汽车车身设计-第七章车身疲劳强度分析基础

合集下载

基于有限元模型的汽车车身强度分析与优化设计

基于有限元模型的汽车车身强度分析与优化设计

基于有限元模型的汽车车身强度分析与优化设计引言:汽车车身设计是整车设计中至关重要的一环。

汽车车身不仅是汽车的“外衣”,还承担着对乘员安全和行驶稳定性的极其重要的作用。

车身的强度是确保车辆在各种复杂工况下保持结构稳定、寿命可靠的关键因素。

基于有限元模型的汽车车身强度分析与优化设计具有重要的意义。

1. 有限元分析在汽车车身设计中的应用有限元分析是一种基于力学原理和数值计算方法的数值模拟技术。

它可以将复杂的连续体结构离散为有限个单元,通过求解单元之间的相互作用力,得到结构的应力、应变等力学参数。

在汽车车身设计中,有限元分析可以有效地评估车身的强度、刚度、振动特性等。

2. 汽车车身强度分析的主要内容汽车车身强度分析主要分为静态强度分析和动态强度分析两个方面。

2.1 静态强度分析静态强度分析是对车身在静态加载条件下进行强度评估。

通过有限元分析,可以得到车身各部分的应力分布情况和最大应力值,进而判断车身是否足够强度。

在静态强度分析中,需要考虑的因素包括车身的受载状态、材料的力学性质、载荷的大小和方向等。

2.2 动态强度分析动态强度分析是对车身在动态加载条件下进行强度评估。

在实际使用中,汽车车身会受到各种道路激励和振动的影响,因此需要对车身进行动态强度分析。

通过有限元分析,可以得到车身在不同工况下的应力变化规律和疲劳寿命,进而优化车身结构设计,提升车身的抗疲劳能力。

3. 汽车车身设计的优化方法基于有限元模型的汽车车身优化设计可以通过调整车身结构和材料等手段来提升车身的强度和刚度。

3.1 结构优化在车身结构优化中,可以通过增加加强筋、设置补强板和优化焊缝位置等方式来提升车身的强度。

通过有限元分析,可以评估不同优化方案的效果,并选择最佳方案进行实施。

3.2 材料优化材料的选择对车身的强度和轻量化设计起着重要作用。

目前,高强度钢材和铝合金等轻量化材料正在被广泛应用于汽车车身设计中。

基于有限元分析,可以评估不同材料对车身强度的影响,并选择合适的材料进行使用。

车身疲劳寿命分析

车身疲劳寿命分析

车身疲劳寿命分析福建工程学院车辆工程0702班林文华摘要本文通过分析考察了车身结构的整体刚度特性,而且确定了车身疲劳寿命的薄弱位置,为车身结构设计及改进提供理论参考依据。

根据有限元疲劳分析的思路,对车身进行疲劳寿命分析。

施加单位载荷得到车身载荷响应;通过Matlab/Simulink建模仿真得到路面位移载荷谱,并作为车轮悬架振动模型的输入激励,最后得到路面作用在车身上的位移载荷谱;然后导入S.N曲线,分析结果显示车身最低寿命满足汽车场地试验三万公里标准。

有限元技术已经得到广泛应用,通过规范的力学建模以及边界条件的设置,可以得到满足工程需要的分析结果,有利于缩短开发周期,对产品设计改进都具有重要的指导意义及应用价值。

关键词:轿车车身,车身刚度,疲劳寿命The performance of integrative stiffness is examined and the fatigue life of body is obtained,which Call provide guidance for car design.The thesis contents are the following aspects.Fatigue life prediction of the car is carded out based on fmite element method.Unit load displacement response,combining the simulated displacement load history,is used to compute the fatigue performance of the car body.Matlab/ Simulink isapplied to simulate the load spectrum,which is used as the input signal of the tire-suspension model.The response of the tire-suspension model is the displacement spectrum loaded on the body.S—N curve is imported.The minimal fatigue life is 32800 kilometers,which can satisfy the thirty thousand kilometers test.Nowadays,CAE technology has been playing an important part in the forepart design of new production,which can provide reliable results with exact mechanical model and boundary condition.Key words:Car body;Body stiffness;Fatigue life1.疲劳分析理论1.1疲劳寿命分析过程工程构件所承受的载荷往往是多方向的复杂交变载荷,要准确预测各个部位的疲劳损伤就需要测量相应的载荷历程。

客车车身骨架准静态疲劳强度分析.

客车车身骨架准静态疲劳强度分析.

第9期2010年9月文章编号:1001-3997(2010)09-0099-03机械设计与制造MachineryDesign&Manufacture99客车车身骨架准静态疲劳强度分析*朱健苏小平陈本军)(南京工业大学机械与动力工程学院,南京210009Pseudo-staticfatiguestrengthanalysisofbusbodyframeworkZHUJian,SUXiao-ping,CHENBen-jun (SchoolofMechanicalandPowerEngineering,NanjingUniversityofTechnology,Nanjing210009,China)【摘要】运用有限元方法建立了某轻型客车车架骨架的有限元模型,在确定载荷的简化和施加方法后,进行了该车身骨架在满载弯曲工况下的有限元仿真,以此对其进一步的疲劳分析。

为该车车身骨架的优化设计和进一步研究提供了理论依据。

关键词:车身骨架;有限元;疲劳分析【Abstract】Finiteelementmodelingofthebusframeworkisestablishedbyusingfiniteelementmeth-ods.Whenthesimplifiedloadandloadwayexertingontheframeworkareensured,thefiniteelementsimula-tionofbusframeworkisexecutedunderfullyloadedbendingcondition.Andthenfurtherfatigu eanalysisfinishes.Theseresultsprovidetheoreticalbasisforoptimizationandfurtherstudyoft hebusframework.Keywords:Busframework;Finiteelementanalysis;Fatigueanalysis1引言车身骨架是客车的主要承载结构,车身骨架的强度、刚度及安全性、操作稳定性等疲劳性能都直接影响着客车的使用寿命、基本性能。

车辆耐疲劳分析

车辆耐疲劳分析

车辆耐疲劳分析计算机产生的道路载荷和应力分析陈亨毅二零零六年一月二十日前言传统上所谓的“道路载荷”就是车辆在崎岖不平的道路上行驶,激起轮胎的连续变形。

藉着力的传导,轮胎的反弹力经由悬挂体而传播分布到车身各处。

在重覆的受力状态下,部件若在指定的驶程内产生破裂,则需重新设计。

但是,车辆工程人员迄今仍无法掌握导致部件破裂的“道路载荷”。

而在有测试的前提下,用正确的有限元方法模拟各种工况,和有创新能力的软件商一起完成“道路载荷”的获取是最省事的做法。

二十世纪初期,车辆的耐久性已是车辆设计规范之一。

汽车制造商为了要测定车辆的耐疲劳性,测试人员将各类的车辆,以不同的速度行驶于底特律的各种不同的道路上。

再根据车辆的破坏程度来修正车辆设计上的缺陷。

随着时代的演进和试车场的诞生,车辆的耐疲劳测试逐渐改在可控制的道路状况下重覆的进行测试。

由于测试的技术亦不断的进步,试车员可将耐疲劳的行驶里程由五位数减至四位数并和原先的全程测试得到的结果相仿。

为了缩短出车的时间,大家都在增进效率上努力。

二十世纪末期,复合材料模拟方法,超单元算法,橡胶单元面世,因计算机的速度突飞猛进带动了结构分析软件的技术开发。

一九八四年最好的有限元单元问世,接触面的运算方法和隐式性积分无条件收敛的算法获得验证。

先後为结构分析人员提供了在计算机上,用有限元方法模拟车辆行驶于耐疲劳道路上应力分析的工具。

以期达到减重,耐久,可以免除测试的好处。

开发成功便能取代耗时的耐疲劳行驶测试,缩短产品开发时间,这创新将是产品自主开发的利器。

有限元方法已是成熟的技术。

模拟车辆在耐疲劳道路上行驶,除了用正确有限元方法模拟不同零件的方法,祗需要掌握下文叙述的,线性,非线性,子结构分析知识和技术即可。

结构分析和道路载荷在没有电子计算机的时代,汽车结构分析是用比较性的分析;分析人员仅能将目标车的断面,和设计车的断面,用手运算後作粗枝大叶的比较,谈不上精确度。

设计人员基本上是仰赖车辆在耐疲劳道路上的测试报告为依据。

疲劳强度分析--精选.docx

疲劳强度分析--精选.docx

疲劳强度疲劳的定义:材料在循环应力或循环应变作用下,由于某点或某些点产生了局部的永久结构变化,从而在一定的循环次数以后形成裂纹或发生断裂的过程称为疲劳。

疲劳的分类:(1)按研究对象 :材料疲劳和结构疲劳(2)按失效周次 :高周疲劳和低周疲劳(3)按应力状态 :单轴疲劳和多轴疲劳(4)按载荷变化情况 : 恒幅疲劳、变幅疲劳、随机疲劳(5)按载荷工况和工作环境 :常规疲劳、高低温疲劳、热疲劳、热—机械疲劳、腐蚀疲劳、接触疲劳、微动磨损疲劳和冲击疲劳。

第一章疲劳破坏的特征和断口分析§1-1 疲劳破坏的特征疲劳破坏的特征和静力破坏有着本质的不同,主要有五大特征:( 1)在交变裁荷作用下,构件中的交变应力在远小于材料的强度极限( b )的情况下,破坏就可能发生。

(2)不管是脆性材料或塑性材料,疲劳断裂在宏观上均表现为无明显塑性变形的突然断裂,故疲劳断裂常表现为低应力类脆性断裂。

(3)疲劳破坏常具有局部性质,而并不牵涉到整个结构的所有材料,局部改变细节设计或工艺措施,即可较明显地增加疲劳寿命。

(4)疲劳破坏是一个累积损伤的过程,需经历一定的时间历程,甚至是很长的时间历程。

实践已经证明,疲劳断裂由三个过程组成,即 (I)裂纹 (成核 )形成, (II)裂纹扩展, (III)裂纹扩展到临界尺寸时的快速 (不稳定 )断裂。

(5)疲劳破坏断口在宏观和微观上均有其特征,特别是其宏观特征在外场目视捡查即能进行观察,可以帮助我们分析判断图 1-1 磨床砂轮轴的典型断口是否属于疲劳破坏等。

图 1-1及图 l-2所示为磨床砂轮轴及一个航空发动机压气机叶片的典型断口。

图中表明了疲劳裂纹起源点(常称疲劳源 ),疲劳裂纹扩展区 (常称光滑区 )及快速断裂区 (也称瞬时破断区,常呈粗粒状 )。

图 1-2 航空发动机压气机叶片的典型断口§ 1-2 疲劳破坏的断口分析宏观分析:用肉眼或低倍(如二十五倍以下的)放大镜分析断口。

基于疲劳设计理论解决轿车车身后部开裂问题

基于疲劳设计理论解决轿车车身后部开裂问题

基于疲劳设计理论解决轿车车身后部开裂问题汪沛伟;龚侃;袁亮;张铁;宋瀚【摘要】本文针对项目开发过程中的试验开裂问题,基于疲劳设计的基本理论,对影响车身疲劳耐久性能的因素进行分析.提出改善思路及改善方向,通过大扭转静态仿真分析方法,快速提出了有效的改善方案.该方案通过试验样车耐久测试,验证切实可行,为今后车身结构解决疲劳失效的问题提供重要参考.【期刊名称】《汽车科技》【年(卷),期】2016(000)006【总页数】4页(P108-111)【关键词】疲劳耐久;应力集中;大扭转工况静态分析【作者】汪沛伟;龚侃;袁亮;张铁;宋瀚【作者单位】东风汽车公司技术中心,武汉430070;东风汽车公司技术中心,武汉430070;东风汽车公司技术中心,武汉430070;东风汽车公司技术中心,武汉430070;东风汽车公司技术中心,武汉430070【正文语种】中文【中图分类】U463.3+6汪沛伟武汉理工大学机械工程硕士研究生毕业,现任东风汽车公司技术中心工程师,研究方向为:车体结构设计。

随着汽车市场越来越大,人们对汽车的安全性、可靠性的要求越来越高。

在汽车行驶过程中,由于路面不平整等因素影响,车身通常会受到交变载荷的作用,在交变载荷的重复作用下车身结构可能产生低于材料最大应力水平下的疲劳破坏。

车身作为汽车的重要支撑结构,其疲劳耐久性能对整车的安全性、可靠性影响尤其明显。

本文针对某三厢车型开发过程中,车身后部在耐久试验中开裂问题为例,根据疲劳设计理论提出解决思路,并由此提出新的仿真分析思路,快速有效的提出解决方案,最终通过实车验证解决了开裂问题。

某三厢轿车在试制样车阶段进行轮胎耦合道路耐久试验中,车身后部出现了不同程度的开裂现象。

开裂的地方主要发生在车身后部后隔板处,后隔板是三厢轿车特有的结构,位于车身后排座椅靠背的后面,行李箱的前面,连接左右侧C柱钣金结构,如图1所示。

后隔板是重要的传力路径,对整个车身起到一个横向的支撑,对整个车身的扭转刚度、强度均有重要影响。

汽车车身设计-第七章车身疲劳强度分析基础综述

汽车车身设计-第七章车身疲劳强度分析基础综述

第二节 疲劳设计方法 • 一、疲劳强度、疲劳极 • 限与疲劳寿命的概念 二、疲劳设计方法简介 三、确定疲劳寿命的方 法 四、疲劳分析软件 •
主要有两类:试验法和试验分析法 试验法
– 完全依赖于试验,是传统的方法 – 直接通过与实际情况相同或相似的试验来获取所需的疲劳数据 – 可靠,但必须在样机试制之后才能进行。费用高、周期长,且 无法和设计并行,试验结果不具有通用性
疲劳破坏
– 在交变载荷重复作用下材料或结构的破坏现象 – 材料或结构受到多次重复变化的载荷后,应力值虽没超过材料的 强度极限,甚至比弹性极限还低得多的情况下就可能发生破坏
3.
疲劳
在某点或某些点承受扰动应力,且在足够多的循环扰动作用之后形 成裂纹或完全断裂的材料中所发生的局部的、永久结构变化的发展 过程
① 静强度:与材料的性质有关,对脆性材料影响较大, 对塑性较好的材料则影响较小
② 疲劳强度:不论是对塑性材料还是对脆性材料,都是 不可忽视的影响因素
第一节 疲劳破坏的特征 及影响疲劳寿命的因素 一、疲劳破坏的特征 二、影响疲劳寿命的 因素
2. 尺寸的影响
• 零件尺寸对疲劳强度有较大的影响,这同应力梯度和 材料不均匀性有关 • 注意:一般零件的疲劳强度随其尺寸的增大而降低 ① 尺寸不同,相同载荷作用下,零件的应力梯度不同。 大尺寸零件的高应力区域大,产生疲劳裂纹的概率大
试验分析法
– 依据材料的疲劳性能,对照结构所受到的载荷历程,按分析模 型来确定结构的疲劳寿命 – 包含三部分:材料疲劳行为的描述,循环载荷下结构的响应, 疲劳累积损伤法则 – 按计算疲劳损伤参量不同分为:名义应力法、局部应力应变法 、应力应变场强度法、能量法、损伤力学法、功率谱密度法等
第二节 疲劳设计方法 • 一、疲劳强度、疲劳极 限与疲劳寿命的概念 • 二、疲劳设计方法简介 三、确定疲劳寿命的方 法 四、疲劳分析软件 •

疲劳分析介绍

疲劳分析介绍

F6前轮球轴断裂 前轮球轴断裂 断轴门” “断轴门” :广本雅阁、一汽马 、北奔-戴克克莱斯勒 戴克克莱斯勒300C 双横臂式前悬挂: 双横臂式前悬挂 广本雅阁、一汽马6、北奔-戴克克莱斯勒 雅阁、 ,其球头方向是向上的, 雅阁、F6,其球头方向是向上的 属下挂式,承受车重, 凯美瑞、锐志、F6、 凯美瑞、锐志、F6、雅阁,属下挂式,承受车重,过度疲 劳。 马6、奔驰等采用是下压式。 、奔驰等采用是下压式。
1.概述-疲劳的定义 概述概述
• 零件或构件由于交变载荷的反复作用 零件或构件由于交变载荷的反复作用 的反复作用,在它所承受的交变应力尚未达到静 强度设计的许用应力情况下就会在零件或构件的局部位置产生疲劳裂纹并 强度设计的许用应力情况下就会在零件或构件的局部位置产生疲劳裂纹并 扩展、最后突然断裂。这种现象称为疲劳破坏 扩展、最后突然断裂。这种现象称为疲劳破坏 这种现象称为疲劳破坏 • The process of progressive localized permanent structural change occurring in a material subjected to conditions which produce fluctuating stresses and strains at some point or points and which may culminate in crack or complete fracture after a sufficient number of fluctuations. —— ASTM E206-72 • 在某点或某些点承受扰动应力,且在足够多的循环扰动作用之后形成裂纹 在某点或某些点承受扰动应力,且在足够多的循环扰动作用之后形成 且在足够多的循环扰动作用之后形成裂纹 且在足够多的循环扰动作用之后形成 或完全断裂的材料中所发生的局部永久结构变化的 或完全断裂的材料中所发生的局部永久结构变化的发展过程,称为疲劳 永久结构变化的发展过程,称为疲劳
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• 疲劳寿命
– 疲劳失效时所经受的应力或应变的循环次数,一般用N表示 – 试样的疲劳寿命取决于材料的力学性能和所施加的应力水平。 一般,材料的强度极限愈高,外加的应力水平愈低,试样的疲 劳寿命就愈长
• 材料S-N曲线
– 表示外加应力水平和标准试样疲劳寿命之间关系的曲线
第二节 疲劳设计方法 • 一、疲劳强度、疲劳极 限与疲劳寿命的概念 二、疲劳设计方法简介 三、确定疲劳寿命的方 • 法 • 四、疲劳分析软件
疲劳寿命分析方法随计算机技术和有限元分析的发展 得到了广泛的应用 用有限元法计算疲劳寿命
– 第一步:根据载荷和几何结构计算其中的应力变化历程 – 第二步:获得应力应变响应后,结合材料性能参数,应用不同 的疲劳损伤模型进行寿命计算
有限元技术已成为一种不可缺少的分析工具。在一些 重要的工业领域得到应用 • 有限元疲劳计算的优点:
• 表面敏感系数

某加工试样的疲劳强度 1 2 3 标准光滑试件的疲劳强度
第一节 疲劳破坏的特征 及影响疲劳寿命的因素 一、疲劳破坏的特征 二、影响疲劳寿命的 因素
3. 表面加工及表面处理的影响 (1)表面加工粗糙度β1 • 表面加工粗糙度对疲劳强度有很大的影响
– 一般来说,表面加工粗糙度越低,疲劳强度就越高
– – – – – 表面渗碳 渗氮 氰化 表面淬火 表面激光处理等
第一节 疲劳破坏的特征 及影响疲劳寿命的因素 一、疲劳破坏的特征 二、影响疲劳寿命的 因素
3. 表面加工及表面处理的影响 (3)表层应力状态β3 • 表面冷作变形是提高零部件疲劳强度的有效途径,本 质是改变了零部件表层的应力状态
– 滚压 – 喷丸 – 挤压
2.
零件几何形状及表面质量
– – –
3.
工作条件
– – –
4.
表面热处理和残余内应力
– – –
第一节 疲劳破坏的特征 及影响疲劳寿命的因素 一、疲劳破坏的特征 二、影响疲劳寿命的 因素
1. 应力集中的影响
• 疲劳源总是出现在应力集中的地方,使结构或构件的 疲劳强度降低,对疲劳强度有较大影响
• 应力集中对材料强度的影响
① 静强度:与材料的性质有关,对脆性材料影响较大, 对塑性较好的材料则影响较小
② 疲劳强度:不论是对塑性材料还是对脆性材料,都是 不可忽视的影响因素
ቤተ መጻሕፍቲ ባይዱ
第一节 疲劳破坏的特征 及影响疲劳寿命的因素 一、疲劳破坏的特征 二、影响疲劳寿命的 因素
2. 尺寸的影响
• 零件尺寸对疲劳强度有较大的影响,这同应力梯度和 材料不均匀性有关 • 注意:一般零件的疲劳强度随其尺寸的增大而降低 ① 尺寸不同,相同载荷作用下,零件的应力梯度不同。 大尺寸零件的高应力区域大,产生疲劳裂纹的概率大
普通高等教育 “十一五”国家级规划教材
《汽车车身设计》
第七章 车身疲劳强度分析基础
提纲
第一节 疲劳破坏的特征及影响疲劳寿命 的因素
一、疲劳破坏的特征 二、影响疲劳寿命的因素
第四节 车身结构疲劳寿命分析流程和方 法
一、车身结构疲劳寿命分析流程概述 二、疲劳寿命分析结果的实例
第二节 疲劳设计方法
一、疲劳强度、疲劳极限与疲劳寿命的 概念 二、疲劳设计方法简介 三、确定疲劳寿命的方法 四、疲劳分析软件
– 可以和设计并行 – 能够减少试验样机的数量,缩短开发周期,降低开发成本,提 高市场竞争力
第二节 疲劳设计方法 • 一、疲劳强度、疲劳极 • 限与疲劳寿命的概念 • 二、疲劳设计方法简介 三、确定疲劳寿命的方 法 四、疲劳分析软件
零构件的工作应力超过其疲劳极限
汽车等对自重有较高要求的产品都广泛使用这种设计 方法
• 安全寿命设计必须考虑安全系数,以考虑疲劳数据的 分散性和其他未知因素的影响 • 可根据S-N曲线设计(名义应力有限寿命设计),也可 根据ε-N曲线进行设计(局部应力应变法)
第二节 疲劳设计方法 3.破损—安全设计 一、疲劳强度、疲劳极 • 结构在规定的使用年限中,允许产生疲劳裂纹,并允 限与疲劳寿命的概念 许疲劳裂纹扩展,但其剩余结构的强度应大于限制载 二、疲劳设计方法简介 荷。在设计中要采用断裂控制措施,确保裂纹在被检 三、确定疲劳寿命的方 法 四、疲劳分析软件
测出来而未修复之前不致造成结构破坏
第二节 疲劳设计方法 4.损伤容限设计 一、疲劳强度、疲劳极 • 是破损—安全设计方法的体现和改进 限与疲劳寿命的概念 • 首先假定零构件内存在初始裂纹,应用断裂力学方法 二、疲劳设计方法简介
来估算其剩余寿命,并通过试验来校验,确保在使用 三、确定疲劳寿命的方 期内裂纹不致扩展到引起破坏的程度 法 • 适用于裂纹扩展缓慢而断裂韧性高的材料
② 如何在保证结构安全和功能的条件下,提高结构使用、维护的 经济性?
• 耐久性设计方法:以结构的经济寿命分析为基础的一 种更经济、更有效的疲劳设计方法 • 两个最重要的发展
– 从考虑若干最危险的细节,发展到考虑结构中可能发生疲劳开 裂的细节全体 – 从保证结构的使用安全性,发展到既考虑结构使用安全又追求 更好的使用维修经济性
一、样本载荷 二、综合事件下危险疲劳单元的选择 三、综合事件下的疲劳寿命预测
第一节 疲劳破坏的特征 及影响疲劳寿命的因素 一、疲劳破坏的特征
二、影响疲劳寿命的 因素
• 概述 1. 疲劳强度问题
汽车行驶中,由于路面不平整等因素影响,车身结构通常会受到交 变载荷的作用,由这种交变载荷引起的强度问题
2.
第一节 疲劳破坏的特征 及影响疲劳寿命的因素 一、疲劳破坏的特征 二、影响疲劳寿命的 因素
影响因素 1. 材料本质
– – – – 化学成份 金相组织 纤维方向 内部有无缺陷 应力集中系数 尺寸系数 表面光洁度 载荷特性:应力状态、应力比、载荷顺序、载荷频率等 环境介质 使用温度 冷作硬化 表面热处理 表面涂层
第一节 疲劳破坏的特征 及影响疲劳寿命的因素 一、疲劳破坏的特征 二、影响疲劳寿命的 因素
5. 载荷施加形式的影响 1)载荷频率 • 构件疲劳强度与其在单次循环中处于高应力水平下的 时间有关
– 随着载荷频率的提高,构件在单次循环中处于高应力水平下的 时间会减少,从而疲劳强度会提高 – 提高频率相当于提高加载速率,加载速率高于裂纹扩展速率时 使裂纹来不及扩展,从而使其疲劳强度与寿命提高
疲劳强度
– 材料或构件在交变载荷作用下的强度 – 材料或构件疲劳性能的好坏用疲劳强度来衡量
疲劳极限
– 在一定循环特征R下,材料可以承受无限次应力循环而不发生 疲劳破坏的最大应力Smax,一般用Sr表示。因材料的疲劳极限随 加载方式和应力比的不同而异,通常以对称循环下的疲劳极限 作为材料的基本疲劳极限 – 疲劳强度的大小用疲劳极限来衡量
第五节 结构应力响应计算
一、载荷 二、惯性释放分析 三、应力影响系数和线性叠加 四、结构应力响应计算的模态法
第六节 单轴疲劳寿命预测
一、危险单元的选择 二、单轴疲劳寿命的预测方法
第三节 疲劳分析基本理论简介
一、疲劳问题 二、应力循环 三、S-N曲线 四、平均应力对疲劳过程的影响
第七节 综合事件下的疲劳寿命分析
疲劳设计方法
– 用以处理动应力以及由动应力而产生的破坏方式的基本 方法
疲劳破坏是车辆产品最主要的一种失效方式
车身结构设计中,除考虑必要的静强度外,必须进行 疲劳分析和按疲劳观点进行设计
第二节 疲劳设计方法 1.无限寿命设计 一、疲劳强度、疲劳极 • 无限寿命设计是最早的疲劳设计方法,它要求构件的 限与疲劳寿命的概念 设计应力低于其疲劳极限,从而具有无限寿命 二、疲劳设计方法简介 7
第一节 疲劳破坏的特征 及影响疲劳寿命的因素 一、疲劳破坏的特征 二、影响疲劳寿命的 因素
4. 温度的影响 • 材料在不同温度下,疲劳强度会有很大的变化 • 高温时
– 在静载荷长期作用下,材料存在蠕变现象 – 温度越高,材料的蠕变变形越快,破坏所需的时间就越短
• 高于室温,但低于蠕变温度
– 高温对疲劳寿命的影响是降低其疲劳强度 – 这时,要评价构件的疲劳性能,需要采用对应高温条件下的疲 劳曲线
第二节 疲劳设计方法 • 一、疲劳强度、疲劳极 • 限与疲劳寿命的概念 二、疲劳设计方法简介 三、确定疲劳寿命的方 法 四、疲劳分析软件 •
主要有两类:试验法和试验分析法 试验法
– 完全依赖于试验,是传统的方法 – 直接通过与实际情况相同或相似的试验来获取所需的疲劳数据 – 可靠,但必须在样机试制之后才能进行。费用高、周期长,且 无法和设计并行,试验结果不具有通用性
四、疲劳分析软件
第二节 疲劳设计方法 5.耐久性设计 一、疲劳强度、疲劳极 • 前述方法共同点: 限与疲劳寿命的概念 – 以保证结构的安全为目的 二、疲劳设计方法简介 – 以构件最危险的细节的疲劳破坏代表整个构件的破坏 三、确定疲劳寿命的方 • 法 四、疲劳分析软件
两个问题:
① 除最危险细节外,其它可能发生疲劳破坏处的损伤情况如何? 它们是否会在转变为影响结构安全的主要矛盾?
疲劳与断裂是引起工程结构和构件失效的最主要的原因。也是 导致汽车车身承载结构早期破坏的主要原因
第一节 疲劳破坏的特征 及影响疲劳寿命的因素 一、疲劳破坏的特征 二、影响疲劳寿命的 因素
1. 2. 3. 4. 5.
变载荷作用下,交变应力在远小于材料的强度极限, 破坏就可能发生 常表现为低应力类脆性断裂。在宏观上常表现为无明 显塑性变形的突然断裂 在断口处明显的分为两个区:光滑区和粗糙区。这是 判定是否为疲劳破坏的一个重要判据 疲劳破坏常具有局部性质 疲劳破坏是一个累积损伤的过程,通常要经历裂纹形 成、裂纹扩展、裂纹扩展到临界尺寸时的快速断裂三 个阶段
• 表面加工缺陷是产生应力集中的因素,往往就是疲劳 源,会大大降低疲劳强度
– 特别是对高强度材料
第一节 疲劳破坏的特征 及影响疲劳寿命的因素 一、疲劳破坏的特征
相关文档
最新文档