网络控制系统H∞鲁棒控制器设计
基于混合灵敏度的H∞鲁棒控制器的设计仿真

clcclose allK=31.31b0=50.88b1=57.81Ag=[0 1;-b0 -b1]Bg=[0;1]Cg=[K 0]Dg=[0];[num,den]=ss2tf(Ag,Bg,Cg,Dg) Gs=tf(num,den)[z,p,k]=tf2zp(num,den)Gs1=zpk(z,p,k)%W1S=tf([0.2 3],[1 0.001])%W2S=tf([0.002],[1])%W3S=tf([0.002 0.00001],[1]) %W1S=tf([0.2 4],[1 0.002])%W2S=tf([0.003],[1])%W3S=tf([0.001 0.00001],[1]) %加权函数W1S=tf([0.2 10],[1 0.001])W2S=tf([0.001],[1])W3S=tf([0.001 0.00001],[1]) W3NUM=W3S.num{1,1};W3DEN=W3S.den{1,1};i=0;j=0;a=length(W3NUM);b=length(W3DEN);for c=1:1:aif W3NUM(c-i)~=0break;elseW3NUM(c-i)=[];i=i+1;endendfor d=1:1:bif W3DEN(d-j)~=0break;elseW3DEN(d-j)=[];j=j+1;endendGg=ss(Ag,Bg,Cg,Dg);[Aw1,Bw1,Cw1,Dw1]=tf2ss(W1S.num{1,1},W1S.den{1,1});[Aw2,Bw2,Cw2,Dw2]=tf2ss(W2S.num{1,1},W2S.den{1,1});if Polyorder(W3NUM)>Polyorder(W3DEN)[Q,R]=deconv(W3NUM,W3DEN)W3poly=Q[Aw3,Bw3,Cw3,Dw3]=tf2ss(R,W3DEN)else[Aw3,Bw3,Cw3,Dw3]=tf2ss(W3NUM,W3DEN)W3poly=[]endW1=[Aw1,Bw1;Cw1,Dw1]W2=[Aw2,Bw2;Cw2,Dw2]W3=[Aw3,Bw3;Cw3,Dw3][A,B1,B2,C1,C2,D11,D12,D21,D22]=augss(Ag,Bg,Cg,Dg,Aw1,Bw1,Cw1,Dw1,Aw2,Bw2,Cw2,Dw2,A w3,Bw3,Cw3,Dw3,W3poly)G=[A,B1,B2;C1,D11,D12;C2,D21,D22];[Acp,Bcp,Ccp,Dcp,Ac1,Bc1,Cc1,Dc1]=hinf(A,B1,B2,C1,C2,D11,D12,D21,D22)[knum,kden]=ss2tf(Acp,Bcp,Ccp,Dcp) %控制器的状态空间形式转换成传递函数形式K=tf(knum,kden) %控制器的传递函数[z,p,k]=tf2zp(knum,kden) %控制器的传递函数转换成零极点增益形式Kzpk=zpk(z,p,k)%{[gnum,gden]=ss2tf(Ag,Bg,Cg,Dg)Gs=tf(gnum,gden) %标称系统的传递函数P=nd2sys(gnum,gden,1) %标称系统的系统矩阵形式K1=nd2sys(knum,kden,1) %鲁棒控制器的系统矩阵形式[type,out,in,n]=minfo(P)I=eye(out)S=minv(madd(I,mmult(P,K1))) %灵敏度函数(1+GK)^-1 ,其中P和K1都是系统矩阵的形式T=msub(I,S)W1S1=nd2sys(W1S.num{1,1},W1S.den{1,1},1)INVW1S1=minv(W1S1) %加权函数W1的逆W1^-1INVW3S1=nd2sys(W3S.den{1,1},W3S.num{1,1},1) %加权函数W3的逆W3^-1w=logspace(-5,5,500)Sw=vsvd(frsp(S,w)) %灵敏度函数的频域响应的奇异值Tw=vsvd(frsp(T,w)) %补灵敏度函数的频域响应的奇异值INVW1S1w=vsvd(frsp(INVW1S1,w))INVW3S1w=vsvd(frsp(INVW3S1,w))figure(1)vplot('liv,lm',Sw,'r-',INVW1S1w,'b--')title('Singular values of sensivity function S and W1^{-1}')set(gca,'color','w')xlabel('Frequency(rad/sec)')ylabel('Amplitude')grid onfigure(2)vplot('liv,lm',Tw,'r-',INVW3S1w,'b--')title('Singular values of complementary sensivity function T and W3^{-1}')set(gca,'color','w')xlabel('Frequency(rad/sec)')ylabel('Amplitude')grid on%}w=logspace(-5,5,500);figure(3)bode(W1S,'-b',W3S,'-r',w)legend('W1','W3')title('Bode Diagram Of Weighed Function W1 and W3')grid on[Acg,Bcg,Ccg,Dcg]=series(Acp,Bcp,Ccp,Dcp,Ag,Bg,Cg,Dg)[As,Bs,Cs,Ds]=feedbk(Acg,Bcg,Ccg,Dcg,1) %灵敏度函数的状态空间(1+GK)^-1 [At,Bt,Ct,Dt]=feedbk(Acg,Bcg,Ccg,Dcg,2) %补灵敏度函数的状态空间GK(1+GK)^-1svs=sigma(As,Bs,Cs,Ds,w);svs=20*log10(svs);[Aw1i,Bw1i,Cw1i,Dw1i]=unpck(minv(pck(Aw1,Bw1,Cw1,Dw1)));svw1i=sigma(Aw1i,Bw1i,Cw1i,Dw1i,w);svw1i= 20*log10(svw1i);figure(4)semilogx(w,svw1i,'b--',w,svs,'r-')title('Singular values of sensivity function S and W1^{-1}')xlabel('Frequency(rad/sec)')ylabel('Amplitude(db)')legend('W1^{-1}','S');grid on[Aw3i,Bw3i,Cw3i,Dw3i]=tf2ss(W3S.den{1,1},W3S.num{1,1})svw3i=sigma(Aw3i,Bw3i,Cw3i,Dw3i,w);svw3i=20*log10(svw3i);svt=sigma(At,Bt,Ct,Dt,w);svt=20*log10(svt);figure(5)semilogx(w,svw3i,'b--',w,svt,'r-')title('Singular values of complementary sensivity function T and W3^{-1}')xlabel('Frequency(rad/sec)')ylabel('Amplitude(db)')legend('W3^{-1}','T');grid onsvtt=sigma(Ac1,Bc1,Cc1,Dc1,1,w);svtt=20*log10(svtt);figure(6)semilogx(w,svtt,'b-')xlabel('Frequency(rad/sec)')ylabel('Amplitude(db)')title('Frequency Characteristic of Closed-Loop System Twz') grid onsvcp=sigma(Acp,Bcp,Ccp,Dcp,1,w);svcp=20*log10(svcp);figure(7)semilogx(w,svcp,'b-')xlabel('Frequency(rad/sec)')ylabel('Amplitude(db)')title('Frequency Characteristic of H∞Controller')grid ont=[0:0.01:15];setvalue=8y=setvalue*step(At,Bt,Ct,Dt,1,t);figure(8)plot(t,y,'-b')axis([0,10,0,10])xlabel('Time(s)')ylabel('L/Min)')grid onfigure(9)bode(Ag,Bg,Cg,Dg,1,w)title('Bode Diagram Of The Plant')grid on[cnum,cden]=ss2tf(At,Bt,Ct,Dt,1)figure(10)step(Ag,Bg,Cg,Dg,1)grid on。
含有不确定时延网络控制系统的鲁棒H_∞控制

中国矿业大学 信息与 电气工程学院 , 苏 徐州 2 10 江 208
S h o f I fr t n a d E e t c l E gn e i g Ch n ie s y o n n n e h oo y, z o Ja g u 2 1 0 , h n c o lo n o mai n l cr a n i e r , i a Unv r i f Mi i g a d T c n lg Xu h u, in s 2 0 8 C i a o i n t
C m u rE gn ei n p l ao s o p t n ier g a dA pi t n 计算机工程与应用 e n ci
2 1 ,6 1 ) 2 1 0 0 4 (8 1
含有不 确 定时延 网络控制 系统 的鲁棒 日∞ 控制
张 倩 , 西进 郭
Z A G Q a , U ij H N in G O X —i n
A nu ei a smulto e a p e m rc l i a in x m l wih t M a lb h ws ha h de in ta s o t t t e sg m e o i ef ci e h t d s fe tv .
Ke o d :N t ok C nrlS s m( C ) rn o i e d l ; c nrld n mi o tu fe b c y w r s e r o t y t N S ; d m t - e y 日 o t ;y a c up t e d a k w o e a m a o
网络控制系统的鲁棒H∞容错控制器设计

H 中 图分 类 号 :T 2 3 P7 文 献标 识码 :A 文章 编号 :10 0 0 ( 0 8 增 刊 (Ⅱ)0 8 -5 0 1— 5 5 2 0 ) -1 50
Ro u tH f u tt lr n o t o lr d sg o e wo k d c n r ls se b s a l-o e a t c n r l e i n f r n t r e o t o y t m e
c n o plm e trt i e rz t n ag rt m . Fi al o e c m e n a y ln a iai l o i i o h nl y, t e n m e ia xa p e a d i u ai n a e h u rc le m l n sm lto s h v
A s at T epo l o b t c : h rbe fH futoea t o t l r eino ew re o t lss ms( S r m a ltlrn nr l s f t ok dc nr yt — c oe d g n o e NC )
h sb e t d e a e n su i d.Ba e n a NCS mo e t he ef c so e a n aa pa ke r p ti o v d, s do d lwi t fe t fd ly a d d t c td o ou nv l e h
a m o e p a t a n e r lc s cu t al r s i o i e e r r c i la d g ne a a e ofa t aorf iu e s c nsd r d. By i to u i e i t g a n — c n d cng t n e r lie r h q aiy,t e o us sa l y c n ii n r b an d ba e o a u v Kr a o ki f n t n l ul t h r b t H tbi t o d to s a e o t ie s d n Ly p no s s vs i u ci a i o
最优控制问题的鲁棒控制算法设计

最优控制问题的鲁棒控制算法设计最优控制问题作为控制理论的重要研究领域,涉及到在给定约束条件下,寻找使性能指标最优化的控制策略。
然而,现实中的控制系统常常会受到参数的不确定性和外部干扰的影响,这就需要设计一种鲁棒控制算法,以提高控制系统的稳定性和鲁棒性。
一、最优控制问题简介最优控制问题是研究在给定约束条件下,求解性能函数最优的控制策略的问题。
在控制理论中,最优控制可以分为静态最优控制和动态最优控制,其中动态最优控制又分为无模型和具有模型的控制。
静态最优控制是指在给定约束条件下,通过调节系统的输入使得性能指标最优化。
常用的方法有变分法、极大极小原理等。
动态最优控制则考虑到系统的动力学特性,通过在一段时间内控制系统的状态变量,使得性能指标在这段时间内最优化。
无模型的动态最优控制主要采用最优控制算法,如最优化理论、线性二次型控制等;具有模型的动态最优控制则使用最优化理论中的动态规划方法。
二、鲁棒控制算法设计鲁棒控制算法是为了应对控制系统中的参数不确定性和外部干扰而设计的一种控制策略。
它能够使得控制系统不受扰动的影响,保持稳定性和性能。
1. H∞控制算法H∞控制是一种常用的鲁棒控制算法,它通过优化系统的H∞性能指标来设计控制器。
H∞控制的基本思想是在系统的输入和输出之间引入一个H∞范数,以保证系统对内外干扰的鲁棒性。
2. μ合成算法μ合成算法是一种基于频率域的鲁棒控制算法,它通过优化系统的鲁棒稳定裕度指标来设计控制器。
μ合成算法首先确定系统的不确定性范围,然后通过搜索合适的控制器来最小化系统对不确定性的敏感度。
3. 小波神经网络算法小波神经网络是一种结合小波分析和神经网络的算法,它可以有效地应对控制系统中的不确定性和非线性。
小波神经网络算法通过训练网络的权重和阈值来实现控制系统的稳定性和鲁棒性。
三、鲁棒控制算法的应用鲁棒控制算法在实际控制系统中有着广泛的应用。
下面以飞行器控制系统为例,说明鲁棒控制算法的应用。
最优控制问题的鲁棒H∞控制

最优控制问题的鲁棒H∞控制最优控制问题是控制理论中的一个重要研究领域,其目标是设计最优的控制策略,使得系统在给定的性能指标下达到最佳的控制效果。
然而,在实际应用中,系统参数的不确定性以及外部干扰等因素往往会对控制系统产生严重影响,导致传统最优控制策略难以在这些不确定因素下取得令人满意的控制效果。
为了解决上述问题,鲁棒控制方法被引入到最优控制问题中。
鲁棒控制的主要思想是设计一个能够对系统参数不确定性和外部干扰具有抗扰能力的控制策略,以保证系统在面临这些不确定性因素时仍能保持良好的控制性能。
其中,H∞控制是鲁棒控制的一种重要方法。
H∞控制是一种基于H∞优化理论的控制方法,其目标是设计一个稳定的控制器,使得系统输出对于外部干扰和参数不确定性具有最大的衰减能力。
H∞控制方法能够针对不确定性系统进行鲁棒性分析,并在饱和脉冲干扰和噪声扰动等情况下仍能保持系统的稳定性和性能。
在具体的系统应用中,鲁棒H∞控制方法常常需要进行控制器的设计和参数调整。
控制器的设计一般采用线性矩阵不等式(LMI)方法,在满足一定约束条件的前提下求解最优的控制器参数。
参数调整则可以采用各种数学优化算法,如内点法、遗传算法等,以达到使系统的H∞控制性能最优化的目标。
鲁棒H∞控制方法在许多领域中得到了广泛应用。
例如,在机器人控制、飞行器控制、电力系统控制等领域中,鲁棒H∞控制方法能够有效地抑制参数不确定性和外部干扰,提高系统的鲁棒性和控制性能。
此外,鲁棒H∞控制方法还能够应用于网络控制系统、混合控制系统等复杂系统中,具有广泛的应用前景。
总之,最优控制问题的鲁棒H∞控制方法在解决系统参数不确定性和外部干扰等问题时具有重要的研究意义和实际应用价值。
通过设计稳定的控制器并考虑系统的鲁棒性,能够有效提高控制系统的性能和稳定性,为实际工程应用提供了可靠的控制方案。
一类不确定网络化控制系统的H_∞鲁棒完整性设计

Ab ta t s r c :Th r b e o o u tH。 a l t lr n o to n a ca so ewo k d c n r ls se t ep o lm fr b s 。f ut oe a tc n r li ls fn t r e o to y tmswi - h
LIW e,JANG n -in HANG inq a i I Do gna ,Z Ja -u n,W NAG a - u n Xiog a g
( o l eo lef n fr t nE i n e ig a z o i. f c ., a z o 7 0 5 ,C ia C l g f e t  ̄l d I o ma i  ̄ i ern ,L n h u Un v o h L n h u 3 0 0 hn ) e E i a n o g Te
i h a eo a l i t c u t r rta s u e s n t ec s ffu t n i a t a o so rn d c r .Be ie ,t ed sg p r a h o a l t lrn o tolr s sd s h e in a p o c ffu t o e a tc n r l — e
中图分 类号 :T 23 P 7 文献标识码 : A
Ro u tH 。 o pltn s e i n f ra ca so nc ra n b s 。c m ee e sd sg o l s fu e t i
ne wo ke o t o y t m s t r d c n r ls s e
wa o v n e tyo ti e ym e n f ou in o ie rm arx ie u l y st F n l sc n e in l b an d b a so l t fl a ti n q ai e. i al s o n t y,t efa ii t n h e sbl y a d i e fcie e so hsme h dwe ev rf d wih a l sr tv i ua in fe t n s ft i t o r e i e t n i u ta iesm lto . v i l
不确定离散网络控制系统的H∞鲁棒控制

c a l l e d n e t w o r k e d c o n t r o l s y s t e ms ( N C S s ) .I t h a s b e e n
wi d e l y a p p l i e d i n i n d u s t r i a l c o n t r o l n e t wo r k, e l e c t r i c a l
⑥
2 0 1 3 S c i . T e c h . E n g r g .
不确定 离散 网络控制 系统的 日∞鲁棒控制
周 霞 屈 百 达
( 江南大学轻工过程先进控制教育部重点实验室 , 无锡 2 1 4 1 2 2 )
摘
要 研 究一种不确定离散 网络控制 系统( N C S s ) 的 日 鲁棒控制 。将 带有有界 网络诱 导和数据 包丢失 的网络控制 系统建
n o n — i d e a l n e t wo r k c o n d i t i o n .Pe ng _ 6 J e mp l o y e d t he f r e e we i g h t i n g ma t r i c e s a n d t he c o n v e x i t y o f t h e f u n c t i o n t o
表 明 了所 提 出方 法 的 有 效 性 。
关键词 控制 系统
中 图法 分类 号
日 鲁棒控制
反 凸技 术
A
线性矩 阵不等式
T P 3 9 3 . 0 2 ;
文献标志码
F e e db a c k c o n t r o l s y s t e ms wh e r e i n t h e c o n t r o l
最优控制问题的鲁棒H∞控制设计

最优控制问题的鲁棒H∞控制设计最优控制理论在工程系统控制中具有重要的应用价值。
然而,传统的最优控制方法在系统模型存在不确定性或外部干扰的情况下可能无法有效应对。
为了克服这一问题,鲁棒控制方法被引入到最优控制中,并且在实际应用中取得了显著的成果。
本文将探讨最优控制问题的鲁棒H∞控制设计方法及其应用领域。
一、鲁棒控制概述鲁棒控制是一种针对不确定性或外部干扰具有克服能力的控制方法。
其目标是在不确定性环境中实现系统稳定性和性能要求。
最常见的鲁棒控制方法之一是H∞控制,该方法通过优化问题来设计控制器,以抑制系统中不确定性的影响。
二、最优控制问题最优控制问题旨在通过选择最佳控制策略来实现系统的最优性能。
在没有不确定性时,可以使用动态规划、变分法等方法求解最优控制问题。
然而,在实际应用中,系统往往存在参数不确定性或外部干扰,导致最优控制问题变得更加复杂。
因此,需要引入鲁棒控制方法来解决这些问题。
三、鲁棒H∞控制设计方法鲁棒H∞控制方法是一种常用的鲁棒控制方法,其基本思想是在保证系统稳定性的前提下,优化系统对外部干扰的抑制能力。
鲁棒H∞控制设计问题可以被描述为一个优化问题,目标是最大化系统的H∞性能指标,并且确保控制器对系统模型不确定性具有鲁棒性。
为了实现鲁棒H∞控制设计,可以采用两种常用的方法:线性矩阵不等式(LMI)方法和基于频域分析的方法。
LMI方法通过求解一组线性矩阵不等式来得到控制器参数,从而实现系统的鲁棒H∞控制设计。
基于频域分析的方法则通过频域特性分析来设计控制器,以实现系统对不确定性的鲁棒性。
四、鲁棒H∞控制设计的应用领域鲁棒H∞控制设计方法在工程领域有广泛的应用。
它可以应用于飞行器姿态控制、机器人控制、智能电网控制等多个领域。
以飞行器姿态控制为例,鲁棒H∞控制设计可以有效提高飞行器对外部干扰的鲁棒性,并且保证姿态跟踪性能。
在机器人控制领域,鲁棒H∞控制设计可以提高机器人对环境不确定性的抑制能力,以实现精确的轨迹跟踪。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
鲁棒控 制器设 计
陆仲达 , 田群宏 , 王俊科 , 徐凤霞
( 齐 齐哈 尔大学 计算机 与控 制工程 学院 , 黑龙江 齐齐哈 尔 1 6 1 0 0 6 )
摘
要:针对存在不确定时延的网络控制系统, 将未知扰动和建模误差转换为满足给定约束的矩阵, 建立具有参
数 不确定性 的 网络控制 系统模型 。基 于 L y a p u n o v 稳定 性理论 证 明控 制 系统渐 近稳 定 , 结合 线性矩 阵 不等 式完成 日 鲁棒控 制器设计 。通 过仿真 实验 , 比较在 不 同时延条 件 下 系统的状 态响应 曲线 , 结果 证 明所设 计 的 鲁棒控
r o b u s t H c o n t r o l l e r b y u s i n g L MI .I n t h e s i mu l a t i o n e x p e r i me n t , i t c o mp a r e d t h e s t a t e r e s p o n s e u n d e r d i v e r s e t i me d e l a y c o n d i — t i o n s , a n d t h e r e s u l t s s h o w t h a t t h e r o b u s t H c o n t r o l l e r h a s t h e r o b u s t n e s s a n d c a n s o l v e t h e u n c e r t a i n t i e s o f mo d e l i n g e r r o r , d i s — t u r b a n c e a n d t i me d e l a y or f t h e c o n t r o l s y s t e ms .
第3 1 卷第 2 期
2 0 l 4年 2月
计 算 机 应 用 研 究
Aபைடு நூலகம் p l i c a t i o n Re s e a r c h o f Co mp u t e r s
Vo 1 . 3 1 No . 2 F e b . 2 0 1 4
网络控 制 系统
Ke y w o r d s :u n c e r t a i n t i m e d e l a y ; L y a p u n o v f u n c t i o n ; l i n e a r m a t r i x i n e q u a l i t y( L MI ) ; r o b u s t H c o n t r o l l e r ; r o b u s t n e s s
制器可以解决系统中存在不确定建模误差、 干扰和时延等问题, 具有一定的鲁棒性。 关键词 :不确定时延; L y a p u n o v 函数; 线性矩阵不等式; H 鲁棒控制器; 鲁棒性
中图分类 号 :T P 2 7 3 文献标志码 :A 文章编号 :1 0 0 1 — 3 6 9 5 ( 2 0 1 4 ) 0 2 — 0 4 7 2 — 4 0
d o i : 1 0 . 3 9 6 9 / j . i s s n . 1 0 0 1 — 3 6 9 5 . 2 0 1 4 . 0 2 . 0 3 5
De s i g n o f r o b u s t H c o n t r o l l e r f o r n e t wo r k e d c o n t r o l s y s t e ms
L U Z h o n g — d a , T I A N Q n n — h o n g , WA N G J u n — k e , X U F e n g — x i a
( C o l l e g e o f C o m p u t e r &C o n t r o l E n g i n e e r i n g, Q i q i h a r U n i v e r s i t y ,Q i q i h a r H e i l o n g i f a n g 1 6 1 0 0 6 , C h i n a )
Abs t r ac t : Fo r t h e n e t wo r k e d c o n t r o l s y s t e ms wi t h u n c e r t a i n t i me de l a y,t h e un k n o wn d i s t u r b a n c e s a n d t h e mo d e l i n g e r r o r we r e t r a n s f o r me d i n t o t h e ma t r i x wh i c h me t t he g i v e n c o ns t r a i n t c o n d i t i o n.t h i s p a p e r s e t u p t h e mo d e l o f p a r a me t e r u nc e r t a i nt y ne t — wo r k e d c o n t r o l s y s t e ms . Ba s e d o n Ly a pu n o v s t a bi l i t y t h e o r y, i t pr o v e d t h e a s y mp t o t i c s t a b i l i t y f o r t h e s y s t e m ,a nd de s i g n e d t h e