鲁棒控制与鲁棒控制器设计..
鲁棒控制理论 第六章

鲁棒控制理论第六章引言鲁棒控制是一种应对系统参数变化、外部干扰、测量噪声等不确定性因素的控制方法。
在工程控制中,系统的不确定性是常见的,对系统的稳定性和性能造成了挑战。
鲁棒控制理论通过设计具有鲁棒性的控制器,可以保证系统在存在不确定性的情况下仍能满足一定的性能要求。
本文将介绍鲁棒控制的基本概念、设计方法和应用示例等内容。
鲁棒性分析鲁棒性分析是鲁棒控制的基础,通过分析系统的不确定性对控制器性能的影响,评估控制器的鲁棒性。
鲁棒性分析一般包括稳定性分析和性能分析两个方面。
稳定性分析稳定性是控制系统最基本的要求。
对于鲁棒控制系统,稳定性分析主要关注系统的稳定性边界,即系统参数变化在何种范围内仍能保持稳定。
常用的鲁棒稳定性分析方法包括结构化奇異值理论和小结构摄动方法等。
性能分析除了稳定性,控制系统的性能也是重要的考虑因素。
性能分析通常包括鲁棒性能和鲁棒鲁棒性能两个方面。
鲁棒性能是指系统在存在不确定性的情况下,能否满足一定的性能指标。
通过分析不确定性对闭环系统传递函数的影响,可以评估系统的鲁棒性能。
鲁棒鲁棒性能是指系统在存在不确定性的情况下,能够满足给定的鲁棒鲁棒性能规范。
鲁棒鲁棒性能设计方法包括鲁棒饱和控制器设计方法和鲁棒H-infinity控制器设计方法等。
鲁棒控制设计鲁棒控制设计是鲁棒控制理论的核心内容。
鲁棒控制设计方法包括鲁棒控制设计和鲁棒控制设计方法。
鲁棒控制设计方法鲁棒控制设计方法是通过设计鲁棒控制器来实现鲁棒控制的方法。
鲁棒控制设计方法通常分为线性鲁棒控制和非线性鲁棒控制两类。
线性鲁棒控制设计方法中,常用的方法包括μ合成方法、玛尔科夫参数跟踪方法,以及基于奇異值方法的设计等。
非线性鲁棒控制设计方法中,常用的方法包括滑模控制、自适应控制、模糊控制和神经网络控制等。
鲁棒控制设计鲁棒控制设计是指将鲁棒控制理论应用于实际控制系统中,并进行控制器设计的过程。
鲁棒控制设计需要考虑系统的性能要求、鲁棒性要求和控制器结构等因素。
鲁棒控制课件

.
• 结构奇异值 实际的被控对象可以看作是对象模型 集合 G 中一个元素。结构不确定性Δ 描 述系统模型与标称模型的偏离程度。为 了评价闭环系统的稳定性和性能,可以 将闭环系统分为两部分:广义标称对象 M ( s )和不确定性Δ ,得到如图 所示的M −Δ 结构。
传递函数矩阵 M ( s )包含对象的标称模型、控制器和不确定性的加 权函数。摄动块Δ 是块 对角矩阵,它包含各种类型的不确定性摄动。Δ 结构是根据实际问 题的不确定性和系统所需要 的性能指标来确定的,它属于矩阵集 Δ ( s)。这个集合包含三部分的 块对角结构: (1)摄动块的个数 (2)每个摄动子块得类型 (3)每个摄动子块的维数 本文考虑两类摄动块:重复标量摄动块和不确定性全块。前者表示 对象参数不确定性,后 者表示对象动态不确定性。 定义块结构 Δ ( s)为 {}
实际应用
非线性系统设计的基本问题是我们仅知道被 控对象的部分动态信息,无法获得被控对象的精 确模型,所建立的模型要反映实际的被控对象,就 必然存在未知项和不确定项;如果在控制器设 计阶段没有恰当地处理这些不确定项,可能会使 得被控系统的性能明显地恱化,甚至造成整个闭 环系统不稳定。控制器必须能够处理这些未知 项戒不确定项,因而估计和鲁棒是设计一个成功 的控制器的关键。自适应控制和鲁棒控制及其 相结合的控制器是能够处理这些未知项戒不确 定项,以获得期望的暂态性能和稳态跟踪精度行 之有效的方法。
研究问题:
• 鲁棒控制器问题是控制系统 设计中鱼待解决的问题之一, 它是在所描述的被控对象不 确定性允许范围内,综合其控 制律,使系统保持稳定和性能 鲁棒. • 鲁棒控制理论包括鲁棒性分 析和鲁棒设计两大类问题. • 由于系统中的不确定性对系 统的性能能否保持有决定性 的影响,且高性能指标的保持 要求高精度的标称模型.
现代控制理论鲁棒控制资料课件

鲁棒优化算法的应用
01
02
03
鲁棒优化算法是一种在不确定环 境下优化系统性能的方法。
鲁棒优化算法的主要思想是在不 确定环境下寻找最优解,使得系 统的性能达到最优,同时保证系 统在不确定因素影响下仍能保持 稳定。
鲁棒优化算法的主要应用领域包 括航空航天、机器人、能源系统 、化工过程等。
05
现代控制理论鲁棒控制实 验及案例分析
现代控制理论鲁棒控制的成就与不足
• 广泛应用在工业、航空航天、医疗等领域
现代控制理论鲁棒控制的成就与不足
01
02
不足
控制系统的复杂度较高,难以设 计和优化
对某些不确定性和干扰的鲁棒性 仍需改进
03
实际应用中可能存在实现难度和 成本问题
04
未来研究方向与挑战
研究方向
深化理论研究,提高鲁棒控制器 的设计和优化能力
线性鲁棒控制实验
线性鲁棒控制的基本原理
01
介绍线性鲁棒控制的概念、模型和控制问题。
线性鲁棒控制实验设计
02 说明如何设计线性鲁棒控制实验,包括系统模型的建
立、鲁棒控制器的设计和实验步骤。
线性鲁棒控制实验结果分析
03
对实验结果进行分析,包括稳定性、性能和鲁棒性能
等。
非线性鲁棒控制实验
非线性鲁棒控制的基本原理
03
线性系统的分析与设计:极点配置、最优控制和最优
估计等。
非线性控制系统
1
非线性系统的基本性质:非线性、不稳定性和复 杂性。
2
非线性系统的状态空间表示:非线性状态方程和 输出方程。
3
非线性系统的分析与设计:反馈线性化、滑模控 制和自适应控制等。
离散控制系统
鲁棒控制原理及应用举例

鲁棒控制原理及应用举例摘要:本文简述了鲁棒控制的由来及其发展历史,强调了鲁棒控制在现代控制系统中的重要性,解释了鲁棒控制、鲁棒性、鲁棒控制系统、鲁棒控制器的意义,介绍了鲁棒控制系统的分类以及其常用的设计方法,并对鲁棒控制的应用领域作了简单介绍,并举出实例。
关键词:鲁棒控制鲁棒性不确定性设计方法现代控制系统经典的控制系统设计方法要求有一个确定的数学模型。
在建立数学模型的过程中,往往要忽略许多不确定因素:如对同步轨道卫星的姿态进行控制时不考虑轨道运动的影响,对一个振动系统的控制过程中不考虑高阶模态的影响等。
但经过以上处理后得到的数学模型已经不能完全描述原来的物理系统,而仅仅是原系统的一种近似。
对许多要求不高的系统,这样的数学模型已经能够满足工程要求。
然而,对于一些精度和可靠性要求较高的系统,如导弹控制系统设计,若采用这种设计方法,就会浪费了大量的人力物力在反复计算数弹道、调整控制器参数以及反复试射上。
因此,为了解决不确定控制系统的设计问题,科学家们提出了鲁棒控制理论。
由于鲁棒控制器是针对系统工作的最坏情况而设计的,因此能适应所有其它工况,所以它是解决这类不确定系统控制问题的有力工具。
鲁棒控制(Robust Control)方面的研究始于20世纪50年代。
上世纪60年代,状态空间结构理论的形成,与最优控制、卡尔曼滤波以及分离性理论一起,使现代控制理论成了一个严密完整的体系。
随着现代控制理论的发展,从上世纪80年代以来,对控制系统的鲁棒性研究引起了众多学者的高度重视。
在过去的20年中,鲁棒控制一直是国际自控界的研究热点。
通常说一个反馈控制系统是鲁棒的,或者说一个反馈控制系统具有鲁棒性,就是指这个反馈控制系统在某一类特定的不确定性条件下具有使稳定性、渐进调节和动态特性保持不变的特性,即这一反馈控制系统具有承受这一类不确定性影响的能力。
设被控系统的数学模型属于集合D,如果系统的某些特性对于集合U中的每一对象都保持不变,则称系统具有鲁棒性。
鲁棒控制原理及应用举例.doc

鲁棒控制原理及应用举例摘要:本文简述了鲁棒控制的由来及其发展历史,强调了鲁棒控制在现代控制系统中的重要性,解释了鲁棒控制、鲁棒性、鲁棒控制系统、鲁棒控制器的意义,介绍了鲁棒控制系统的分类以及其常用的设计方法,并对鲁棒控制的应用领域作了简单介绍,并举出实例。
关键词:鲁棒控制鲁棒性不确定性设计方法现代控制系统经典的控制系统设计方法要求有一个确定的数学模型。
在建立数学模型的过程中,往往要忽略许多不确定因素:如对同步轨道卫星的姿态进行控制时不考虑轨道运动的影响,对一个振动系统的控制过程中不考虑高阶模态的影响等。
但经过以上处理后得到的数学模型已经不能完全描述原来的物理系统,而仅仅是原系统的一种近似。
对许多要求不高的系统,这样的数学模型已经能够满足工程要求。
然而,对于一些精度和可靠性要求较高的系统,如导弹控制系统设计,若采用这种设计方法,就会浪费了大量的人力物力在反复计算数弹道、调整控制器参数以及反复试射上。
因此,为了解决不确定控制系统的设计问题,科学家们提出了鲁棒控制理论。
由于鲁棒控制器是针对系统工作的最坏情况而设计的,因此能适应所有其它工况,所以它是解决这类不确定系统控制问题的有力工具。
鲁棒控制(Robust Control)方面的研究始于20世纪50年代。
上世纪60年代,状态空间结构理论的形成,与最优控制、卡尔曼滤波以及分离性理论一起,使现代控制理论成了一个严密完整的体系。
随着现代控制理论的发展,从上世纪80年代以来,对控制系统的鲁棒性研究引起了众多学者的高度重视。
在过去的20年中,鲁棒控制一直是国际自控界的研究热点。
通常说一个反馈控制系统是鲁棒的,或者说一个反馈控制系统具有鲁棒性,就是指这个反馈控制系统在某一类特定的不确定性条件下具有使稳定性、渐进调节和动态特性保持不变的特性,即这一反馈控制系统具有承受这一类不确定性影响的能力。
设被控系统的数学模型属于集合D,如果系统的某些特性对于集合U中的每一对象都保持不变,则称系统具有鲁棒性。
线性时滞系统的鲁棒控制器设计与仿真

摘要鲁棒控制一直是国际自控界的研究热点,对于一个控制系统,若使得闭环系统是稳定的,则有必要在设计稳定化控制器的时候,考虑可能出现的不确定因素以及时间滞后因素,这就是线性不确定时滞系统的鲁棒控制器设计问题。
本文的主要研究内容包括:首先综述了鲁棒控制理论的发展和线性矩阵不等式方法的发展现状;然后针对线性不确定系统和线性不确定时滞系统,研究这些系统的状态反馈鲁棒控制器的设计方法,基于线性矩阵不等式(LMI)和Lyapunov稳定性理论,研究线性不确定系统、线性不确定时滞无关系统以及线性不确定时滞相关系统的渐近稳定的充分条件,得到它们的鲁棒控制器设计方法,并根据设计实例进行了仿真研究,结果表明系统稳定。
关键词:鲁棒控制;不确定性;线性时滞系统;状态反馈AbstractRobust control is the focus in the research of Internationally controlled sector,for a control system, if makes its closed-loop system is stable,it will be necessary to consider the possible uncertain and time-delay factors when we design stability controllers. This is design problem of linear uncertain time-delay systems robust controller.Summarily the contents of this paper are outlined as follows:first, it summarize the development of robust control theory and linear matrix inequality approach; then,for the linear uncertain system and the linear uncertain time-delay systems research the robust stability conditions and design technique of robust controller for these systems, base on the linear matrix inequality(LMI) and Lyapunov stability theory, a sufficient condition for linear uncertain system,linear uncertain delay-independent system and linear uncertain delay-dependent system to be asymptotically stable is presented, getting the design technique of their controller, and according to design examples and the simulation study ,the results show that the system is stable.Key words: robust control; uncertainty; linear time-delay system; state feedback目录第1章概述 (1)1.1 时滞系统概述 (1)1.2 鲁棒控制理论概述 (2)1.3 本文研究的主要内容 (5)第2章预备知识 (6)2.1 线性矩阵不等式基础 (6)2.2 一些常用的基本引理 (10)2.3 本章小结 (11)第3章线性时滞系统时滞无关的状态反馈控制 (12)3.1 引言 (12)3.2 线性不确定系统的鲁棒控制器设计 (12)3.3 线性不确定时滞系统时滞无关鲁棒控制器设计 (15)3.4 具有时滞项不确定的线性时滞系统时滞无关鲁棒控制器设计 (19)3.5 本章小结 (23)第4章线性时滞系统时滞相关的状态反馈控制 (24)4.1 引言 (24)4.2 线性不确定时滞系统时滞相关鲁棒控制器设计 (24)4.3 本章小结 (30)结论 (31)参考文献 (32)致谢 (33)附录 (34)第1章概述1.1 时滞系统概述时滞是客观世界和工程技术中普遍存在的问题。
《鲁棒控制系统》课件

在工业自动化生产线上,各种设备、传感器和执行器需要精 确控制和协调工作。鲁棒控制系统能够有效地处理各种不确 定性,如设备故障、传感器漂移等,保证整个生产过程的稳 定性和效率。
航空航天
总结词
在航空航天领域,鲁棒控制系统用于 确保飞行器的安全和稳定运行。
详细描述
航空航天领域的飞行器面临着复杂的 环境和严苛的飞行条件,鲁棒控制系 统能够有效地处理各种不确定性和干 扰,保证飞行器的安全和稳定运行。
05
鲁棒控制系统的发展趋势 与展望
人工智能与鲁棒控制
人工智能在鲁棒控制中的应用
利用人工智能算法优化控制策略,提高系统的鲁棒性和 自适应性。
深度学习在鲁棒控制中的潜力
通过训练深度神经网络,实现对不确定性和干扰的高效 处理,提升系统的鲁棒性能。
网络化与鲁棒控制
网络控制系统的发展
随着网络技术的进步,网络化控制系统成为研究的热点,对鲁棒控制提出了新的挑战和 机遇。
鲁棒优化控制
总结词
通过优化方法来设计鲁棒控制律,以实现系统在不确定性和干扰下的最优性能 。
详细描述
鲁棒优化控制是一种基于优化方法的控制策略,通过考虑系统的不确定性和干 扰,来设计最优的控制律。这种方法能够保证系统在各种工况下的最优性能, 提高系统的鲁棒性和适应性。
自适应控制
总结词
通过在线调整控制律参数来适应系统参数的 变化和外部干扰。
要点二
详细描述
电力系统的稳定运行对于整个社会的正常运转至关重要。 鲁棒控制系统能够有效地处理电力系统中的各种不确定性 和干扰,保证电力供应的稳定和可靠。
04
鲁棒控制系统的挑战与解 决方案
系统不确定性
系统不确定性描述
01
最优控制问题的鲁棒H∞控制设计

最优控制问题的鲁棒H∞控制设计最优控制理论在工程系统控制中具有重要的应用价值。
然而,传统的最优控制方法在系统模型存在不确定性或外部干扰的情况下可能无法有效应对。
为了克服这一问题,鲁棒控制方法被引入到最优控制中,并且在实际应用中取得了显著的成果。
本文将探讨最优控制问题的鲁棒H∞控制设计方法及其应用领域。
一、鲁棒控制概述鲁棒控制是一种针对不确定性或外部干扰具有克服能力的控制方法。
其目标是在不确定性环境中实现系统稳定性和性能要求。
最常见的鲁棒控制方法之一是H∞控制,该方法通过优化问题来设计控制器,以抑制系统中不确定性的影响。
二、最优控制问题最优控制问题旨在通过选择最佳控制策略来实现系统的最优性能。
在没有不确定性时,可以使用动态规划、变分法等方法求解最优控制问题。
然而,在实际应用中,系统往往存在参数不确定性或外部干扰,导致最优控制问题变得更加复杂。
因此,需要引入鲁棒控制方法来解决这些问题。
三、鲁棒H∞控制设计方法鲁棒H∞控制方法是一种常用的鲁棒控制方法,其基本思想是在保证系统稳定性的前提下,优化系统对外部干扰的抑制能力。
鲁棒H∞控制设计问题可以被描述为一个优化问题,目标是最大化系统的H∞性能指标,并且确保控制器对系统模型不确定性具有鲁棒性。
为了实现鲁棒H∞控制设计,可以采用两种常用的方法:线性矩阵不等式(LMI)方法和基于频域分析的方法。
LMI方法通过求解一组线性矩阵不等式来得到控制器参数,从而实现系统的鲁棒H∞控制设计。
基于频域分析的方法则通过频域特性分析来设计控制器,以实现系统对不确定性的鲁棒性。
四、鲁棒H∞控制设计的应用领域鲁棒H∞控制设计方法在工程领域有广泛的应用。
它可以应用于飞行器姿态控制、机器人控制、智能电网控制等多个领域。
以飞行器姿态控制为例,鲁棒H∞控制设计可以有效提高飞行器对外部干扰的鲁棒性,并且保证姿态跟踪性能。
在机器人控制领域,鲁棒H∞控制设计可以提高机器人对环境不确定性的抑制能力,以实现精确的轨迹跟踪。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
36
4、 总结
小增益定理以及基于范数的鲁棒控制三种形式: 控制、 控制及最优 控制器,三种鲁棒控制问题,即灵 敏度问题、稳定性与品质的混合鲁棒问题及一般混合灵 敏度问题。 基于范数的鲁棒控制问题的 MATLAB 描述方法和鲁棒 控制器的计算机辅助设计的理论与求解方法。
新版本的鲁棒控制工具箱将三种著名的方法,统一到一 个框架下,给出了统一的模型描述与设计函数。
鲁棒控制与鲁棒控制器 设计
2018/10/7
1
主要内容
鲁棒控制问题的一般描述
鲁棒控制器的计算机辅助设计 新鲁棒控制工具箱及应用
2018/10/7
2
1、鲁棒控制问题的 一般描述
小增益定理 鲁棒控制器的结构 鲁棒控制系统的 MATLAB 描述
2018/10/7
3
1.1 小增益定理
2018/10/721【例3】对【例1】中的增广的系统模型,分别 设计
2018/10/7
22
绘制在控制器作用下系统的开环 Bode 图和 闭环阶跃响应曲线
2018/10/7
23
【例4】
加权矩阵
并设置 设计最优 控制器,并绘制出该控制器作用下的 阶跃响应曲线和开环系统的奇异值曲线。
2018/10/7 24
2018/10/7
19
2.1 鲁棒控制工具箱的 设计方法
鲁棒控制器的状态方程表示
其中 X 与 Y 由下面的两个代数 Riccati 方程求解
2018/10/7
20
控制器存在的前提条件为
足够小, 且满足 ; 控制器 Riccati 方程的解为 正定矩阵; 观测器 Riccati 方程的解为 正定矩阵; 。该式说明两个 Riccati 方程的积 矩阵的所有特征值均小于 。
2018/10/7
32
绘制在此控制器下的回路奇异值及闭环 系统的阶跃响应曲线
2018/10/7
33
3.3 混合灵敏度问题的鲁棒 控制器设计
2018/10/7
34
【例8】
2018/10/7
35
假设系统的不确定部分为乘积型的,且已知 ,并已知不确定参数的变化范围为 ,设计固定的 控制器
2018/10/7
2018/10/7
37
Thank you !
2018/10/7
38
2018/10/7
29
对叠加型不确定性
对乘积型的不确定性
2018/10/7
30
3.2 灵敏度问题的鲁棒控制器设计
一般情况下,受控对象 G 的 D 矩阵为非满秩矩阵时, 不能得出精确的成型控制器,这时回路奇异值的上下限 满足式子
当
时,控制器作用下实际回路奇异值介于 之间。
31
2018/10/7
【例7】
14
【例1】
2018/10/7
15
分析与综合工具箱和 LMI 工具箱的 模型描述
2018/10/7
16
变换出系统矩阵 P
2018/10/7
17
【例2】用【例1】中的对象模型和加权函数, 得出其系统矩阵模型 P
2018/10/7
18
2、
鲁棒控制器的 计算机辅助设计
鲁棒控制工具箱的设计方法
闭环系统中引入的增广对象模型
其对应的增广状态方程为
2018/10/7
6
闭环系统传递函数为
2018/10/7
7
鲁棒控制的目的是设计出一个镇定控制器 使得闭环系统 的范数取
一个小于 1 的值,亦即
鲁棒控制问题的三种形式: 最优控制问题 其中需求解 ;
最优控制问题 其中需求解
控制问题 需要得出一个控制器满足
(a) 标准反馈控制结构
(b) 小增益定理示意图
2018/10/7
4
• 小增益定理
假设 为稳定的,则当且仅当小增益条件
满足时 图 (b) 中所示的系统对所有稳定的 且是内部稳定的。 都是良定的,
即如果系统的回路传递函数的范数小于 1,则闭 环系统将总是稳定的。
2018/10/7
5
1.2 鲁棒控制器的结构
2018/10/7
25
【例5】带有双积分器的非最小相位受控对象 ,选择加权函数 并选择极点漂移为 设计系统的最优 控制器。
2018/10/7
26
2018/10/7
27
3、新鲁棒控制工具箱 及应用
3.1 不确定系统的描述
2018/10/7
28
【例6】典型二阶开环传函 选定标称值为 构造不确定系统模型。
灵敏度问题
并不指定
稳定性与品质的混合鲁棒问题
假定 为空
一般的混合灵敏度问题
要求三个加权函数都存在。
2018/10/7
11
1.3
鲁棒控制系统的 MATLAB 描述
鲁棒控制工具箱中的系统描述方法 建立鲁棒控制工具箱可以使用的系统模型
2018/10/7
12
2018/10/7
13
2018/10/7
;
2018/10/7
8
加权灵敏度问题的控制结构框图
加权函数 即传递函数在
2018/10/7
,使得 均正则。 时均应该是有界的。
9
假定系统对象模型的状态方程为 的状态方程模型为 状态方程模型为
,加权函数 的 ,而非正则的
的模型表示为
式中
2018/10/7
10
这时鲁棒控制问题可以集中成下面三种形式: