生物柴油制备技术介绍
生物柴油制备技术的研究进展

生物柴油制备技术的研究进展近年来,随着能源环境问题的日益突出,绿色化、新能源化已成为全球共同的关注焦点。
生物柴油,作为一种可再生绿色能源,具有成本低廉、减少排放的优势,正在成为替代传统石油燃料的备选之一。
本文将对生物柴油制备技术的研究进展进行探讨。
一、生物柴油的来源生物柴油的原料来自植物油和动物油脂,包括油菜籽、大豆油、棕榈油、葵花籽油、油棕籽油、花生油等。
此外,还可以利用废弃植物油脂、动物油脂等生物质资源制备生物柴油。
二、生物柴油的制备技术1. 酯化法酯化法是生产生物柴油最基本的方法之一。
这种技术是利用催化剂催化油酸与甲醇酯化反应,产生甲酯酯类化合物的过程。
其中,强酸、强碱和酶都可以作为酯化催化剂。
强酸催化剂制备生物柴油工艺简便,但会产生废水和二酸二甘油等副产物,对环境造成危害。
强碱催化剂制备生物柴油可以提高产品收率,但它的碱催化剂难以从废水中去除,会使废水污染。
2. 超临界酯化法超临界酯化法是一种利用高温、高压下进行的酯化反应技术。
在超临界条件下,甲醇和油酸可以相互混溶,使反应速度加快,同时产率也得到提高。
超临界酯化法的优点是反应速度快,能耗低,产品纯度高,无二酯二甘油副产物。
但是,超临界设备昂贵,存在运营成本高的问题。
3. 逆流式超临界酯化法逆流式超临界酯化法是一种结合了超临界酯化法和油酸逆流技术的新型生产生物柴油技术。
该技术可以在相对较低的温度下,减少酯化反应时间,并采用两台输送泵隔开的优良逆流设计,实现了两种物质的流量大小对反应影响的调控,从而降低了生产成本。
4. 超声波酯化技术超声波酯化技术是一种利用超声波能量来促进化学反应的方法。
其将油脂和甲醇暴露在高能量的超声波场中,可以使反应时间大大减少,反应效能和产率也得到提高。
超声波酯化技术制备生物柴油,具有反应速度快、产率高、脱水效率高、降低催化剂用量等优点,但仍受到规模化生产及生产能耗的限制。
三、生物柴油技术的应用前景目前,国内外生物柴油技术正在呈现出不断发展的态势,技术层面已不断得到注重和重视。
生物柴油技术

生物柴油技术概述生物柴油技术是一种利用植物油或动物油脂作为原料,通过化学反应将其转化为可替代传统柴油燃料的一种新型能源技术。
相对于传统柴油,生物柴油技术具有更低的碳排放、更友好的环境影响以及更可持续的生产过程。
本文将介绍生物柴油技术的原理、制备方法以及在可持续能源发展中的应用前景。
原理生物柴油技术的原理基于酯化反应,即将植物油或动物油脂与酒精(通常是甲醇或乙醇)进行反应,生成酯化物作为燃料。
这个过程需要使用催化剂来促进反应,常见的催化剂包括碱性催化剂(如钠或钾)或酸性催化剂(如硫酸)。
生物柴油技术的制备方法可以分为两个主要步骤:预处理和酯化反应。
预处理步骤主要是去除植物油或动物油脂中的杂质和水分,以提高酯化反应的效率和产率。
酯化反应步骤是将预处理后的植物油或动物油脂与酒精和催化剂进行反应,并通过适当的工艺条件,如温度和压力,来控制反应过程。
制备方法硷催化法硷催化法是最常用的生物柴油制备方法之一。
该方法使用碱性催化剂(如钠或钾)来促进酯化反应。
制备生物柴油的主要步骤如下:1.预处理:将植物油或动物油脂进行脱水、脱酸等预处理步骤,以去除杂质和水分。
2.酯化反应:将预处理后的油脂与甲醇或乙醇以及硷催化剂进行反应,在适当的温度和压力下加热搅拌,生成酯化物。
3.分离和纯化:将反应产物通过蒸馏、过滤等分离和纯化步骤,得到纯净的生物柴油。
酸催化法酸催化法是另一种常用的生物柴油制备方法。
该方法使用酸性催化剂(如硫酸)来促进酯化反应。
制备生物柴油的主要步骤如下:1.预处理:与硷催化法类似,将植物油或动物油脂进行预处理,去除杂质和水分。
2.酯化反应:将预处理后的油脂与甲醇或乙醇以及酸性催化剂进行反应,在适当的条件下进行酯化反应。
3.中和和分离:将反应产物进行中和处理,去除酸性催化剂,并通过分离、洗涤等步骤得到纯净的生物柴油。
应用前景生物柴油技术作为一种可再生能源技术,具有很好的应用前景。
以下是几个应用领域的例子:1.交通运输:生物柴油可以直接替代传统柴油作为交通工具的燃料。
生物柴油技术

生物柴油技术生物柴油技术是一种利用生物质资源来生产可替代传统石油柴油的技术。
在当前日益严重的能源危机和环境污染问题的压力下,生物柴油技术成为了一种可行的解决方案。
本文将从生物柴油的定义、生产过程、优势和应用领域等方面,详细介绍生物柴油技术的相关知识。
首先,生物柴油是一种由生物质资源经过一系列化学反应转化而来的液体燃料。
生物质资源包括植物油、动物油以及来自废弃物和废弃物油脂等。
生物柴油与传统石油柴油具有相似的化学性质,可以直接用于柴油发动机,而且可以在不进行任何改装的情况下混合使用。
由于其来源可持续、可再生,生物柴油被广泛认为是一种很好的绿色替代燃料。
生物柴油技术的生产过程主要包括酯化反应和醇解反应。
在酯化反应中,将生物质资源与醇类催化剂共同作用,生成甲酯和甘油。
甲酯即为生物柴油,而甘油则是酯化反应的副产物。
在醇解反应中,将甘油与醇类催化剂反应,再次生成甲酯和副产物醇类。
通过这两个反应,可以将原本无法直接作为柴油燃料的生物质转化为生物柴油,实现资源的高效利用。
生物柴油技术具有多项优势。
首先,生物柴油的生产过程相对简单,只需经过酯化和醇解等简单的化学反应即可完成。
其次,生物柴油具有良好的燃烧性能,能够在传统柴油发动机中完全燃烧,减少了尾气中有害物质的排放。
此外,生物柴油的碳排放量较低,具有明显的减排效果,对于缓解气候变化也起到了积极的作用。
最后,生物柴油可以与传统石油柴油混合使用,降低了对石油资源的依赖,提高了能源的可持续性。
生物柴油技术在多个领域有着广泛的应用。
首先,生物柴油可以替代传统柴油在交通运输领域中的应用。
生物柴油的性能与传统柴油类似,因此可以直接用于汽车、卡车、火车等交通工具的燃料。
其次,在农业领域,生物柴油可以用作农机的燃料,减少了对石油的依赖,降低了农业生产的成本。
此外,生物柴油还可以用于家庭燃气、工业锅炉等方面,为各个领域提供了绿色可持续的能源选择。
总之,生物柴油技术作为一种可替代传统石油柴油的绿色能源技术,具有很高的应用价值和推广前景。
生物柴油制造技术

生物柴油制造技术生物柴油是一种可再生能源,其制造技术已经相当成熟,可以用于替代传统的石油柴油。
生物柴油的优点明显,它不会污染环境,能大大降低燃烧排放物对大气的危害,而且其生产过程和使用都会更加环保。
鉴于全球能源需求的增长趋势,生物柴油已经成为替代燃料的重要选择之一。
生物柴油的制造技术生物柴油可以用多种生物质来制造,比如油菜籽、大豆、棕榈油、甜菜根和玉米等。
制造过程大致包括提取油脂、转化为甲基酯和纯化这三个过程。
提取油脂在生物柴油制造过程中,先要从植物或动物原料中提取出油脂。
不同的原料需要采用不同的方法来提取油脂。
通常采用机械榨取、溶剂提取和压缩空气弹性挤压等方法。
这些方法的目的都是从原料中分离出油脂,为下一步转化为甲基酯做准备。
转化为甲基酯提取出的油脂需要通过酯化反应转化为甲基酯。
酯化反应需要使用催化剂和甲醇。
催化剂的作用是加快酯化反应的速度。
甲醇可以与油脂中的甘油发生反应,形成甲基酯和甘油。
在反应结束后,需要将混合物通过分离技术,将甲醇和甘油分离出来,得到纯净的甲基酯。
纯化在制造生物柴油的过程中,甲基酯还需要进行纯化。
纯化的主要目的是去除残留的甲醇、水和其他离子,提高甲基酯的纯度。
通常采用真空蒸馏、磺化和溶剂萃取等技术来进行纯化处理。
生物柴油的优缺点相比传统的燃料,生物柴油具有如下优点:环保:由于生物柴油来自可再生生物质,而且燃烧时产生的废气中含有的温室气体要少得多,因此其对环境的影响显著降低。
兼容性:生物柴油可以与传统石油柴油混合使用,也可以在柴油发动机中使用,因此其使用范围更广。
高性能:生物柴油与石油柴油的性能相似,只是熔点较高,但可以用添加剂进行改进。
但是,生物柴油也存在一些缺点:安全性问题:生物柴油燃点低,挥发性差,储存和运输时需要特别注意安全问题。
投资成本高:与传统的燃料生产相比,生物柴油的生产投资成本相对较高。
能量密度低:生物柴油的能量密度相对较低,需要更多的燃料来提供同样的能源。
生物柴油燃料的制备与应用

生物柴油燃料的制备与应用一、引言生物柴油是一种新兴的可再生能源,具有环保、可持续等特点,因此在能源领域备受关注。
本文将从生物柴油燃料的制备和应用两个方面进行介绍和分析。
二、生物柴油的制备生物柴油可通过多种方法制备,如酯化法、酵母法等。
其中以酯化法最为常见。
1.酯化法酯化法是目前生物柴油主流的工业化生产方法。
该方法是将生物原料如植物油、动物脂肪等与甲醇在一定比例下进行酯化反应,即可得到生物柴油。
该方法在生产时要注重反应条件的控制,如反应温度、反应时间、催化剂种类和催化剂用量等,以提高转化率和产量。
2.酵母法酵母法是一种新的生物柴油制备方法。
该方法是利用酵母菌将生物原料进行酵解,形成甘油和脂肪酸,然后再进行酯化反应,得到生物柴油。
该方法有着独特的优势,如无需催化剂、无废水排放、反应时间短等。
目前,该方法仍在实验室阶段,尚未工业化生产。
3.其他方法生物柴油的制备还有其他的方法,如微藻制备、生物学降解、植物发酵等。
这些方法的特点各异,有些具有良好的环保性和可持续性,但目前尚未应用于大规模的生产中。
三、生物柴油的应用1.替代传统柴油生物柴油具有传统柴油相似的物理化学性质,因此可以替代传统柴油进行燃烧。
生物柴油在燃烧过程中产生的二氧化碳等有害物质比传统柴油少,从而降低了大气污染的程度并减少了温室气体的排放。
2.生物柴油混合燃料生物柴油与传统柴油可以混合使用,形成生物柴油混合燃料。
该混合燃料可以降低传统柴油的排放量,并且在使用过程中无需对现有的柴油发动机进行大的改造或升级,降低了使用成本。
3.其他应用生物柴油的应用不仅仅局限于燃烧。
生物柴油还可以用于制备其他化合物,如涂料、胶粘剂等,具有一定的应用前景。
此外,生物柴油本身在一些行业中也得到了应用,如农业、林业、渔业等领域。
四、生物柴油的发展前景未来,生物柴油将成为新型的低碳环保能源,具有广阔的应用前景。
生物柴油在能源领域的普及和应用,将有力促进可持续发展,改善环境,减少大气污染,保护生态环境。
生物柴油制造技术的研究和应用

生物柴油制造技术的研究和应用随着对传统化石能源的不断消耗和环境问题的不断加剧,新能源的研究和开发越来越受到重视。
其中,生物柴油作为一种可再生、环保的汽车燃料,备受关注。
一、生物柴油的概述生物柴油是由植物油、动物油或废弃油脂制成,是一种绿色、低碳、环保的能源,被广泛应用于柴油发动机和热水锅炉等领域。
与传统柴油相比,生物柴油具有较低的排放物含量,能够大大降低空气污染。
二、生物柴油的制备技术生物柴油的制备技术主要包括以下几种:1. 酯化法酯化法是生产生物柴油的主要方法之一。
其原理是通过将植物油或动物油与甲醇加入酸催化剂中进行酯化反应,将油分子中的羧酸与甲醇发生酯交换反应,生成甲酸甲酯和长链脂肪酸甲酯。
2. 脱水反应法脱水反应法是将植物油或动物油与异构化剂混合后,在高温高压下进行脱水反应,将油分子中的甘油去除,生成长链脂肪酸酯。
3. 超临界流体萃取法超临界流体萃取法是利用超临界CO2作为溶剂,将植物油或动物油中的油脂成分溶解出来,再通过加热脱去CO2,得到生物柴油。
三、生物柴油的应用生物柴油具有独特的环保性能和经济效益,被广泛应用于柴油发动机和热水锅炉等领域。
同时,生物柴油还可与传统柴油混合使用,提高燃料的质量,减少排放的有害物质,实现更加环保、节能的运行效果。
四、生物柴油生产的发展前景生物柴油是一种可再生能源,具有较强的环保意识和经济效益,在未来的能源结构中将扮演重要角色。
随着生物柴油生产与应用的不断发展,相关技术和设备的不断升级,生物柴油的市场前景将会快速扩大。
总之,生物柴油作为一种可再生、环保的汽车燃料,不仅具有良好的经济效益,还是未来能源结构的重要一环。
我们应该积极推动生物柴油技术的研究和应用,为建设美好、绿色的家园作出我们的贡献。
生物柴油的生产技术与工艺
生物柴油的生产技术与工艺随着全球经济的快速发展以及能源危机的出现,全球对于可再生清洁能源的需求越来越高。
在这样的背景之下,生物柴油逐渐成为了能源领域的重要之一。
生物柴油是一种可再生能源,与传统的石油能源相比,它能够更好地减少温室气体的排放,减少对环境的污染。
同时,生物柴油还是一种高附加值的能源产品,其生产和销售都拥有非常广泛的市场。
一、生物柴油的定义生物柴油,也称为生物燃料,是由动植物油或脂肪酸甲酯制成的燃料,它与传统的石油燃料相比,具有可再生、可降解的特性,以及更低的烟雾排放和更高的环保性能,同时生物柴油也更具有可持续性。
二、生物柴油的生产技术1. 醇法生产方法醇法是生产生物柴油最为常用和主流的一种方法,其主要流程为脂肪酸与甲醇反应生成脂肪酸甲酯(BDF),反应中需要添加催化剂。
催化剂通常采用碱类或酸类催化剂,其作用是促进酯化反应的进行。
BDF是由水解、脱水、甲醇脱出等组成的,并可以被直接用于发动机燃料。
2. 生物油直接燃烧法直接燃烧法是一种简单、方便的生产方法,其主要原料是由胶质(如油菜籽和锦鸡儿)或油类物质(如棕榈油和大豆油)提炼后获得的生物油。
生物油在燃烧时会产生二氧化碳和水,其中水可以被循环再利用。
而生物油直接燃烧法的缺点在于其原料的储存难度大以及热值相对较小。
3. 生物质/废弃物焚烧法生物质/废弃物焚烧法通常采用生物质或废弃物为原料,通过高温氧化反应将原料转化为燃料而制成生物柴油。
这种生产方法的优点在于相对于其他方法,它所使用的原料来源相对更加广泛,使用的过程更加环保,可以有效地减少酸性气体和颗粒物的排放。
三、生物柴油的工艺1. 原料处理生物柴油用的原料一般为植物油和脂肪酸。
在加工过程中,除去杂质和有毒物质是非常关键的。
要想获得高纯度的生物柴油,必须先对原料进行处理,提高其纯度,同时采取一些必要的预处理措施,如调整其酸值、水分等。
这样可以帮助提高反应的转化率,保证生产质量的稳定性,从而也可以提高产量。
生物柴油生产技术
生物柴油生产技术生物柴油是一种可再生能源,由植物油或动物脂肪转化而来。
它被广泛认为是替代传统石油燃料的一种环保可持续发展解决方案。
本文将介绍生物柴油的生产技术及其在可再生能源领域的重要性。
一、生物柴油生产技术概述生物柴油的生产技术主要包括原料准备、酯化反应、脱水、精炼和纯化等步骤。
1. 原料准备:生物柴油的原料可以是多种油料作物的籽粒、植物的果实或者动物脂肪。
这些原料需要经过脱水、去杂等处理,以提高生物柴油的产率和质量。
2. 酯化反应:将原料中的油脂与醇类(如甲醇或乙醇)加热并加入催化剂,触发酯化反应。
这个反应过程中,油脂中的三酸甘油酯与醇类反应生成生物柴油和副产物甘油。
3. 脱水:酯化反应后,产生的混合物中存在大量的水分。
通过脱水操作可以去除水分,提高生物柴油的纯度和稳定性。
4. 精炼和纯化:脱水后的混合物需要经过精炼和纯化的处理,以去除杂质和颜色等不纯物质。
这一步骤可采用冷沉淀、蒸馏和脱臭等方法。
二、生物柴油的可再生性和环保性生物柴油的生产过程基于植物油和动物脂肪,是一种可再生资源。
相比于传统石油燃料,生物柴油可以减少温室气体排放,降低空气污染和对化石能源的依赖。
此外,生物柴油在燃烧过程中释放的二氧化碳可以被作物吸收,形成一个循环闭环,减少了对全球气候变化的负面影响。
生物柴油还具有较低的毒性,不含硫和芳香烃等有害物质,对环境和人体健康影响较小。
因此,生物柴油的生产和使用是可持续发展的一种解决方案,有助于推动能源结构转型和环境保护。
三、生物柴油的应用前景由于其可再生性和环保性,生物柴油在能源领域的应用前景广阔。
1. 交通运输领域:生物柴油可直接替代传统石油柴油,用于汽车、公交车、卡车等交通工具的燃料。
很多国家已经开始采用生物柴油作为替代燃料,以减少空气污染和碳排放。
2. 发电行业:生物柴油可用于发电机组的燃料,为电网提供清洁、可再生的能源。
这对于推动电力行业的可持续发展具有重要意义。
3. 化工领域:生物柴油的合成还可以产生许多有用的化学品,如润滑剂、溶剂、涂料等。
生物柴油技术
生物柴油技术生物柴油技术作为一种新型的可再生能源,近年来备受关注。
生物柴油是通过生物质资源,如植物油、废弃食用油脂等,经过一系列的化学反应制备而成的替代传统石油柴油的燃料。
生物柴油技术的发展,对于缓解能源危机、减少碳排放、推动可持续能源发展等方面具有重要意义。
生物柴油的制备生物柴油的制备过程主要包括生物质资源的提取和转化两个步骤。
首先是生物质资源的提取,可以从植物油、动植物油脂、微藻等生物质资源中提取所需的油脂。
然后是转化过程,通过酯交换反应或酯化反应将生物质资源中的油脂转化成生物柴油。
整个制备过程需要考虑原料的选择、反应条件的控制以及产物的纯化等环节。
生物柴油的特点相对于传统石油柴油,生物柴油具有许多优点。
首先,生物柴油是一种可再生能源,相比于石油资源,其生产过程所消耗的能源和排放的二氧化碳更少,对环境的影响更小。
其次,生物柴油具有较高的氧含量,燃烧时产生的有害气体更少,对环境和人体健康更友好。
此外,生物柴油可以与传统石油柴油混合使用,对燃油设施的适应性较好。
生物柴油技术的挑战与发展尽管生物柴油技术具有许多优势,但也面临一些挑战。
比如,生物柴油的生产成本相对较高,限制了其大规模商业化应用。
同时,生物柴油的存储稳定性和燃烧性能等方面需要进一步改进。
未来,生物柴油技术仍然需要不断创新,降低生产成本,提高燃料质量,推动其广泛应用。
综上所述,生物柴油技术作为一种具有巨大潜力的可再生能源技术,对于实现能源可持续发展、减少碳排放等具有重要意义。
随着技术的不断进步和完善,相信生物柴油技术将在未来得到更广泛的应用和推广。
生物柴油生产工艺
生物柴油的制备方法主要有 4 种: 直接混合法( 或稀释法) 、微乳化法、高温热裂解法和酯交换法。
前两种方法属于物理方法, 虽简单易行, 能降低动植物油的黏度, 但十六烷值不高, 燃烧中积炭及润滑油污染等问题难以解决。
高温裂解法过程简单,没有污染物产生, 缺点是在高温下进行, 需催化剂,裂解设备昂贵, 反应程度难控制, 且高温裂解法主要产品是生物汽油, 生物柴油产量不高。
酯交换法又分为碱催化酯交换法、酸催化酯交换法、生物酶催化酯交换法和超临界酯交换法。
酯交换法是目前研究最多并已工业化生产的方法但生物酶催化酯交换法目前存在着甲酯转化率不高, 仅有40%~60%, 短链醇( 甲醇、乙醇) 对脂肪酶毒性较大,酶寿命缩短; 生成的甘油对酯交换反应产生副作用,短期内要实现生物酶法生产生物柴油, 还是比较困难。
超临界酯交换法由于设备成本较高, 反应压力、温度也高, 一程度上影响了该技术的工业化, 目前主要处于试验室研究阶段。
1 生物柴油生产工艺目前, 国内采用的原料主要有地沟油、酸化油、混合脂肪酸、废弃的植物和动物油等, 根据不同的原料应采用不同的工艺组合来生产生物柴油。
因目前国内企业的日处理量不是很大( 大多为5~50t /d 不等) , 酯交换( 酯化) 工序一般采用反应釜间歇式的; 分离、水洗工序有采用罐组间歇式的, 也有采离心机进行连续分离、水洗的。
1 地沟油制取生物柴油地沟油水分大、杂质含量多, 酸值较高, 酸值一般在20(KOH) /(mg/g) 油左右。
由地沟油制得的生物柴油颜色较深, 一般需经过脱色或蒸馏工序、添加剂调配工序处理。
碱法催化制备生物柴油工艺流程氢氧化钠→甲醇粗甘油→脱溶→精制→甘油↓↑地沟油→过滤→干燥→酯交换→分离→脱溶→水洗→干燥→生物柴油2酸化油制取生物柴油酸化油的机械杂质含量较大( 如细白土颗粒) , 酸值一般在80~160(KOH) /(mg/g) 油间, 国内有一步酸催化法和先酸催化后碱催化两步法来制备生物柴油。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生物柴油制备技术介绍
目前,生物柴油的制备方法主要有直接混合法、微乳化法、高温裂解法和酯交换法。
前两种方法属于物理方法,虽然简单易行,能降低动植物油的粘度,但十六烷值不高,燃烧中积炭及润滑油污染等问题难以解决。
高温裂解法过程简单,没有污染物产生,缺点是在高温下进行,需催化剂,裂解设备昂贵,反应程度难控制,且高温裂解法主要产品是生物汽油,生物柴油产量不高。
工业上生产生物柴油主要方法是酯交换法。
在酯交换反应中,油料主要成分三甘油酯与各种短链醇在催化剂作用下发生酯交换反应得到脂肪酸甲酯和甘油。
可用于酯交换的醇包括甲醇、乙醇、丙醇、丁醇和戊醇,其中最常用的是甲醇,这是由于甲醇价格较低,碳链短,极性强,能够很快与脂肪酸甘油酯发生反应,且碱性催化剂易溶于甲醇。
酯交换反应是可逆反应,过量的醇可使平衡向生成物的方向移动,所以醇的实际用量远大于其化学计量比。
反应所使用的催化剂可以是碱、酸或酶催化剂等,它可加快反应速率以提高产率。
酯交换反应是由一系列串联反应组成,三甘油酯分步转变为二甘油酯、单甘油酯,最后转变成甘油,每一步反应均产生一个酯。
酯交换法包括酸催化、碱催化、生物酶催化和超临界酯交换法等。
(1)酸催化法。
酸催化法用到的催化剂为酸性催化剂,主要有硫酸、盐酸和磷酸等。
在酸催化法条件下,游离脂肪酸会发生酯化反应,且酯化反应速率要远快与酯交换速率,因此该法适用于游离脂肪酸和水分含量高的油脂制备生物柴油,其产率高,但反应温度和压力高,甲醇用量大,反应速度慢,反应设备需要不锈钢材料。
工业上酸催化法受到关注程度远小于碱催化法。
(2)碱催化法。
碱催化法采用的催化剂为碱性催化剂,一般为NaOH、KOH、NaOH 以及有机胺等。
在无水情况下,碱性催化剂酯交换活性通常比酸性催化剂高。
传统的生产过程是采用在甲醇中溶解度较大的碱金属氢氧化物作为均相催化剂,它们的催化活性与其碱度相关。
碱金属氢氧化物中,KOH比NaOH具有更高的活性。
用KOH作催化剂进行酯交换反应典型的条件是:甲醇用量5%-21%,KOH用量0.1%~1%,反应温度25-60℃,而用NaOH 作催化剂通常要在60℃下反应才能得到相应的反应速率。
碱催化法可在低温下获得较高产率,但它对原料中游离脂肪酸和水含量却有较高要求。
在反应过程中,游离脂肪酸会与碱发生皂化反应产生乳化现象,所含水分则能引起酯水解,进而发生皂化反应,同时它也能减弱催化剂活性,结果会使甘油相和甲酯相变得难以分离,从而使反应后处理过程变得繁杂。
因此,以氢氧化钾、氢氧化钠、甲醇钾等碱催化剂时,常常要求油料酸价<1,水分<0.06%。
然而几乎所有油料通常都含有较高量脂肪酸和水分,为此工业上一般要对原料进行脱水、脱酸处理,或预酯化处理,即经脱水,然后分别以酸和碱催化荆分两步完成反应,显然,工艺复杂性增加成了本和能量消耗。
除了通常使用的无机碱作催化剂外,也有使用有机碱作催化剂的报道,常用的有机碱催化剂有有机胺类、胍类化合物。
传统酸碱催化法制备生物柴油时,油料转化率高,可以达到99%以上,但酸碱催化剂不容易与产物分离,产物中存在的酸碱催化剂必须进行中和和水洗,从而产生大量的污水,酸碱不能重复使用,带来较高的催化剂成本。
同时,酸碱催化剂对设备有较强的腐蚀性。
为解决产物与催化剂分离问题,固载酸、碱催化剂也是近年来的重要研究方向。
用于生物柴油生产的固体催化剂主要有树脂、粘土、分子筛、复合氧化物、硫酸盐、碳酸盐等。
固载碱土金属是很好的催化剂体系,在醇中的溶解度较低,同时又具有相当的碱度。
(3)酶催化法。
近年来,人们开始关注酶催化法制备生物柴油技术,即用脂肪酶催化动植物油脂与低碳醇间的酯化反应,生成相应的脂肪酸酯。
脂肪酶来源广泛,具有选择性、底物与功能团专一性,在非水相中能发生催化水解、酯合成、转酯化等多种反应,且反应条
件温和,无需辅助因子,利用脂肪酶还能进一步合成其他一些高价值的产品,包括可生物降解的润滑剂以及用于燃料和润滑剂的添加剂,这些优点使脂肪酶成为生物柴油生产中一种适宜催化剂。
用于合成生物柴油脂肪酶主要是酵母脂肪酶、根霉脂肪酶、毛霉脂肪酶、猪胰脂肪酶等。
酶法合成生物柴油的工艺包括间歇式酶催化酯交换和连续式酶催化酯交换。
在生物柴油的生产中直接使用脂肪酶催化也存在着一些问题。
脂肪酶在有机溶剂中易聚集,因而催化效率较低。
目前,脂肪酶对短链脂肪醇的转化率较低,不如对长链脂肪醇的酯化或转酯化有效,而且短链醇对酶有一定的毒性,使酶的使用寿命缩短。
脂肪酶的价格昂贵,生产成本较高,限制了其在工业规模生产生物柴油中的应用。
为解决上述问题,可采用两种方法,一是采用脂肪酶固定化技术,以提高脂肪酶的稳定性并使其能重复利用。
二是将整个能产生脂肪酶的细胞作为生物催化剂。
(4)超临界积交换法。
超临界酯交换法是近年来才发展起来的制备生物柴油方法。
在超临界流体参与下进行酯交换反应。
在反应中,超临界流体既可作为反应介质,也可直接参加反应。
超临界效应能影响反应混合物在超临界流体中的溶解度、传质和反应动力学,从而提供了一种控制产率、选择性和反应产物回收的方法。
若把超临界流体用作反应介质时,它的物理化学性质,如密度、粘度、扩散系数、介电常数以及化学平衡和反应速率常数等,常能用改变操作条件而得以调节。
充分运用超临界流体的特点,常使传统的气相或液相反应转变成一种全新的化学过程,而大大提高其效率。
超临界法酯交换法合成生物柴油反应在间歇反应器中进行,温度为350-400℃,压力为45-65MPa,菜籽油与甲醇摩尔比为1∶42。
研究发现,经超临界处理甲醇在无催化剂存在下能很好与菜籽油发生酯交换反应,其产率高于普通碱催化过程。
超临界制备法和传统催化法的反应机理相同,传统方法是在低温下使用催化剂进行催化,而超临界制备法是在高温高压下反应无需催化剂。
传统方法的反应时间为1-8h,而超临界制备法只需2-4 min,大大缩短了反应时间,可以进行连续操作。
传统方法生产过程中有皂化产物生成,而超临界制备法则不会有皂化产物,从而简化了产品的后续处理过程,降低了生产成本。
比传统方法相比,超临界制备法工艺流程简单,产品收率高。
可见,超临界制备法和传统方法相比具有很大的优势。
但是由于超临界制备生物柴油的方法需要在高温高压条件下进行,导致较高的生产费用和能量消耗,使得工业化困难,需要进一步研究开发。