%.………………..5分20.解:(1)证明:如图,连接OB.∵PB是⊙O的切线,∴∠PBO=90°.∵ OA=OB,BA⊥PO于D,∴AD=BD,∠POA=∠POB.又∵PO=PO,∴△P AO≌△PBO.∴∠P AO=∠PBO=90°.∴直线P A为⊙O的切线.………………..2分(2)∵OA=OC,AD=BD,BC=6,∴OD=12BC=3.设AD=x.∵AD∶FD=1∶2,∴FD=2x,OA=OF=2x-3.在Rt△AOD中,由勾股定理,得(2x-3)2=x2+32.解之得,x1=4,x2=0(不合题意,舍去).∴AD=4,OA=2x-3=5.即⊙O的半径的长5.………………..5分21. 解:(1)三类垃圾随机投入三类垃圾箱的树状图如下:………………..2分由树状图可知垃圾投放正确的概率为3193=;………………..3分 (2)“厨余垃圾”投放正确的概率为40024001001003=++. ………………..5分22. 解:(1)当280≤<x 时,80=V . ………………..1分当18828≤<x 时,设b kx V +=,由图象可知,⎩⎨⎧+=+=.1880,2880b k b k解得:⎪⎩⎪⎨⎧=-=.94,21b k∴ 当18828≤<x 时,9421+-=x V . ………………..3分 (2)根据题意,得211-+94-9422P Vx x x x x ⎛⎫===+ ⎪⎝⎭=()21--9444182x +.答:当车流密度x 为94辆/千米时,车流量P 最大,为4418辆/时. …………..5分 23. 解:(1) 二次函数的对称轴方程为1x =,由二次函数的图象可知二次函数的顶点坐标为(1,-3),二次函数与x 轴的交点坐标为(0,0),(2,0),于是得到方程组3,420.a b a b +=-⎧⎨+=⎩……………………………………..2分解方程得3,6.a b =⎧⎨=-⎩二次函数的解析式为 236y x =-. ……………………………………..3分 (2)由(1)得二次函数解析式为236y x =-.依题意并结合图象可知,一次函数的图象与二次函数的图象交点的横坐标分别为1和53,由此可得交点坐标为(1,3)-和55(,)33-. …………………………..4分 将交点坐标分别代入一次函数解析式y kx n =+中,得 355 .33k n k n +=-⎧⎪⎨+=-⎪⎩, 解得 2 5k n =⎧⎨=-⎩,. ∴ 一次函数的解析式为25y x =-. ……………………………..6分(3)3. ……………………………………………..7分24.解:(1)∵ ∠BAC =90°,AB =AC =2,∴ ∠B =∠C ,22BC =又∵FEB FED DEB EQC C ∠=∠+∠=∠+∠,DEF C ∠=∠,∴ ∠DEB =∠EQC .∴ △BPE ∽△CEQ .∴ BP CE BE CQ=. 设BP 为x ,CQ 为y ,∴ 22y =. ∴ 2y x =. 自变量x 的取值范围是0<x <1. ……………………………..3分(2)解:∵ ∠AEF =∠B =∠C ,且∠AQE >∠C ,∴ ∠AQE >∠AEF .∴ AE ≠AQ .当AE =EQ 时,可证△ABE ≌ECQ .∴ CE =AB =2 .∴ BE =BC -EC =222.当AQ =EQ 时,可知∠QAE =∠QEA =45°.∴ AE ⊥BC .∴ 点E 是BC 的中点.∴ BE 2.综上,在∠DEF 运动过程中,△AEQ 能成等腰三角形,此时BE 的长为222 或2. ……………………………..7分25.解:(1)抛物线22(1)6y x m x m =---+-与y 轴交于点B (0 , 3),∴ 26 3.m -=∴ 3.m =±抛物线的顶点在第二象限,∴ 3.m =∴ 抛物线的解析式为223y x x =--+. ………2分(2)猜想:CD AC ⊥. ………3分证明如下:A (-3 , 0),B (0 , 3),C (-1 , 4),∴ 32,25,2AB AC BC ===∴ 222AB BC AC +=.∴ 90ABC ∠=︒.∴ 90CAB ACB ∠+∠=︒.又CAB DCB ∠=∠,∴ 90DCB ACB ∠+∠=︒.∴ CD AC ⊥. ………4分(3)当0<t ≤32时,如图, EF 交AB 于点Q ,GF 交AC 于点N ,过N 做MP //FE 交x 轴于P 点,交BF 的延长线点M ,BF 的延长线交AC 于点K .由△AGN ∽△KFN ,得AG PN KF MN=,即332tPN PNt =--. 解得PN =2t . ∴231113=33(3)232222FGE QAE AGN S S S S t t t t t ∆∆∆--=⨯⨯---⨯=-+阴影. 当32<t ≤3时,如图, EF 交AB 于点N , 交AC 于点M ,BF 交AC 于点P .由△AME ∽△PMF , 得AE ME PF MF=. 即3332t ME ME t -=--. 解得ME =2(3-t ). ∴221119=(3)2(3)(3)32222MAE NAE S S S t t t t t ∆∆-=⨯-⨯---=-+阴影. 综上所述: S =22333 0),221933 (3).222t t t t t t ⎧-+<⎪⎪⎨⎪-+<⎪⎩≤≤( ………………………………………….8分。